

Institute for Nuclear Research of the Russian Academy of Sciences Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

Ю.В.Григорьев, А.В. Новиков-Бородин

Активируемые ядерные реакции в литий- или бор-бериллиевой смеси и гибридные энергетические системы на их основе

ПРЕПРИНТ ИЯИ РАН 1425/2016 НОЯБРЬ 2016

MOCKBA 2016 MOSCOW

Institute for Nuclear Research of the Russian Academy of Sciences Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

Ю.В.Григорьев, А.В. Новиков-Бородин

Активируемые ядерные реакции в литий- или бор-бериллиевой смеси и гибридные энергетические системы на их основе

ПРЕПРИНТ ИЯИ РАН 1425/2016 НОЯБРЬ 2016

MOCKBA 2016 MOSCOW

Institute for Nuclear Research of the Russian Academy of Sciences Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

Ю.В. Григорьев^{1,2)}, А.В. Новиков-Бородин¹⁾

Активируемые ядерные реакции в литий- или бор-бериллиевой смеси и гибридные энергетические системы на их основе

¹⁾ Институт ядерных исследований РАН, Москва, Россия
²⁾ Объединенный институт ядерных исследований, Дубна, Россия

ПРЕПРИНТ ИЯИ РАН 1425/2016 НОЯБРЬ 2016

MOCKBA 2016

Institute for Nuclear Research of the Russian Academy of Sciences 60-th October Anniversary prospect 7a, Moscow 117312, Russia

Moscow 117312, Russia Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Россиской академии наук проспект 60-летия Октября, 7а Москва, 117312

Ю.В.Григорьев, А.В. Новиков-Бородин

Активируемые ядерные реакции в литий- или бор-бериллиевой смеси и гибридные энергетические системы на их основе

Исследуется возможность активации ядерных реакций в смеси лития-6 или бора-10 с бериллием-9. Доминирующие базовые реакции идут по схеме ${}^{6}\text{Li}(n,\alpha)$ и ${}^{9}\text{Be}(\alpha,n)$ с репродукцией активирующих частиц и являются цепными. При этом выделяется энергия 9-11 МэВ на каждом шаге цепочки, что в пересчёте на единицу массы сравнимо с энерговыделением при распаде урана-235 и может быть использовано в ядерной энергетике. Коэффициент реактивации цепных реакций зависит от множественного выхода нейтронов в реакции распада ${}^{9}\text{Be}(\alpha, n+\alpha){}^{8}\text{Be}$ и общих потерь активирующих частиц, что приводит к его зависимости от множества факторов: соотношения концентраций веществ, температуры, геометрии активной зоны, наличия отражателей частиц и т.д. Исследуется эффективность активации базовых реакций с помощью нейтронов, альфа-частиц, дейтронов и протонов. Рассматриваются возможности применения базовых реакций на практике: в автономных источниках энергии, где базовые реакции активируются с помощью нейтрон- и альфа-активных изотопов урана-235, плутония-239, кюрия-242, калифорния-252 и др., и в реакторах атомных станций, где литийбериллиевые смеси используются в виде дополнительных топливных стержней или в качестве теплоносителя, совмещающего в себе функции дополнительного источника энергии. Применение литий-или бор-бериллиевых смесей в атомной энергетике позволит сократить количество используемого радиоактивного топлива и отходов.

Ю.В. Григорьев, А.В. Новиков-Бородин

Активируемые ядерные реакции в литий- или бор-бериллиевой смеси и гибридные энергетические системы на их основе

Препринт 1425/2016

Ноябрь 2016

Подписано в печать 27.09.2016

Ф-т 60х84/8. Уч.-изд.л. 0,8. Зак. 22402 Тираж 50 экз. Бесплатно

> Печать цифровая Издательский отдел

Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

117312, Москва, проспект 60-летия Октября, 7а

ISBN 978-5-94274-314-7

© Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук, 2016 Institute for Nuclear Research of the Russian Academy of Sciences, 2016

Введение

Использование энергии ядерных реакций синтеза могло бы решить многие проблемы ядерной энергетики, начиная от экологических проблем, связанных с добычей, использованием радиоактивного топлива и захоронения радиоактивных отходов, до проблем безопасности и доступности ядерного топлива. Однако многократные попытки использовать энергию управляемого ядерного синтеза на практике до сих пор не увенчались успехом, а перед учёными и разработчиками встают всё новые и новые серьёзные научные, технические и финансовые проблемы.

