На правах рукописи

Дмитриева Ульяна Александровна

Изучение ультрапериферических столкновений ядер на коллайдерах

01.04.16 – физика атомного ядра и элементарных частиц

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте ядерных исследований Российской академии наук (ИЯИ РАН).

Научный руководитель:

Пшеничнов Игорь Анатольевич, доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН), отдел экспериментальной физики, ведущий научный сотрудник.

Официальные оппоненты:

Варламов Владимир Васильевич, доктор физико-математических наук, профессор, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова», Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына, отдел электромагнитных процессов и взаимодействий атомных ядер, главный научный сотрудник.

Нигматкулов Григорий Александрович, кандидат физико-математических наук, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ», Офис образовательных программ Отделения ядерной физики и технологий, доцент.

Ведущая организация:

Международная межправительственная организация Объединенный институт ядерных исследований (ОИЯИ).

Защита состоится ______ в _____ часов на заседании диссертационного совета Д002.119.01 на базе Федерального государственного бюджетного учреждения науки Института ядерных исследований Российской академии наук по адресу: 117312, Москва, проспект 60-летия Октября, 7А.

С диссертацией можно ознакомиться в библиотеке и на сайте ИЯИ РАН по адресу:

http://www.inr.ru/rus/referat/dis-zasch.html.

Автореферат разослан _____

Ученый секретарь диссертационного совета Д002.119.01, кандидат физ.-мат. наук

Демидов Сергей Владимирович

Общая характеристика работы

Актуальность темы исследования.

Одним из важнейших направлений современной ядерной физики и физики элементарных частиц является изучение столкновений частиц и ядер высоких энергий. Эксперименты по столкновениям встречных пучков протонов и ядер выполняются на Большом адронном коллайдере LHC [1] (англ. Large Hadron Collider) в Европейском центре ядерных исследований (ЦЕРН) в Женеве, на коллайдере RHIC (англ. Relativistic Heavy Ion Collider) в Брукхэйвенской национальной лаборатории, штат Нью-Йорк. В Объединённом институте ядерных исследований (ОИЯИ) в Дубне создается новый ускорительный комплекс NICA (англ. Nuclotron based Ion Collider fAcility), который позволит изучать как столкновения протонов и дейтронов, так и столкновения ядер. В столкновениях тяжелых релятивистских ядер основной интерес физиков обычно сосредоточен на изучении горячего и плотного файербола — сильновзаимодействующей материи в области перекрытия сталкивающихся ядер. В условиях экстремально высоких температуры и плотности энергии предсказывается возможность фазового перехода адронной материи в кварк-глюонную плазму (КГП) — особое состояние вещества, в котором, как предполагается, существовала наша Вселенная в первые микросекунды после Большого взрыва. Для экспериментального подтверждения такого фазового перехода необходимо сортировать события по прицельному параметру b — расстоянию между центрами сталкивающихся ядер в плоскости, поперечной оси пучка, — или по степени центральности (англ. centrality), величина которой непосредственно связана с прицельным параметром и выводится из сравнения экспериментальных данных с результатами Монте-Карло моделирования. Сравнение разнообразных величин, измеренных в центральных событиях, с теми же величинами, измеренными в периферических столкновениях, может служить доказательством обнаружения фазового перехода адронной материи в КГП. Таким образом, программы экспериментов на коллайдерах RHIC и LHC в основном ориентированы на изучение центральных событий со значительным перекрытием ядерных плотностей, в которых доминируют сильные взаимодействия и наблюдается множественное рождение частиц в результате столкновений нуклонов-партисипантов (англ. participant участник). Однако в последние десятилетия широко обсуждаются и ультрапериферические столкновения (УПС), где величина прицельного параметра превышает сумму радиусов сталкивающихся ядер и отсутствует их геометрическое перекрытие: $b \ge R_1 + R_2$, где R_1 и R_2 — радиусы сталкивающихся ядер. В таких столкновениях ядра целиком выступают в качестве спектаторов (англ. spectator — наблюдатель), и их взаимодействие имеет исключительно к электромагнитный характер [2].

Кулоновские поля сталкивающихся ядер приводят к их разрушению в УПС. Это явление известно как электромагнитная диссоциация (ЭМД) ядер. Наиболее вероятными каналами ЭМД являются эмиссия одного или несколь-

ких нуклонов с образованием единственного ядра-остатка [7]. При ультрарелятивистских энергиях LHC нуклоны от ЭМД будут вылетать в достаточно узкий конус с осью, совпадающей с направлением движения пучка в точке взаимодействия, что позволяет регистрировать такие нуклоны относительно компактными в поперечных размерах адронными калориметрами. Например, установка ALICE (англ. A Large Ion Collider Experiment) на LHC, созданная специально для изучения столкновений тяжелых ядер, снабжена передними адронными калориметрами ZDC (англ. Zero Degree Calorimeters), расположенными с обеих сторон от точки взаимодействия ядер и позволяющими регистрировать как нейтроны, так и протоны от ЭМД. Ранее коллаборацией ALICE [4] с помощью ZDC были измерены сечения эмиссии одного, двух и трех нейтронов от ЭМД в УПС ядер свинца ²⁰⁸Pb с энергией в системе центра масс на нуклонную пару $\sqrt{s_{\rm NN}} = 2.76$ ТэВ, и было показано, что суммарное сечение эмиссии 1–3 нейтронов составляет ~ 67% для данной энергии столкновений. Подобный результат (~ 72%) предсказывает и модель релятивистской электромагнитной диссоциации ядер RELDIS (англ. Relativistic Electromagnetic DISsociation) [5], разработанная специально для описания фрагментации ультрарелятивистских ядер под действием интенсивных электромагнитных полей.

По сравнению с сечением неупругого адронного взаимодействия ядер, составляющего несколько барн, сечения ультрапериферических электромагнитных взаимодействий тяжелых ядер велики, и такие интенсивные взаимодействия ядер на LHC приводят к потере циркулирующих в ускорителе ядер, что существенно ограничивает светимость коллайдера и время жизни пучков в ускорителях [6]. С точки зрения стабильного функционирования коллайдера, наиболее критичными являются те электромагнитные взаимодействия, которые приводят к потерям ионов пучка за счет небольшого изменения их отношения заряда к массе, к ним, в том числе, относится и ЭМД. В результате ЭМД меняется магнитная жесткость [6], определяемая как отношение импульса р частицы к ее заряду $p/Ze = (B\rho)$, где ρ — радиус траектории частицы в магнитном поле В. При одновременном испускании нейтронов и протонов величина магнитной жесткости остаточного ядра может сохраняться близкой к таковой для ядер пучка, что приводит к движению остаточных ядер по траекториям, близким к траектории ядер пучка. Такие ядра могут проходить через систему коллиматоров ускорителя, предназначенных для удаления продуктов взаимодействий ядер в точках взаимодействия, и создавать радиационную и тепловую нагрузку на конструкционные элементы LHC [8]. В том числе, часть вторичных ядер попадает в сверхпроводящие магниты LHC, нагревая их, что может привести к квенчингу магнитов — потере сверхпроводимости [6, 8]. Однако на сегодняшний день ни на RHIC, ни на LHC образование заряженных спектаторных фрагментов не изучалось.

Сейчас активно обсуждается проект будущего кольцевого коллайдера FCC [11] (англ. Future Circular Collider), запуск которого планируется после 2040 года. В качестве одной из опций проект FCC включает в себя адрон-адронный коллайдер FCC-hh. Обсуждается возможность протон-протонных столкновений при энергии $\sqrt{s} = 100$ ТэВ, или в пересчете на 208 Pb $^{-208}$ Pb столкновения [12] $\sqrt{s_{\rm NN}} = 39$ ТэВ, что в ~ 8 раз выше энергии, достигнутой к настоящему моменту на LHC. При создании проекта FCC-hh необходимо учитывать электромагнитные процессы, как для расчета потерь светимости и тепловой нагрузки от ЭМД, так и при выборе ядер для физической программы.

