ОТЗЫВ

официального оппонента, доктора физико-математических наук, профессора РАН Лохтина Игоря Петровича на диссертационную работу Мамаева Михаила Валерьевича «Исследование направленного потока протонов в ядро-ядерных столкновениях при энергиях $E_{\rm kin}$ =1.2–4 A ГэВ», представленную на соискание ученой степени кандидата физико-математических наук по специальности 1.3.15 «Физика атомных ядер и элементарных частиц, физика высоких энергий».

Целью данной диссертационной работы является экспериментальное исследование направленного анизотропного потока протонов в ядроядерных взаимодействиях в экспериментах с фиксированной мишенью HADES (SIS-18) и BM@N (NICA) при «промежуточных» энергиях ионных пучков. В работе получены зависимости направленного потока v_1 протонов от быстроты и поперечного импульса в соударениях Au+Au при энергии пучка 1.23 ГэВ на нуклон и Ag+Ag при энергиях пучка 1.23 и 1.58 ГэВ на нуклон в эксперименте HADES, при этом обнаружено масштабирование v_1 со временем пролета ядер и геометрией столкновений. На основе моделирования с учетом откликов установки были детально изучены возможности измерения анизотропных потоков в эксперименте BM@N и получены предварительные данные по направленному потоку протонов во взаимодействиях Xe+Cs(I) при энергии пучка ксенона 3.8 ГэВ на нуклон.

свойств Исследование сильновзаимодействующей экстремальных условиях высоких плотностей и температур является одной фундаментальных задач современной физики высоких энергий. Уравнение состояния такой материи играет ключевую роль в понимании атомных динамики релятивистских ядер, ядро-ядерных столкновений, а также в астрофизике, определяя свойства нейтронных звезд Коллективные анизотропные потоки, слияний. направленный поток v_1 , являются чувствительным инструментом для изучения уравнения состояния. Однако интерпретация экспериментальных данных осложнена влиянием непотоковых корреляций и методических

ограничений, существовавших в более ранних экспериментах. Таким образом, актуальность темы диссертационной работы, представлены результаты высокоточных измерений направленного потока протонов современными методами на установках нового поколения HADES и ВМ@N, не вызывает сомнений. Отмечу, что столкновения тяжелых ионов при промежуточных энергиях (несколько ГэВ на нуклон) в настоящее время являются единственным экспериментальным методом изучения свойств сильновзаимодействующей материи в условиях экстремально высокой барионной плотности. Модельный анализ данных по анизотропным потокам частиц позволяет получить определенные ограничения на уравнение состояния барионной материи, и для прогресса в этой области требуются более точные методы измерений. В дисссертационной работе Мамаева М.В. как раз развита методика, позволяющая значительно повысить точность направленного измерений анизотропного потока и, соответственно, улучшить ограничения на параметры уравнения состояния.

Структура работы

Диссертация состоит из введения, четырех глав и заключения. Полный объём диссертации составляет 124 страницы с 63 рисунками и 1 таблицей. Список литературы содержит 86 наименований.

Введение содержит обоснование актуальности исследования, которое связано с фундаментальной задачей определения уравнения состояния плотной барионной материи.

В первой главе приведен обзор современных представлений о механизмах формирования анизотропных потоков в релятивистских столкновениях тяжелых ионов и их связи со свойствами горячей и плотной материи. Подробно обсуждаются экспериментальные методы измерения коэффициентов анизотропного потока \mathbf{v}_n и источники систематических погрешностей, такие как неоднородность аксептанса и вклад непотоковых корреляций. Теоретически обоснована необходимость усовершенствования методики анализа анизотропных потоков, направленного на минимизацию вышеуказанных систематических искажений.

Вторая глава посвящена описанию экспериментальных установок HADES и BM@N, данные которых использовались в работе. Детально

рассмотрены ключевые детекторные системы: трековые и время-пролетные детекторы и передняя сцинтилляционная стенка для HADES; передние кремниевые детекторы, станции газо-электронных умножителей, времяпролетные детекторы и передний адронный калориметр для BM@N. Приведены их основные характеристики и отмечена их роль в проведении измерений, необходимых для анализа анизотропных потоков.

В третьей главе изложены детали анализа данных экспериментов HADES и BM@N. Описаны процедуры отбора событий и треков, идентификации протонов, определения центральности столкновений. Особое внимание уделено разработке и адаптации методов реконструкции плоскости реакции и оценки ее разрешения методом трех под-событий. Подробно изложены разработанные автором процедуры коррекции на азимутальную неоднородность аксептанса, позволившие снизить систематическую погрешность до уровня 1–2%. Описана методика Монтемоделирования установки ВМ@N, включая полную реконструкции, установки что позволило оценить возможности протестировать методы анализа до получения экспериментальных данных.