В квазистационарных системах (токамаки, стеллараторы, магнитные ловушки [1-5]) дейтерий-тритиевую (D-T) плазму с концентрацией не менее 10^{14} см⁻³ необходимо нагреть до температуры $10^7 - 10^8$ К и удерживать с помощью магнитных полей в течение не менее секунды. Сложность установок, реализующих данную идею, приводит к тому, что в промышленных масштабах управляемый термоядерный синтез по сих пор не осуществлён. Строительство международного экспериментального термоядерного реактора (ITER) [5,6], имеющего конфигурацию токамака, осуществляется благодаря совместным усилиям наиболее развитых стран мира, но исследователи сталкиваются со всё новыми проблемами, и сроки реализации проекта постоянно отодвигаются. При этом вопрос рентабельности производства электроэнергии таким способом, с учётом замены и утилизации используемого оборудования и материалов, до сих пор остаётся открытым.

В инерциальных импульсных системах термоядерный синтез осуществляется путём кратковременного (~10⁻⁸ с) нагрева небольших мишеней, содержащих ядерное топливо, с помощью мощных импульсных лазеров и/или источников частиц. Концентрация атомов топлива

3

в плазме должна быть не менее 10^{22} см⁻³. За прошедшие десятилетия рассматривались различные схемы реализации инерциальных установок на основе реакций взаимодействия дейтерия с тритием [7–9], протонов с бором-11 [10–16], но полученные результаты всё ещё далеки от практического использования.

Проблемы реализации управляемого термоядерного синтеза инициируют поиск альтернативных путей использования энергии ядерного синтеза. Вместо создания экстремальных условий необходимых для протекания термоядерных реакций, в данной работе исследуется возможность активации ядерных реакций в смеси лития-6 или бора-10 с бериллием-9 внешними источниками частиц. Доминирующие реакции, идущие по схеме ⁶Li(n,α) (или ¹⁰B(n,α)) и ⁹Be(α,n) могут быть активированы нейтронами, протонами, альфа-частицами, дейтронами и др., при этом не требуются экстремальные условия, необходимые для поддержания термоядерных реакций, что значительно упрощает использование реакций в практических целях.

1. Базовые реакции в литий- или бор- бериллиевой смеси

Рассмотрим реакции взаимодействия нейтронов с ядрами лития-6: ${}^{6}\text{Li}(n,\alpha)\text{T}$ и бора-10: ${}^{10}\text{B}(n,\alpha){}^{7}\text{Li}$, где T = ${}^{3}_{1}\text{H}$ —тритиум, $\alpha = {}^{4}_{2}\text{He}$ —аль-фа-частица:

$$\begin{bmatrix} n + {}^{6}_{3}\mathrm{Li} \rightarrow \mathrm{T} + \alpha + 4.78 \text{ M} \Im \mathrm{B} \\ n + {}^{10}_{5}\mathrm{Bi} \rightarrow {}^{7}_{3}\mathrm{Li} + \alpha + 2.79 \text{ M} \Im \mathrm{B} \end{bmatrix}$$
(1)

Сечения взаимодействия нейтронов с ядрами лития-6 (база данных ENDF, USA) представлены на Рисунке 1 (бор-10 имеет похожие зависимости, но сечения в области тепловых нейтронов примерно в 4 раза больше). В диапазоне энергий до 300 эВ общее сечение взаимодействия (линия 1) практически совпадает с сечением реакции ⁶Li(n,α)T из (1) (линия 3), то есть эта реакция доминирующая. От 300 эВ до ~2–3 МэВ часть энергии нейтронов будет теряться на упругое рассеяние (линия 2) в области 2–3 МэВ на возбуждение атомов (линии 5 и 6), но, теряя энер-

Рис. 1. Сечения взаимодействия нейтронов с литием-6

гию, нейтроны всё равно будут участвовать в активации реакций (1). Конкурирующие реакции: ${}^{6}\text{Li}(n,\gamma)^{7}\text{Li}$ (линия 7), ${}^{6}\text{Li}(n,2n+\alpha)^{1}\text{H}$ (линия 4) и ${}^{6}\text{Li}(n,p)^{6}\text{He}$ (линия 8) имеют сечения на несколько порядков меньше, чем доминирующая реакция и ими можно пренебречь. Таким образом, при взаимодействии с литием-6, практически все нейтроны с энергией от 0 до 5 МэВ будут участвовать в активации доминирующих реакций (1).