Кроме процесса ЭМД, за счет кулоновского взаимодействия возможно и возбуждение низколежащих дискретных уровней ниже порога энергии эмиссии нейтрона из ядра, которое приводит к испусканию фотонов. Этот процесс подобен ядерной резонансной флуоресценции (ЯРФ), которая подробно изучалась в экспериментах с реальными фотонами и предложена, в частности, для неразрушающего контроля отработанного ядерного топлива. Были исследованы [13] свойства многочисленных дискретных возбужденных ядерных состояний в ядрах свинца ^{204,206,207,208}Pb ниже порога эмиссии нейтронов. На LHC вылетающие вперёд фотоны регистрировались только в эксперименте LHCf в протон-протонных и протон-свинцовых столкновениях, но ЯРФ пока не изучалась. Такие исследования представляют междисциплинарный интерес, поскольку ядерная структура ²⁰⁸Pb, которая обычно изучается в физике низких энергий, также может быть исследована в экспериментах по физике высоких энергий как на LHC, так и на FCC-hh

Таким образом, теоретическое и экспериментальное изучение ЭМД и ЯРФ в УПС тяжелых ядер в коллайдерах заполняет пробел в исследованиях ультрарелятивистских столкновений, где основное внимание уделяется адронным взаимодействиям. Полученные результаты могут быть применены при создании новых ускорительных установок.

Общая цель и конкретные задачи работы.

Целью работы является изучение ультрапериферических столкновений ядер на коллайдерах LHC, FCC-hh и NICA, а именно:

- 1. Моделирование УПС ядер свинца ²⁰⁸Pb на LHC и ядер золота ¹⁹⁷Au на NICA с помощью модели RELDIS для вычисления сечений образования вторичных ядер и сечений эмиссии соответствующего числа нейтронов и протонов; сравнение этих сечений.
- 2. Сравнение ядер свинца 208 Pb и индия 115 In для их использования в качестве ядер пучка на LHC и на FCC-hh с точки зрения нуклон-нуклонной светимости.
- 3. Моделирование процессов ядерной резонансной флу
оресценции в УПС ядер свинца $^{208}{\rm Pb}$ при энергиях LHC и проектируе
мого коллайдера FCC-hh.
- 4. Создание комбинаторной модели для определения эффективности регистрации нейтронов и протонов в передних адронных калориметрах с учетом их ограниченного аксептанса.

- 5. Монте-Карло моделирование ЭМД ядер ²⁰⁸Pb в эксперименте ALICE на LHC для вычисления поправок на эффективность регистрации нуклонов нейтронными и протонными калориметрами ZDC и сравнение результатов моделирования с предсказаниями разработанной комбинаторной модели.
- 6. Вычисление сечений образования различных вторичных ядер, посредством измерения сечений эмиссии нейтронов и протонов вперёд, на основе данных собранных калориметрами ZDC в сеансах столкновений ядер свинца ²⁰⁸Pb–²⁰⁸Pb на LHC.

Научная новизна данной работы состоит в том, что впервые был предложен способ учета ограниченного аксептанса для вычисления энерговыделения в передних адронных калориметрах; данный способ может быть использован для любых калориметров с известными для него характеристиками энергетического разрешения и аксептанса. Впервые выполнено моделирование ЭМД ядер свинца ²⁰⁸Pb для установки ALICE, а именно для нейтронных и протонных калориметров ZDC, и вычислены эффективности регистрации для каналов различной множественности нуклонов. Впервые были получены данные по эмиссии нейтронов и протонов на рекордной на данный момент энергии столкновений $\sqrt{s_{\rm NN}} = 5.02$ ТэВ. Эти данные были получены с учетом вычисленных эффективностей регистрации нуклонов в ZDC. Впервые выполнено моделирование ЭМД ядер индия и свинца на проектируемом коллайдере FCC-hh. Впервые теоретически исследовано явление ЯРФ на коллайдерах LHC и FCChh.

Практическая ценность работы.

Изучение ЭМД в эксперименте ALICE на LHC, помимо фундаментального научного значения, имеет практическую ценность. Во-первых, интенсивные электромагнитные взаимодействия ядер, сталкивающихся на встречных пучках LHC, приводят к потере циркулирующих в ускорителе ядер, что существенно ограничивает светимость коллайдера и время жизни пучков в ускорителях. Вовторых, ядра с близкими к ядрам пучка LHC отношением заряда к массе проходят сквозь систему коллиматоров LHC и оказывают воздействие на элементы коллайдера, в частности, на сверхпроводящие магниты. Выходы таких ядер с близкими к ядрам пучка отношениями заряда к массе можно оценить с помощью той или иной модели, однако ни прямые, ни косвенные измерения этих выходов на LHC не выполнялись. Задача измерения таких выходов становится особенно важной в свете подготовки работы LHC с увеличенной светимостью (англ. HL-LHC — High Luminosity LHC), а также при проектировании будущего коллайдера FCC-hh.

Разработанные в диссертационной работе методы вычисления эффективностей адронных калориметров могут быть использованы для анализа данных, собранных в других сеансах столкновений ядер в эксперименте ALICE на LHC, а разработанная комбинаторная модель может быть использована для любых других установок, оснащенных передними адронными калориметрами, например, для установки MPD на строящемся коллайдере NICA в Дубне.

Методология и методы исследования.

Моделирование ЭМД ядер выполнялось с помощью модели RELDIS, основанной на методе Монте-Карло и реализованной в виде компьютерного кода. Все вычисления и визуальное представление результатов реализованы путем написания компьютерного кода в пакете объектно-ориентированных программ и библиотек ROOT. Монте-Карло моделирование установки ALICE и анализ экспериментальных данных, собранных в эксперименте ALICE, выполнялись с помощью пакета объектно-ориентированных программ и библиотек AliPhysics, основанном на ROOT.

Положения, выносимые на защиту:

- 1. С помощью модели Relativistic ELectromagnetic DISsociation (RELDIS), разработанной ранее в ИЯИ РАН И. А. Пшеничновым с соавторами, вычислены сечения образования вторичных ядер, нейтронов и протонов в результате электромагнитной диссоциации (ЭМД) ядер свинца ²⁰⁸Pb в их ультрапериферических столкновениях (УПС) на LHC и ядер золота ¹⁹⁷Au на NICA.
- 2. На основе моделирования с помощью RELDIS ¹¹⁵In–¹¹⁵In и ²⁰⁸Pb–²⁰⁸Pb взаимодействий на коллайдерах LHC и FCC-hh исследованы выходы вторичных ядер, оценены соотношения электромагнитных и адронных событий в точках взаимодействия.
- Вычислены дифференциальные распределения по углам вылета, энергиям и псевдобыстроте фотонов от ядерной резонансной флуоресценции (ЯРФ), индуцированной фотонами Вайцзеккера – Вильямса, в УПС ядер свинца ²⁰⁸Pb на коллайдерах LHC и FCC-hh; вычислены полные сечения ЯРФ.
- 4. Разработана комбинаторная вероятностная модель для вычисления энерговыделения в передних адронных калориметрах с учетом их ограниченного аксептанса при попадании в них нуклонов от ЭМД. Метод был применен к:
 - а. калориметру FHCal эксперимента MPD (NICA, Дубна) для столкновений ядер золота ¹⁹⁷Au при $\sqrt{s_{NN}}$ от 4 до 11 ГэB;
 - б. передним нейтронным и протонным калориметрам ZDC эксперимента ALICE для столкновений ядер свинца ²⁰⁸Pb при $\sqrt{s_{NN}} = 2.76$ и 5.02 ТэВ.
- 5. На основе Монте-Карло моделирования ЭМД в ²⁰⁸Pb–²⁰⁸Pb столкновениях при $\sqrt{s_{NN}} = 5.02$ ТэВ посредством RELDIS в пакете объектно-ориентированных программ и библиотек AliPhysics эксперимента ALICE были

вычислены поправочные коэффициенты на эффективность регистрации в ZDC событий с нейтронами и протонами определенной множественности.