результаты. Четвертая глава содержит основные физические Представлены зависимости направленного потока v₁ протонов от быстроты, поперечного импульса и центральности столкновений Au+Au и Ag+Ag при энергиях 1.23 и 1.58 ГэВ на нуклон на установке HADES. Проведено сравнение данных HADES с расчетами транспортной модели JAM и данными экспериментов STAR и FOPI. Установлен закон масштабирования v₁ с энергией и геометрией сталкивающихся систем. Продемонстрирована эффективность методики измерения направленного потока протонов в условиях эксперимента ВМ@N: представлены модельные результаты для взаимодействий Xe+Cs(I) при энергиях пучка ксенона 2, 3 и 4 ГэВ на нуклон, и первые результаты анализа экспериментальных данных по столкновениям Xe+Cs(I) при энергии пучка ксенона 3.8 ГэВ на нуклон, показавшие хорошее согласие с предсказаниями модели ЈАМ.

В Заключении подведены итоги работы, сформулированы основные выводы и намечены перспективы дальнейших исследований

Достоверность полученных результатов подтверждается ИХ согласием данными других экспериментов предсказаниями И теоретических моделей, а также основывается на использовании усовершенствовании общепринятых методик анализа данных И современного программного обеспечения, применяемых в физике высоких энергий. При этом учтена специфика экспериментов HADES и BM@N.

Результаты, отраженные в положениях, выносимых на защиту, являются новыми и научно обоснованными. Автором получены и проанализированы новые экспериментальные данные по направленным потокам v_1 протонов в экспериментах HADES и BM@N. В частности, впервые получены зависимости v_1 протонов от быстроты и поперечного импульса в соударениях Аи+Аи и Ад+Ад при энергиях 1.23 и 1.58 ГэВ на нуклон в эксперименте HADES, также впервые измерен направленный поток протонов во взаимодействиях Xe+Cs(I) при энергии 3.8 ГэВ на нуклон в эксперименте ВМ@N. По теме диссертации автором опубликовано 9 работ в рецензируемых научных журналах, входящих в перечень ВАК, результаты неоднократно представлялись на международных конференциях и совещаниях. Развитая автором методика, позволяющая значительно повысить точность измерений направленного анизотропного потока, может быть в дальнейшем применена для получения информации об уравнении состояния сильновзаимодействующией материи как в текущих, так и в будущих экспериментах (в частности, в эксперименте MPD на NICA в моде с фиксированной мишенью). Таким образом, полученные в представленной работе результаты имеют важную научно-практическую значимость.

В качестве замечаний к диссертации можно отметить следующее.

- 1. Во Введении написано про «открытие кварк-глюонной материи (КГМ) в столкновениях ионов золота при энергии $\sqrt{s_{NN}}$ =200 ГэВ на коллайдере RHIC в 2005 году», но все же ранее (в 2000 году) была обнародована компиляция указаний на формирование КГМ в экспериментах на ускорителе SPS (про это упоминается в разделе 1.1, но можно было бы отметить и во Введении).
- 2. В обзоре Данилевича и др. 2002 года (ссылка [10] диссертации) было выявлено противоречие: данные по направленному потоку v_1 протонов, полученные в экспериментах на ускорителе AGS, лучше описывались

моделью с «мягким» уравнением состояния ядерной материи, в то время как эллиптический поток v_2 — моделью с «жестким» уравнением состояния. Новые данные эксперимента BM@N по наклону v_1 согласуются с недавними измерениями в эксперименте STAR на RHIC, но не со старыми данными AGS. В этой связи в тексте диссертационной работы можно было бы прокомментировать, снимают ли данные результаты отмеченное выше противоречие, указывая при этом на предпочтительность «жесткого» уравнения состояния в исследуемом диапазоне энергий ионных пучков.

- 3. В диссертации весьма детально описаны детекторные системы и методика анализа данных (что, безусловно, является достоинством работы), возможно, стоило бы также немного подробнее описать и специфику используемых теоретических моделей (JAM, DCM-QGSM-SMM). Например, при сравнении данных по направленному потоку протонов с предсказаниями модели ЈАМ автор отмечает, что модель адекватно описывает зависимость v1 от быстроты, но систематически расходится с экспериментом для зависимости v1 от поперечного импульса. Можно было бы обсудить, особенности физического какие формализма ИЛИ параметризации модели ЈАМ могут приводить к такому расхождению.
- 4. Для экспериментальных данных BM@N (соударения Xe+Cs(I) при энергии 3.8 ГэВ на нуклон) в работе приведена зависимость v_1 протонов от быстроты. Было бы интересно получить также зависимость v_1 протонов от поперечного импульса и сравнить данные с предсказаниями модели JAM.