Доминирующие реакции (1) идут с выделением энергии 4.78 и 2.79 МэВ, что кажется намного меньше энергии, выделяемой при делении ядра урана-235, составляющей в среднем 180 МэВ. Однако, в пересчёте на один нуклон выход энергии для лития-6 составит: 4.78/6=0.80 МэВ/нуклон, для бора-10: 0.28 МэВ/нуклон, а для урана-235: 180/235=0.77 МэВ/нуклон, то есть равные массы лития-6 и урана-235 содержат примерно одинаковое количество энергии, а такая же масса бора-10 содержит в три раза меньше энергии.

С другой стороны, для инициации распада ядра урана-235 необходим один нейтрон, в то время как для получения энергии 180 МэВ из ядер лития-6 нужно 180/4.78=38 нейтронов, а для бора-10 180/2.79=65 нейтронов. Следовательно, при одинаковой плотности нейтронных полей мощность энергии, получаемая из лития-6 и бора-10, будет в 38 и 65 раз меньше, чем в случае с ураном-235. Кроме того, средний коэффициент размножения нейтронов для урана-235 равен 2.4, 2.5 для урана-233 и 238, и 2.9 для плутония-239, и при определённых условиях цепные реакции деления могут самоподдерживаться, в то время как для поддержания реакций (1) с литием-6 и бором-10 необходим интенсивный источник нейтронов.

Эффективность активации реакций (1), можно увеличить, если использовать производимые в этих реакциях альфа-частицы для репродукции нейтронов. Например, при добавлении атомов бериллия-9 активируются реакции распада: ${}^{9}\text{Be}(\alpha,n+\alpha){}^{8}\text{Be}$ и реакции: ${}^{9}\text{Be}(\alpha,n){}^{12}\text{C}$, идущие с образованием нейтронов и с выделением энергии:

$$\begin{array}{l} \alpha + {}^{9}_{4}\text{Be} \rightarrow n + \alpha + {}^{8}_{4}\text{Be} + 1.66 \text{ M} \Im \text{B} \\ \alpha + {}^{9}_{4}\text{Be} \rightarrow n + {}^{12}_{6}\text{C} + 5.70 \text{ M} \Im \text{B} \end{array}$$

$$(2)$$

Сечения взаимодействия альфа-частиц с атомами бериллия-9 и лития-6 (библиотека EXFOR, IAEA) представлены на Рисунке 2. Одна альфа-частица активирует целую серию реакций распада (2), порождая множественный выход нейтронов, и сечение общего выхода нейтронов (точки 3) в результате реакций (2) составляет 301.7 барн при 1.9 МэВ и 547 барн при 4 МэВ. Реакции (2) являются доминирующими в области энергий до 10 МэВ, сечения конкурирующих реакций (точки 2, 4-8) на несколько порядков ниже.

Рис. 2. Сечения взаимодействия альфа-частиц с бериллием-9 и литием-6.

Нейтроны, репродуцированные в реакции (2), реактивируют реакции (1), активируя множество цепочек реакций (1)-(2), которые в дальнейшем будем называть базовыми цепными реакциями. Репродукция нейтронов идёт с дополнительным выделением энергии: 5.7 МэВ и 4.04 МэВ, и общий выход энергии на каждом шаге цепной реакции составляет 9–11 МэВ. Средний выход энергии на одну активирующую частицу будет зависеть от коэффициентов репродукции нейтронов (k_n) и альфа-частиц (k_A) в реакциях (1)–(2), произведение $k_R = k_n k_A$ будем называть коэффициентом реактивации цепной реакции.

Параметры (α ,n) реакций для лития, бериллия и бора представлены в Таблице 1 [17]. Реакции (α ,n) с бериллием-9 являются доминирующими, так как пороговая энергия (α ,n) реакций с литием-6 составляет 6.32 МэВ и их сечение (точки 6 на Рисунке 3 для реакции ⁶Li(α ,n)⁹B) составляют 10⁻³–10⁻² барн, что на несколько порядков меньше доминирующих реакций (2) с бериллием-9.