6. В результате анализа экспериментальных данных по ²⁰⁸Pb–²⁰⁸Pb столкновениям, собранных коллаборацией ALICE на LHC в 2018 году, были измерены сечения эмиссии нейтронов и протонов от ЭМД с учетом вычисленных поправок на эффективность регистрации нуклонов. С помощью RELDIS оценены выходы соответствующих вторичных ядер-остатков, образующихся в ЭМД, показано доминирование событий с малыми энергиями возбуждения.

Степень достоверности и апробация результатов.

Основные результаты диссертации докладывались на следующих конференциях:

- 59-ая научная конференции МФТИ с международным участием, Долгопрудный, МФТИ, 26.11.2016;
- VII межинститутская молодёжная конференция «Физика элементарных частиц и космология 2018», Москва, ФИАН, 09.04.2018;
- Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2018», Москва, МГУ им. М.В.Ломоносова, 10.04.2018;
- VII международная молодежная научная школа-конференции «Современные проблемы физики и технологий», Москва, НИЯУ МИФИ, 18.04.2018;
- Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2019», Москва, МГУ им. М.В.Ломоносова, 10.04.2019;
- 64-ая Всероссийская научная конференции МФТИ, Долгопрудный, МФ-ТИ, 02.12.2021,

а также на регулярных совещаниях физической рабочей группы коллаборации ALICE по теме ультрапериферических столкновений.

Публикации по теме диссертации.

Материалы диссертации опубликованы в 10 печатных работах, из них 6 статей в рецензируемых журналах [1a, 2a, 4a, 3a, 5a, 6a] и в 3 статьи в сборниках трудов конференций [8a, 9a, 10a].

Личный вклад автора.

Содержание диссертации и основные положения, выносимые на защиту, отражают личный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причем вклад диссертанта был определяющим. Все представленные в диссертации результаты получены лично автором. Автор принимал непосредственное участие в решении следующих задач:

• Моделирование ультрапериферических столкновений ядер с помощью модели RELDIS.

- Теоретическое изучение ядерной резонансной флоуресценции на LHC и FCC-hh, вывод формул и написание кода в программной среде ROOT для визуального представления результатов.
- Разработка комбинаторной модели для описания спектров энерговыделения в передних адронных калориметрах и их эволюции в зависимости от энергии пучка и аксептанса калориметра, которая дает выражения, связывающие числа испущенных и зарегистрированных нуклонов от электромагнитной диссоциации. Написание кода в программной среде ROOT для вычисления поправочных коэффициентов на эффективность регистрации нуклонов и визуального представления результатов.
- Подбор оптимальных входных параметров Монте-Карло моделирования в пакете объектно-ориентированных программ и библиотек AliPhysics, разработка методов вычисления эффективности регистрации нуклонов передними адронными калориметрами ZDC, написание кода для решения указанных задач.
- Написание кода в программной среде AliPhysics для анализа данных, собранных в эксперименте ALICE посредством калориметров ZDC.

Структура и объем диссертации.

Диссертация состоит из введения, 6 глав, заключения, списка публикаций, списка цитированной литературы и приложения. Работа изложена на 145 страницах, включая 41 рисунок, 32 таблицы и список цитированной литературы, содержащий 78 наименований.

Краткое содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулированы ее общая цель и конкретные задачи, аргументирована научная новизна исследований и показаны научная и практическая значимость полученных результатов. В разделе представлены выносимые на защиту основные результаты, сведения об апробации работы, публикациях по теме диссертации, личном вкладе автора, структуре и объеме диссертационной работы.

В первой главе описываются методы моделирования ультрапериферических столкновений (УПС) ядер. УПС характеризуются прицельным параметром *b*, превосходящим сумму радиусов сталкивающихся ядер ($b > R_1 + R_2$). Представлен метод виртуальных фотонов Вайцзеккера – Вильямса, удобный для описания УПС, в которых не происходит перекрытия ядерных плотностей сталкивающихся ядер, а взаимодействие носит исключительно электромагнитный характер. Согласно методу Вайцзеккера – Вильямса влияние лоренц-сжатого кулоновского поля первого ядра A_1 на ядро A_2 в системе покоя последнего можно свести к поглощению ядром-мишенью A_2 одного или нескольких эквивалентных фотонов, испущенных ядром A_1 . Спектр виртуальных фотонов, излучаемый ядром с зарядом Z_1 , для случая ультрарелятивистских столкновений $(\gamma >> 1)$ дается следующим выражением:

$$n(E_{\gamma}) = \frac{2\alpha Z_1^2}{\pi \beta^2 E_{\gamma}} \Big(\mathsf{x} K_0(\mathsf{x}) K_1(\mathsf{x}) - \frac{\mathsf{x}^2 \beta^2}{2} (K_1^2(\mathsf{x}) - K_0^2(\mathsf{x})) \Big),$$

где $\mathbf{x} = \omega b / \gamma v = E_{\gamma} b / \gamma \beta \hbar c$. Далее в первой главе перечисляются основные физические процессы, происходящие при поглощении фотонов ядрами. В результате электромагнитных взаимодействий ядра могут терять не только отдельные нейтроны, но и отдельные протоны с образованием тяжелого остатка, или же претерпевать распады на два и более фрагментов. Такие процессы называются электромагнитной диссоциацией (ЭМД) ядер.

В данной главе приводится описание модели RELDIS (Relativistic ELectromagnetic DISsociation), использующей метод эквивалентных фотонов Вайцзеккера – Вильямса для описания ЭМД. Затем моделирование посредством RELDIS применяется к столкновениях ядер свинца ²⁰⁸Pb в их УПС на LHC и ядер золота ¹⁹⁷Au на NICA. Вычисляются сечения выходов вторичных ядер и сечения эмиссии определенного числа нейтронов и протонов.

Наиболее важным является изучение образования в ЭМД ядер свинца 208 Pb вторичных ядер с наибольшими сечениями образования и отношением заряда к массе близким к 208 Pb, которые могут долгое время циркулировать вместе с ядрами пучка по близким траекториям, а при сходе с них попадать в конструкционные элементы LHC, включая сверхпроводящие магниты. На Рис. 1 (слева) представлены сечения образования некоторых изотопов свинца Pb, таллия Tl и ртути Hg в зависимости от соответствующего отношения Z/A заряда к массе.

Рис. 1. Сечения образования фрагмента в зависимости от его отношения заряда к массе, предсказываемые моделью RELDIS для столкновений ядер ²⁰⁸Pb на LHC с энергией $\sqrt{s_{NN}} = 5.02$ TэB [9a] (слева) и для столкновений ядер ¹⁹⁷Au на NICA с энергией $\sqrt{s_{NN}} = 9$ ГэB [3a] (справа). Отношение Z/A начального ядра представлено пунктирной линией. На рисунках также приведены периоды полураспада $t_{1/2}$ для нестабильных ядер.