Заключение

Вышеуказанные замечания имеют дискуссионный характер и не снижают общей положительной оценки диссертации, выполненной на высоком уровне и содержащей ряд новых и актуальных результатов. Результаты диссертации полностью отражены в девяти публикациях в рецензируемых журналах, рекомендованных ВАК. Автореферат адекватно и полно отражает содержание диссертационной работы. По моему мнению, диссертация Мамаева Михаила Валерьевича «Исследование направленного потока протонов в ядро-ядерных столкновениях при энергиях E_{kin} =1.2–4 A ГэВ» является завершенной научно-квалификационной работой и удовлетворяет всем критериям «Положения о присуждении ученых

степеней», утвержденного постановлением Правительства РФ от 24 сентября 2013 года № 842, предъявляемым к кандидатским диссертациям, а ее автор заслуживает присуждения ученой степени кандидата физикоматематических наук по специальности 1.3.15. Физика атомных ядер и элементарных частиц, физика высоких энергий.

22 сентября 2025 года

Официальный оппонент,

доктор физико-математических наук, профессор РАН, ведущий научный сотрудник лаборатории сильных взаимодействий Отдела экспериментальной физики высоких энергий Научно-исследовательского института ядерной физики им. Д.В. Скобельцына

Московского государственного университета им. М.В. Ломоносова

Лохтин Игорь Петрович

Адрес: 119991, ГСП-1, Москва, Ленинские горы, д. 1, стр. 2 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова»,

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына

тел. (раб.): +7 495 939-12-57

тел. (моб.): +7 916 190-80-32

Адрес электронной почты: lokhtin@www-hep.sinp.msu.ru

Подпись Лохтина Игоря Петровича заверяю Ученый секретарь НИИЯФ МГУ кандидат физико-математических наук

Е.А. Сигаева

- Доктор физико-математических наук, профессор РАН, **Лохтин Игорь Петрович** Специальность 01.04.16 "Физика атомного ядра и элементарных частиц".
- Список основных публикаций по теме рецензируемой диссертации в рецензируемых научных изданиях за последние 5 лет:
- 1. G.O. Ambaryan, A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, "Modeling net-charge fluctuations in heavy-ion collisions at the LHC" // Chinese Physics C, 2025 49 014109.
- 2. I.P. Lokhtin, A.V. Nikolskii, A.M. Snigirev, "Unraveling alignment pattern in high-energy particles via transverse momentum disbalance analysis" // European Physical Journal A, 2025-61-50.
- 3. G. Ambaryan, L. Bravina, A. Chernyshov, G. Eyyubova, V. Korotkikh, I. Lokhtin, S. Petrushanko, A. Snigirev, E. Zabrodin, "HYDrodynamics with JETs (HYDJET++): latest developments and results"// Particles, 2025 8-35.
- 4. Е.Е. Забродин, И.П. Лохтин, В.Л. Коротких, С.В. Петрушанко, А.М. Снигирев, А.С. Чернышов, Г.Х. Эйюбова, "Моделирование зарядовых корреляций адронов в соударениях тяжелых ионов при энергиях NICA" // Журнал экспериментальной и теоретической физики, 2024-166-340.
- 5. A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, "The charge balance function with HYDJET++ model in heavy ion collisions at LHC" // International Journal of Modern Physics A, 2024 39 2443021.
- 6. A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, "Toward a description of the centrality dependence of the charge balance function in the HYDJET++ model" // Chinese Physics C, 2023 47 084107.
- 7. I.P. Lokhtin, A.V. Nikolskii, A.M. Snigirev, "On geometrical interpretation of alignment phenomenon" // European Physical Journal C, 2023 83 324.
- 8. L.V. Bravina, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, "Nature of particles azimuthal anisotropy at low and high transverse momenta in ultrarelativistic A+A collisions" // Physica Scripta, 2022- 97 064007.
- 9. M. Cheremnova, A. Chernyshov, Ye. Khyzhniak, O. Kodolova, V. Kuzmin, I. Lokhtin, L. Malinina, K. Mikhaylov, G. Nigmatkulov, "Particle multiplicity fluctuations and spatiotemporal properties of particle-emitting source of strongly interacting matter for NICA and RHIC energies" // Symmetry, 2022 14 1316.
- 10. L.V. Bravina, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, "Jets and elliptic flow correlations at low and high transverse momenta in ultrarelativistic A+A collisions" // Physical Review C, 2021 103 034905.