RELDIS позволяет вычислять как сечения выходов различных вторичных

ядер, так и отдельные сечения выходов нейтронов и протонов, которые могут быть напрямую измерены в эксперименте ALICE на LHC посредством передних адронных калориметров ZDC (англ. Zero Degree Calorimeters). Вычисления с помощью RELDIS подтверждают возможность оценки сечений образования отдельных изотопов из измеренных сечений эмиссии соответствующего числа нейтронов и протонов. Для подтверждения данной гипотезы были вычислены значения $\Delta A = A_{res} + N_n + N_p - 208$ (разность между суммой массового числа самого тяжелого остаточного ядра A_{res} и числами испущенных нуклонов N_n и A исходного ²⁰⁸Pb) и $\Delta Z = Z_{res} + N_p - 82$ (разность между суммой заряда самого тяжелого остаточного ядра Z_{res} и числа испущенных протонов N_p и Z исходного ядра ²⁰⁸Pb) в зависимости от N_n . Согласно RELDIS, только полпроцента событий характеризуются $\Delta A < 0$ или $|\Delta Z| > 0$, и в таких редких случаях остаточное ядро не может быть однозначно идентифицировано по количеству испущенных нуклонов. Однако, в большинстве событий ЭМД для оценки Ares и Z_{res} достаточно измерить N_n и N_p. Далее в главе сравниваются сечения образования изотопов свинца Pb, таллия Tl и ртути Hg и сечения эмиссии соответствующего числа нейтронов и протонов, обсуждается возможность оценки сечений образования данных изотопов посредством регистрации нуклонов.

RELDIS позволяет моделировать столкновения ядер как при энергиях LHC (2.76 – 5.02 ТэВ), так и при энергиях строящегося ускорительного комплекса NICA (4 – 11 ГэВ). Столкновения тяжелых ядер на NICA планируется изучать с помощью многоцелевого детектора MPD (англ. Multi-Purpose Detector). В отличие от установки ALICE, в эксперименте MPD не будет возможности регистрировать все спектаторные нуклоны от ЭМД, однако он будет оснащен передним адронным калориметром FHCal (англ. Forward Hadron Calorimeter), предназначенным для регистрации части фрагментов-спектаторов и других продуктов взаимодействия, имеющих быстроты, близкие к быстроте пучка ¹⁹⁷Au. Калориметр FHCal имеет центральное отверстие, через которое проходят встречные пучки, поэтому можно ожидать, что заметная часть продуктов ЭМД ¹⁹⁷Au (их доля зависит от энергии столкновений) не попадет в FHCal и будет взаимодействовать с элементами конструкции NICA. Посредством RELDIS были посчитаны средние множественности нейтронов, протонов и пионов (π^+ , π^0 и π^0), испущенных в результате ЭМД для УПС ядер золота ¹⁹⁷Au при энергиях $\sqrt{s_{NN}} = 4, 6, 9$ и 11 ГэВ на нуклотроне NICA. Данные результаты могут быть использованы для оценки воздействия вторичных частиц и ядер на компоненты NICA. Благодаря характерной зависимости $1/E_{\gamma}$ спектра виртуальных фотонов Вайцзеккера – Вильямса, для столкновений на NICA доминирует поглощение фотонов с энергиями до нескольких десятков МэВ, возбуждение гигантского дипольного резонанса в ¹⁹⁷Au с его последующим распадом через эмиссию нейтронов и образованием единственного тяжелого ядра-остатка, представленного различными изотопами золота. На Рис. 1 (справа) представлены сечения образования в ЭМД изотопов золота Au и платины Pt вместе с периодами полураспада $t_{1/2}$ для нестабильных изотопов при энергии $\sqrt{s_{NN}} = 9 \ \Gamma$ эВ столкновений

на NICA.

Результаты первой главы опубликованы в работах [За, 5а, 9а, 10а].

Во второй главе, следуя работе [4a], моделирование с помощью RELDIS применяется для сравнительного анализа взаимодействий ¹¹⁵In–¹¹⁵In и ¹¹⁵Pb–²⁰⁸Pb на коллайдерах LHC при $\sqrt{s_{NN}} = 5.02$ TэB и FCC-hh при $\sqrt{s_{NN}} = 39.4$ TэB.

Соотношения между уровнями адронных и электромагнитных, представленных ЭМД ядер и рождением электрон-позитронных пар (англ. Bound Free Pair Production), процессов в коллайдерах определяются соответствующими сечениями: σ_{had} , σ_{EMD} и σ_{BFPP} . В работе [4a] вычислены полные адронные сечения σ_{had} для столкновений индия In–In и свинца Pb–Pb, соответственно, с помощью модифицированной модели abrasion-ablation и модели Глаубер Монте-Карло 3.0, а сечения электромагнитной диссоциации σ_{EMD} рассчитаны с помощью модели RELDIS. Различные состояния атомов для электронов, захваченных ²⁰⁸Pb, учитывались при расчете σ_{BFPP} на основе приближения $\sigma_{BFPP} = A \ln \gamma_c + B$, затем данные сечения для Pb–Pb были уменьшены на фактор Z^7 , чтобы получить σ_{BFPP} для In–In. Все эти сечения представлены в Таблице 1 для столкновений ¹¹⁵In–¹¹⁵In и ²⁰⁸Pb–²⁰⁸Pb на LHC и FCC-hh вместе с их суммами σ_{tot} в каждом случае. Как видно из Таблицы 1, сечения σ_{EMD} и σ_{BFPP} для Pb–Pb существенно больше, чем для In–In.

	LHC		FCC-hh	
Сечение	¹¹⁵ In- ¹¹⁵ In	²⁰⁸ Pb- ²⁰⁸ Pb	¹¹⁵ In- ¹¹⁵ In	²⁰⁸ Pb- ²⁰⁸ Pb
(6)	$\sqrt{s_{\rm NN}} =$	$\sqrt{s_{\rm NN}} =$	$\sqrt{s_{\rm NN}} =$	$\sqrt{s_{\rm NN}} =$
	5.54 I 9B	5.02 T9B	42.0 I 9B	39.4 I 9B
$\sigma_{ m had}$	5.34	7.66	5.47	7.9
$\sigma_{ m EMD}$	40.4	211.4	53.8	284.2
$\sigma_{ m BFPP}$	~ 7.4	271.8	~ 9.4	344.
$\sigma_{ m tot}$	53.	491.	68.7	636.
$\sigma_{\rm had}/\sigma_{\rm tot}~(\%)$	10	1.6	8	1.2

Таблица 1. Сечения адронного и электромагнитных взаимодействий ядер индия ¹¹⁵In и свинца ²⁰⁸Pb на коллайдерах LHC и FCC-hh. Таблица из работы [4a].

Сравнение сечений адронных и электромагнитных взаимодействий позволяет сделать вывод, что использование пучков ядер промежуточной массы, таких как ¹¹⁵In, имеет преимущество по величине эффективной нуклон-нуклонной светимости на коллайдерах LHC и FCC-hh.

Результаты второй главы опубликованы в работе [4а].

В третьей главе, следуя изложению работы [6а], на основе метода виртуальных фотонов Вайцзеккера – Вильямса изучается процесс ядерной резонансной флуоресценции (ЯРФ). ЯРФ — это процесс возбуждения ядра фотоном γ с последующим распадом возбужденного (резонансного) состояния с испусканием другого фотона γ' и образованием конечного ядра в более низколежащем состоянии. Аналогичный процесс можно наблюдать и в УПС ядер при поглощении виртуального фотонов ядром. В данной главе приводится сечение фотопоглощения $\sigma(E_{\gamma})$, приводящего к переходу из основного состояния ядра со спином J_0 в изолированное резонансное ядерное состояние с энергией E_r , полной шириной Γ_r и спином J_r , описываемое формулой Брейта – Вигнера. Интегральное сечение рассматриваемого возбужденного состояния с энергией E_r вычисляется как $I(E_r) = \int dE_{\gamma}\sigma(E_{\gamma})$. Далее из выражений для $I(E_r)$ и спектра виртуальных фотонов $n_{WW}(E_{\gamma})$ напрямую вычисляется сечения ЯРФ $\sigma_{\text{NRF}}(E_r)$ в УПС для данного резонансного состояния E_r . Вариациями спектра Вайцзеккера – Вильямса $n_{WW}(E_{\gamma})$ в пределах очень малой ширины резонанса Γ_r можно пренебречь, а $n_{WW}(E_{\gamma})$ может быть представлен своим значением в E_r для вычисления сечения каждого резонансного состояния:

$$\sigma_{\rm NRF}(E_r) = n_{\rm WW}(E_r)I(E_r) = \frac{\pi}{2}n_{\rm WW}(E_r)\Gamma_r\sigma_{\rm max}(E_r)$$

Вычисленные сечения ЯРФ представлены на Рис. 2. Как видно из этого рисунка, вклад низколежащих уровней усиливается, поскольку спектр Вайцзеккера – Вильямса $n_{WW}(E_{\gamma}) \sim 1/E_{\gamma}$. В результате, вклад первых четырех уровней (~ 58%) доминирует при обеих энергиях столкновения. Сумма сечений ЯРФ для всех рассмотренных уровней составляет 4.15 б и 5.16 б, соответственно, при $\sqrt{s_{\rm NN}} = 5.02$ и 39.4 ТэВ.

В главе вычисляется угловое распределение фотонов, испускаемых в системе покоя ядра. Наблюдается так называемый прожекторный эффект — в лабораторной системе отсчета в случае ультрарелятивистских ядер практически все фотоны испускаются в узкий конус с раствором $\delta\theta \sim 1/\gamma$, ось которого направлена вдоль начального импульса ядра. Таким образом, все фотоны от ЯРФ могут быть зарегистрированы довольно компактным передним детектором. Также были вычислены распределения испущенных в процессе ЯРФ фотонов по энергии и псевдобыстроте в УПС ядер свинца ²⁰⁸Pb на коллайдерах LHC и FCC-hh. Исследовано влияние времени жизни уровня и показано, что типичное расстояние между точкой взаимодействия ²⁰⁸Pb—²⁰⁸Pb и местом эмиссии фотона оказывается меньше ошибки определения продольного положения вершины первичного взаимодействия.

Таким образом, в Главе 3 рассмотрен процесс ЯРФ, индуцированной фотонами Вайцзеккера – Вильямса, в УПС ультрарелятивистских ядер свинца ²⁰⁸Рb на LHC и FCC-hh, а результаты были опубликованы в работах [6a] и [8a].

В четвертой главе описывается разработанная автором [1a] простая вероятностная комбинаторная модель для вычисления энерговыделения в передних адронных калориметрах с учетом эффективности калориметра, которая дает удобные формулы для связи числа испущенных и зарегистрированных нуклонов. Результаты данной модели являются менее точными, чем результаты

Рис. 2. Сечения ЯРФ для УПС ²⁰⁸Pb–²⁰⁸Pb на LHC и FCC-hh, соответственно, при $\sqrt{s_{\rm NN}} = 5.02$ ТэВ (сплошная гистограмма) и при $\sqrt{s_{\rm NN}} = 39.4$ ТэВ (пунктирная гистограмма). Рисунок из работы [6а].

Монте-Карло моделирования, которые учитывают фактическую энергию пучка, геометрические размеры и положение ZDC и эффективность регистрации нуклонов, однако демонстрируют общие особенности детектирования событий эмиссии нуклонов от ЭМД с помощью передних адронных калориметров, далее для краткости называемых ZDC.

Распределение энергии в ZDC для однонуклонных событий принято характеризовать распределением Гаусса со средним μ_1 , равным энергии пучка E_0 , и дисперсией σ_1 , также зависящей от E_0 . В эксперименте ALICE выходы событий с определенной множественностью извлекаются из спектров ZDC с помощью их фитирования суммой гауссианов, где каждый гауссиан, соответствующий i = 1, 2, ...4 нуклонов, испущенных в ЭМД, характеризуется средним значением $\mu_i = i\mu_1$, дисперсией $\sigma_i = \sqrt{i\sigma_1}$ и нормировочным коэффициентом N_i , который пропорционален количеству зарегистрированных событий с *i* нуклонами. В случае ограниченного аксептанса ZDC, часть нуклонов либо вообще не попадает в калориметр, либо в ZDC поглощается только часть их энергии благодаря периферическому расположению ливня вторичных частиц. В данной модели количества n_i зарегистрированных событий с *i* нуклонами связываются с количеством *исходных* событий N_i с данной множественностью. Модель применена к спектрам от ЭМД, в которой доминируют одно- и двухнуклонные события. Благодаря этому доминированию достаточно рассмотреть эмиссию от одного до четырех нуклонов, чтобы найти связь между n_1 , n_2 , n_3 , n_4 и N_1 , N_2 , N₃, N₄ с помощью верхнетреугольной матрицы преобразований P, диагональные элементы которой представляют собой вероятности **p**₁₁,...**p**₄₄ зарегистрировать то же число нуклонов, что и было испущено. Внедиагональные элементы \mathbf{p}_{kn} , k < n представляют вероятность зарегистрировать k нуклонов вместо n испущенных. Можно предположить, что вероятность р зарегистрировать нуклон остается одинаковой как в событиях с малой, так и с большой множественностью. Это условие выполняется, когда распределение поперечных импульсов нуклонов слабо зависит от множественности события, и приводит к биномиальному распределению вероятностей $\mathbf{p}_{kn} = \binom{n}{k} \mathbf{p}^k (1-\mathbf{p})^{n-k}$ с параметром **p**, где $\binom{n}{k} = n!/(n-k)!k!$. Чтобы получить вектор *исходного* количества N событий соответствующей множественности, следует применить обратное преобразование к вектору п зарегистрированных событий. Обратная матрица $P^{-1} = R$ размерностью 4 × 4 получается аналитически и обобщается на общий случай, когда максимальное число испущенных нуклонов составляет т. Элементы обратной матрицы вычисляются как:

$$\mathbf{r}_{kn} = (-1)^{n-k} \binom{n}{k} \frac{(1-\mathbf{p})^{n-k}}{\mathbf{p}^n}$$

Используя полученные формулы, можно изучить влияние эффективности регистрации нуклонов в ZDC на измеряемые n_i . Исходные выходы определенного числа нейтронов и протонов N_i вычислены с помощью модели RELDIS.

Далее в Главе 4 исследуются различные конфигурации величины **p** от 0.4 до 1 и энергетического разрешения ZDC σ_1/μ_1 от 0.15 до 0.2 для нейтронного ZDC и 0.17 до 0.3 для протонного ZDC для событий ЭМД в УПС ²⁰⁸Pb–²⁰⁸Pb на LHC. Хорошее разрешение ZDC имеет решающее значение для надежных измерений числа испущенных вперед нуклонов. Это иллюстрируется спектрами энерговыделения в ZDC, показанными на Рис. 3, которые были смоделированы для более низкого разрешения. Для вероятности регистрации одиночного нейтрона и энергетического разрешения ZDC были использованы значения **p** = 0.97 и $\sigma_1/\mu_1 = 0.2$ для нейтронного ZDC. Для протонного ZDC было использовано более низкое разрешение $\sigma_1/\mu_1 = 0.3$ и вероятность регистрации **p** = 0.66.

Как видно из Рис. 3, низкое разрешение протонного ZDC затрудняет идентификацию 2р и 3р каналов EMD даже при измерениях со 100%-ой эффективностью регистрации. Более того, пик 2р заметно плавится при снижении эффективности регистрации до $\mathbf{p} = 0.66$, а вклады 3р- и 4р-каналов ЭМД становятся неотличимы от возможного плавного фонового вклада в протонные спектры энерговыделения в ZDC. Это еще раз демонстрирует эффект ошибочной идентификации многонуклонных событий как однонуклонных в измерениях с низкой эффективностью регистрации.

Рис. 3. Спектры энерговыделения в нейтронном (слева) and протонном (справа) ZDC для УПС ²⁰⁸Pb–²⁰⁸Pb на LHC с энергией $\sqrt{s_{\rm NN}}$ =5.02 TeV в эксперименте ALICE. Рисунок из работы [1а].

Аналогично вычислениям для LHC можно изучить влияние эффективности регистрации нуклонов в калориметре FHCal на измеряемые n_i . Столкновения на NICA будут иметь значительно меньшую энергию по сравнению с LHC, для которой характерно меньшее число каналов ЭМД. Показано, что в спектрах энерговыделения в FHCal трудно различить пики 3n и 3p даже при полном аксептансе детектора $\mathbf{p} = 1$. Более того, пики 2n и 2p практически исчезают при наименьшем рассматриваемом аксептансе $\mathbf{p} = 0.5$. В связи с этим, важно обеспечить высокую эффективность регистрации нуклонов, испущенных по направлению вперед, для изучения ЭМД ядер золота на NICA или мониторинга светимости NICA на основе регистрации сразу 1n- и 2n-каналов ЭМД.

Кроме того, в четвертой главе исследуется случай достаточно малого аксептанса ZDC и продемонстрирована возможность измерения инклюзивного сечения эмиссии нуклонов.

Результаты четвертой главы опубликованы в работах [1a] и [2a].

В пятой главе описывается разработанный [7а] метод вычисления поправок на эффективность передних адронных калориметров ZDC (англ. Zero Degree Calorimeters) эксперимента ALICE на основе Монте-Карло моделирования.

Эксперимент ALICE использует передние адронные калориметры ZDC для регистрации вылетающих вперед нейтронов и протонов. Как обсуждалось выше, эффективность ZDC снижается, когда некоторые из нуклонов многонуклонного события не попадают в калориметр. Например, один или два нуклона могут быть потеряны в трехнуклонном событии, которое может быть ошибочно идентифицировано, соответственно, как двух- или однонуклонное событие. Необходимо вычислить эффективность регистрации нуклонов ZDC отдельно для каждого класса множественности. Вычисленная эффективность регистрации нуклонов представляет собой произведение геометрического аксептанса ZDC и эффективности восстановления в ZDC множественности нуклонов, вылетающих вперед относительно оси пучка, для краткости это произведение будет называться «эффективностью», а его обратное значение — «поправочным коэффициентом».

Описанная в четвертой главе простая комбинаторная модель, далее P-метод, применяется к нейтронным ZN и протонным ZP калориметрам с использованием значений $\mathbf{p} = 0.9$ и $\mathbf{p} = 0.55$, соответственно. Поправочные коэффициенты вычисляются как $f_i^{\rm P} = N_i^{\rm R}/n_i^{\rm P}$, i = 0, 1, 2, ...5. Количества исходных событий каждой множественности *i*, вычисленные с помощью RELDIS, обозначаются как $N_i^{\rm R}$. Полученные с помощью P-метода поправочные коэффициенты используются для сравнения с результатами, полученными при детальном Монте-Карло моделировании электромагнитной диссоциации (ЭМД) для УПС ²⁰⁸Pb–²⁰⁸Pb на LHC с энергией $\sqrt{s_{\rm NN}}=5.02$ TeV.

Для Монте-Карло моделирования отклика передних адронных калориметров ZDC был использован пакет объекто-ориентированных программ и библиотек AliPhysics эксперимента ALICE с использованием модели RELDIS в качестве генератора событий. Были смоделированы транспорт нуклонов, протонов и нейтронов, от ЭМД, их попадание на переднюю поверхность ZDC и энерговыделение в калориметрах. Разработано два метода, H- и и S-методы, описываемые ниже, для вычисления поправочных коэффициентов на эффективность регистрации в ZDC 0 – 5 нейтронов (0n – 5n) и 0 – 3 протонов (0p – 3p).

Н-метод основывается на подсчете числа нуклонов, попавших на поверхность передних адронных калориметров ZDC, далее называемых *хитами* (от англ. hit). Зарегистрированные события сортируются по количеству i = 0, 1, 2, ... хитов в каждом событии для вычисления количества зарегистрированных событий $\mathbf{n}_i^{\mathrm{H}}$ каждой множественности. Предполагается, что каждый нуклон, попадающий в калориметр ZN или ZP, создает сигнал, достаточный для его обнаружения. В H-методе также исследуется так называемый эффект кросстока (от англ. cross-talk), когда некоторые нейтроны попадают в протонные ZDC, а некоторые протоны — в нейтронные: около 0.5% протонов попадающие в ZP, неотличимы от протонов и наоборот, что учитывается при вычислении поправочных коэффициентов $f_i^{\mathrm{H}} = \mathbf{N}_i^{\mathrm{R}}/\mathbf{n}_i^{\mathrm{H}}$, где доли исходных событий $\mathbf{N}_i^{\mathrm{R}}$ вычисляются с помощью RELDIS.

В дополнение к реализованному в Н-методе транспорту нейтронов и протонов, испущенных вперед в ЭМД, S-метод включает в себя Монте-Карло моделирование энерговыделения в ZDC. Следуя S-методу, два различных распределения энергии, выделяемой нуклонами в ZN или ZP, могут быть извлечены из двух различных переменных, зависящих от способа восстановления энергии из сигналов с различных фотоумножителей. Смоделированные спектры энерговыделения в ZDC были откалиброваны и отфитированы суммой гауссианов, чтобы извлечь количества зарегистрированных событий $\mathbf{n}_i^{\mathrm{S}}$ каждой множественности нуклонов *i*. Метод фитирования аналогичен методу, применяемому к фитированию реальных данных. Поправочные коэффициенты $f_i^{\mathrm{S}} = \mathbf{N}_i^{\mathrm{R}}/\mathbf{n}_i^{\mathrm{S}}$ были вычислены в рамках S-метода с использованием долей исходных событий $\mathbf{N}_i^{\mathrm{R}}$, вычисленных с помощью RELDIS. Таким образом, вычисляются поправочные коэффициенты для всех четырех калориметров ZNC, ZNA, ZPC и ZPA с использованием двух опций заполнения спектров энерговыделения.

Результаты H- и S-методов находятся в согласии друг с другом и с результатами P-метода. Рекомендуемые поправочные коэффициенты на эффективность регистрации нейтронов и протонов отдельных множественностей вычисляются как среднее между поправочными коэффициентами, полученными с помощью H-метода и S-метода с одной из двух опций, а их систематическая ошибка вычисляется как разница значений, деленная на $\sqrt{2}$. Рекомендуемые поправочные коэффициенты показаны на Puc. 4. Как видно, вычисленные для сторон A и C f_i находятся в согласии друг с другом, а наибольшие относительные ошибки f_i обнаруживаются для каналов 0n и 3p.

Рис. 4. Рекомендуемые поправочные коэффициенты, вычисленные для калориметров ZNA, ZNC (слева) и ZPA, ZPC (справа) как среднее между результатами S-метода (PMC) и H-метода и их комбинированные погрешности. Рисунок из работы [7а].

Еще одной важной характеристикой эффективности регистрации нуклонов в ZDC является вероятность \mathcal{P}_{Xn} (\mathcal{P}_{Xp}) зарегистрировать хотя бы один нейтрон (или протон) при условии, что хотя бы один нейтрон Xn (или протон Xp) был испущен в процессе ЭМД. Другими словами, эта величина характеризует эффективность регистрации активности в ZDC. Значения \mathcal{P}_{Xn} составляют $0.92 \pm 0.04_{syst.}$ и $0.90 \pm 0.06_{syst.}$ для активности в ZNA и ZNC, и $0.52 \pm 0.07_{syst.}$ и $0.50 \pm 0.05_{syst.}$ для активности в ZPA и ZPC, соответственно, а результаты для сторон A и C хорошо согласуются друг с другом. Ожидается, что всего ~ 10% событий ЭМД с с эмиссией нейтронов остаются незарегистрированными в ZN, в то время как $\sim 50\%$ событий ЭМД с эмиссией протонов оказываются незамеченными в ZP.

Для того, чтобы вычисленные P-методом f_i стали менее зависимы от REL-DIS, можно попробовать использовать N_i , измеренные ALICE во время Run I, i = 1, 2, 3. Поправочные коэффициенты f_i , рассчитанные P-методом с $\mathbf{p} = 0.9$ на основе данных Run I ALICE по N_i , i = 1, 2, 3, сравниваются с f_i , полученными с помощью $N_i^{\rm R}$ из RELDIS. Вычисленные отклонения между ними оказываются либо малы, либо в пределах относительных ошибок f_i , и поправочные коэффициенты f_i , полученные независимо из данных, очень хорошо согласуются с f_i , рассчитанными из результатов RELDIS.

На основе Р-метода можно оценить величину отклонения измеренных сечений ЭМД из-за вариаций f_i . Для такой проверки стабильности можно предположить 10% вариацию вероятности **p** зарегистрировать нейтрон в ZN. При учете эмиссии 1n – 4n, отклонение выходов 1n – 3n находится в пределах отклонения значения **p**. Большие изменения наблюдаются только для выходов 4n и 3n, когда, соответственно, учитываются каналы 1n – 4n и 1n – 3n. Это указывает на важность учета событий высокой множественности (5n) при расчете поправочных коэффициентов к 0n – 4n. Аналогично, вклад 3p важен при оценке поправочных коэффициентов к эмиссии 0p – 2p.

Результаты 5 главы опубликованы в работе [7а] для внутреннего использования в коллаборации ALICE.

В шестой главе изучается электромагнитная диссоциация ядер свинца ²⁰⁸Pb в столкновениях в эксперименте ALICE на LHC. Анализируются данные, собранные в 2018 году в специальных, с пониженной светимостью и ориентированных на изучение ЭМД, сеансах ²⁰⁸Pb–²⁰⁸Pb столкновений с энергией $\sqrt{s_{NN}} = 5.02$ TэB.

Для анализа были использованы события, соответствующие ZED-триггеру, который чувствителен как к событиям одиночной электромагнитной диссоциации на сторонах А и С, так и к событиям взаимной диссоциации и адронным событиям, характеризующимся регистрацией нейтронов с обоих сторон от точки столкновения. Спектры энерговыделения в ZNC, ZNA, ZPC и ZPA были откалиброваны и был произведен отбор событий, соответствующих именно данному событию и произошедших именно при столкновении двух сгустков пучка. Затем события были классифицированы как электромагнитные и адронные в соответствии с отсутствием или наличием сигнала в передних электромагнитных калориметрах ZEM. Эффективность ZEM-вето ε_i для каждой множественности нейтронов при отборе электромагнитных событий была оценена на каждой стороне путем сравнения количества событий, полученных (1) путем вычитания событий с нейтронами на обоих сторонах и (2) путем наложения ZEM-вето. Такое сравнение было выполнено сначала для событий с нейтронами на данной стороне, но без нейтронов на противоположной стороне (одиночная минус взаимная ЭМД), а затем только для событий с нейтронами на той же стороне (одиночная, включая взаимную ЭМД). Вычисленные значения ε находятся в

Рис. 5. Измеренные сечения эмиссии определенного числа нейтронов *i* в отсутствии протонов в УПС ядер свинца ²⁰⁸Pb с энергией $\sqrt{s_{\rm NN}} = 5.02$ ТэВ (точки) и те же сечения, предсказываемые RELDIS (сплошная гистограмма). Сечения образования соответствующих вторичных ядер, ^{207,206,205,204,203,202,201}Pb, предсказываемые RELDIS, представлены пунктирной гистограммой и обозначены символами нуклидов. На рисунке представлены полные ошибки измерений.

диапазоне от 99.25% до 99.91% для 1n – 5n. С ростом множественности нейтронов немного больше событий теряется из-за ZEM-вето.

Спектры энерговыделения в ZDC, полученные в результате отбора по всем описанным выше условиям, фитируются суммой гауссианов:

$$F(E) = \sum_{i=1}^{6} f_i(E) = \sum_{i=1}^{6} \frac{\mathsf{n}_i}{\sqrt{2\pi}\sigma_i} e^{-\frac{(E-\mu_i)^2}{2\sigma_i^2}}.$$

Каждый гауссиан $f_i(E)$ представляет *i*-ый пик и характеризуется средним значением μ_i , дисперсией σ_i и нормировочным коэффициентом \mathbf{n}_i , который соответствует количеству событий с *i* нуклонами. Параметры фитирования имеют определенные ограничения, но количества \mathbf{n}_i зарегистрированных событий в каждом пике остается свободным параметром. Исходное число событий N_i извлекается после поправки количества \mathbf{n}_i зарегистрированных событий на эффективность регистрации нуклонов в ZDC и эффективность ZEM-вето.

Доли событий с эмиссией одного, двух и трех нейтронов в событиях одиночной ЭМД за вычетом событий взаимной ЭМД сравниваются с аналогичными долями, измеренными коллаборацией в 2011 году при $\sqrt{s_{NN}} = 2.76$ ТэВ. Доли 1n, 2n и 3n событий были измерены при самой высокой энергии ²⁰⁸Pb–²⁰⁸Pb столкновений, доступной до сих пор в ускорительных экспериментах. Было обнаружено, что эти доли схожи с теми, которые были измерены при $\sqrt{s_{\rm NN}} = 2.76$ TэB.

Вычисляются сечения эмиссии одного, двух, трех, четырех и пяти нейтронов в электромагнитных событиях с эмиссией произвольного числа протонов, предсказания моделей RELDIS и n^O_On хорошо описывают измеренные сечения. Модель n^O_On, аналогично RELDIS, основана на методе Вайцзеккера – Вильямса. Вычисляются сечения эмиссии одного, двух, трех, четырех и пяти нейтронов в электромагнитных событиях без эмиссии протонов. Обсуждается возможность оценки сечений выходов отдельных изотопов свинца ^{207,206,205,204,203}Pb с помощью сечений эмиссии соответствующего числа нейтронов в отсутствии протонов. Относительная систематическая ошибка для сечений, измеренных отдельно на каждой стороне (С или А), складывается из систематических ошибок определения видимого сечения ZED-триггера, процедур фитирования и поправок на эффективность. Представлены вклады и сумма ошибок разных типов для каждого измеренного сечения. Показано, что ошибками за счет «пайлапа» (англ. pileup — эффект множественного наложения событий) можно пренебречь.

Измеренные сечения эмиссии определенного числа нейтронов в отсутствии протонов представлены на Рис. 5 и сравниваются с предсказаниями RELDIS для тех же сечений, а также с рассчитанными сечениями образования конкретных вторичных ядер: ^{207,206,205,204,203}Pb. Согласно RELDIS, сечение образования ²⁰⁷Pb, практически совпадает с сечением (1n,0p), а сечения образования ²⁰⁶Pb и ²⁰⁵Pb меньше сечений (2n,0p) и (3n,0p) только на 3% и 10%, соответственно. Согласно этой модели, рассчитанные сечения эмиссии четырех, пяти, шести и семи нейтронов в отсутствии протонов можно рассматривать как верхние пределы для сечений образования изотопов свинца ^{204,203,202,201}Pb, соответственно. Разница обусловлена эмиссией дополнительных частиц, например, протонов и/или заряженных π -мезонов, которая приводит к образованию остаточных ядер, отличных от Pb.

Результаты шестой главы будут вскоре опубликованы в работе [11а].

В Заключении перечислены основные результаты и выводы.

В диссертационной работе посредством модели RELDIS изучен процесс электромагнитной диссоциации в столкновениях ядер свинца $^{208}\rm Pb$ и ядер индия $^{115}\rm In$ на LHC и на FCC-hh, а также в столкновениях ядер золота $^{197}\rm Au$ на NICA. Для столкновений ядер свинца $^{208}\rm Pb$ на LHC и на FCC-hh изучен процесс ядерной резонансной флуоресценции.

С помощью разработанной автором комбинаторной модели и посредством полного Монте-Карло моделирования были вычислены поправочные коэффициенты на эффективность регистрации в передних адронных калориметрах ZDC эксперимента ALICE нейтронов и протонов определенной множественности. С учетом вычисленных поправок на эффективность регистрации нуклонов обработаны экспериментальные данные, полученные в сеансах ²⁰⁸Pb–²⁰⁸Pb столкновений при $\sqrt{s_{NN}} = 5.02$ TэB, ориентированных на измерения ЭМД. Измеренные

сечения образования определенного количества нейтронов в ЭМД без вылета протонов неплохо согласуются с предсказаниями модели RELDIS и позволяют на их основе оценить сечения образования изотопов свинца в качестве вторичных ядер.

Основные результаты диссертации опубликованы в работах:

- 1a. Dmitrieva U., Pshenichnov I. On the performance of Zero Degree Calorimeters in detecting multinucleon events // Nucl. Instrum. Methods Phys. Res. A. 2018. V. 906. P. 114–119.
- 2a. Dmitrieva U., Pshenichnov I. On the Detection of Multinucleon Events in Nucleus–Nucleus Collisions with Forward Calorimeters (ZDC) // Bull. Lebedev Phys. Inst.. 2019. V. 46.
- За. Дмитриева У. А. Электромагнитная диссоциация ¹⁹⁷Au на ускорителе NICA // Учен. зап. физ. фак-та Моск. ун-та. 2019. V. 1940301. Р. 1–6.
- 4a. Pshenichnov I., Dmitrieva U. Electromagnetic interactions of ultrarelativistic nuclei: A challenge for present and future heavy-ion colliders // Acta Phys. Pol. B Proc. Suppl. 2019. V. 12.
- 5a. Pshenichnov I. A., Dmitrieva U. A., Svetlichnyi A. O. Secondary Nuclei from Peripheral and Ultraperipheral Collisions of Relativistic Heavy Ions // Bull. of the RAS: Physics. 2020.V. 84. P. 1007–1011.
- 6a. **Dmitrieva U.**, Pshenichnov I. Nuclear resonance fluorescence of ²⁰⁸Pb in heavy-ion colliders // Eur. Phys. J. A. 2021. V. 57.
- 7a. **Dmitrieva U.**, Pshenichnov I. Calculations of efficiency of ALICE Zero Degree Calorimeters. 2021. https://alice-notes.web.cern.ch/node/1062.
- 8а. **Дмитриева У. А.**, Пшеничнов, И. А. Ядерная резонансная флуоресценция в столкновениях ядер свинца на БАКе // Труды 59-й научной конференции МФТИ. Проблемы современной физики. 2016. Р. 122–124.
- 9а. Дмитриева У. А., Пшеничнов И. А. Моделирование образования вторичных ядер в результате электромагнитных взаимодействий ядер свинца на БАК // Труды 60-й Всероссийской научной конференции МФТИ. ФФПФ. 2017. Р. 309–311.
- 10а. Дмитриева У. А., Пшеничнов И. А. Моделирование трансмутации ядер свинца в ультрапериферических столкновениях на LHC // Труды 64-ой Всероссийской научной конференции МФТИ. Фундаментальная и прикладная физика. 2021. Р. 60–61.
- 11a. **Dmitrieva U.**, Pshenichnov I., Oppedisano C., Cortese P. Neutron emission in ultraperipheral Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. 2022. https:// alice-publications.web.cern.ch/node/7375.

Цитированная литература

- 1. The Large Hadron Collider. https://home.cern/science/accelerators/ large-hadron-collider.
- Bertulani C. A., Baur G. Electromagnetic processes in relativistic heavy ion collisions // Phys. Rep. 1988. V. 163. P. 299–408.
- Appelshäuser H. et al. Spectator Nucleons in Pb+Pb Collisions at 158A GeV // Eur. Phys. J. A. 1998. V. 2. P. 383.
- 4. Abelev B. et al. Measurement of the Cross Section for Electromagnetic Dissociation with Neutron Emission in Pb-Pb Collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV // Phys. Rev. Lett. 2012. V. 109. P. 252302.
- Pshenichnov I. Electromagnetic excitation and fragmentation of ultrarelativistic nuclei // Phys. Part. Nucl. 2011. V. 42. P. 215.
- 6. Bruce R. et al. Beam losses from ultraperipheral nuclear collisions between $^{208}Pb^{82+}$ ions in the Large Hadron Collider and their alleviation // Phys. Rev. Spec. Top. Accel. Beams. 2009. V. 12. P. 071002.
- Pshenichnov I. A. et al. Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies // Phys. Rev. C. 2001. V. 64. P. 24903.
- Hermes P. D. et al. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider // Nucl. Instrum. Meth. Phys. Res. Sect. A. 2016. V. 819. P. 73.
- Tarafdar S., Citron Z., Milov A. A centrality detector concept // Nucl. Instrum. Meth. Phys. Res. Sect. A. 2014. V. 768. P. 170.
- Grinstein S. The ATLAS Forward Proton Detector (AFP) // Nucl. Part. Phys. Proc.. 2016. V. 273-275. P. 1180–1184.
- Bogomyagkov A. V. et al. Projects for ultra-high-energy circular colliders at CERN // Phys. Part. Nucl. Lett. 2016. V. 13. P. 870–875.
- Dainese A. et al. Heavy ions at the Future Circular Collider CERN-TH-2016-107 // 2016. P. 1–58. http://arxiv.org/abs/1605.01389.
- Enders J. et al. Nuclear resonance fluorescence experiments on ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb up to 6.75 MeV // Nucl. Phys. A. 2003. V. 724. P. 243–273.
- Scheidenberger C. et al. Charge-changing interactions of ultrarelativistic Pb nuclei // Phys. Rev. C. 2004. V. 70. P. 014902.
- Loizides C. et al. Improved Monte Carlo Glauber predictions at present and future nuclear colliders // Phys. Rev. C. 2018. V. 97. P. 054910.
- 16. Meier H. et al. Bound-free electron-positron pair production in relativistic heavy-ion collisions // Phys. Rev. A. 2001. V. 63. P. 032713.

Научное издание

Дмитриева Ульяна Александровна

Изучение ультрапериферических

столкновений ядер на коллайдерах

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Ф-т 60х84/16 Уч.-изд.л. 1,4 Зак. № 22485 Тираж 80 экз. Бесплатно

Печать цифровая

Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

Издательский отдел 117312, Москва, проспект 60-летия Октября, 7а