F. construction											
Ядра	Содержание в природе (%)	Выход энергии (МэВ)	Пороговая энергия (МэВ)	Кулоновский ба- рьер (МэВ)	Максимальная энергия нейтронов для 5.2 МэВ альфа-частиц (МэВ)						
Li-6	7.5	-3.70	6.32	2.1							
Li-7	92.5	-2.79	4.38	2.1	1.7						
Be-9	100	+5.70	0	2.6	10.8						
B-10	19.8	+1.06	0	3.2	5.9						
B-11	80.2	+0.16	0	3.2	5.0						

Таблица 1. Выход энергии, пороговая энергия и кулоновский барьер (*α*,*n*) реакций

Сечение общего выхода нейтронов (точки 3) резко падает при энергии альфа-частиц менее 2 МэВ (301.7 барн при 1.9 МэВ, 55.3 барн при 1.7 МэВ и 5.2 барн при 1.5 МэВ), поэтому коэффициент реактивации в случае с бором-10, где выход энергии в реакции (1) составляет 2.79 МэВ, будет значительно ниже, чем в случае с литием-6, где выход энергии составляет 4.78 МэВ.

Несмотря на множественный выход нейтронов в реакции (2), общие потери активирующих частиц могут быть значительными, что отразится на коэффициенте реактивации k_R базовых цепных реакций. Так как потери зависят от целого ряда факторов: концентрации ве-

ществ в смеси, плотности, температуры, давления, а также от геометрии зоны реакции и конструкции реактора, расчёт коэффициента реактивации является сложной задачей, требующей дополнительных теоретических и экспериментальных исследований, научно-технических и конструкторских расчётов.

Коэффициент реактивации непосредственно влияет на общий выход энергии. При k_R <1 обеспечивается полный контроль за течением базовых реакций, которое зависит от интенсивности внешней активации, при k_R >1 возникает опасность неуправляемого течения ядерных реакций вплоть до ядерного взрыва, что неоднократно происходило в атомной энергетике при использовании реакций деления.

Тритий, выделяющийся в реакциях (1) с литием-6 может быть использован в термоядерной энергетике, но необходимо предусмотреть способы его отвода из зоны реакции.

2. Активация базовых реакций

Базовые реакции в литий- и бор-бериллиевой смеси можно активировать с помощью различных частиц, свойства которых определяют эффективность метода активации. Нейтроны эффективны для активации ядерных реакций (1), потому что имеют большие сечения ядерных взаимодействий и обладают высокой проникающей способностью, поэтому их доставка в зону реакции не вызывает серьёзных технических проблем. Однако эти же преимущества являются недостатками, так как высокая проникающая способность нейтронов требует усиленных мер радиационной защиты, а отсутствие заряда осложняет ускорение нейтронов до необходимых энергий.

Заряженные частицы, напротив, активируют ядерные реакции в значительно меньшей степени, теряя большую часть энергии на ионизацию, но за то ускорение их до необходимых энергий проблем не вызывает. Малая длина пробега заряженных частиц в веществе (например, в алюминии она составляет 0.4 и 0.05 мм соответственно для протонов и альфачастиц с энергией 6 МэВ) создаёт технические трудности при доставке их в зону реакции, которая, обычно, должна быть изолирована от внешних устройств. Тем не менее, при решении проблем с доставкой, активация с помощью заряженных частиц может быть эффективной, из-за высокого выхода энергии и активации сразу нескольких цепочек базовых реакций.

Таблица 2. Источники нейтронов спонтанного деления

Изотоп	Период по- лураспада	Выход нейтронов (n.s ⁻¹ .g ⁻¹)	Коэффи- циент размноже- ния ней- тронов
Pu-238	87.74 лет	$2.59 \cdot 10^{3}$	2.21
Pu-240	6560 лет	$1.02 \cdot 10^{3}$	2.16
Cm-242	163 дней	$2.10 \cdot 10^{7}$	2.54
Cm-244	18.1 лет	$1.08 \cdot 10^{7}$	2.72
Bk-249	320 дней	$1.00 \cdot 10^{5}$	3.40
Cf-252	2.645 года	$2.34 \cdot 10^{12}$	3.757

2.1. Активация нейтронами и альфа-частицами

Естественным способом активации базовых реакций (1)-(2) является использование нейтронов или альфа-частиц, которые активируют их на первом (1) или втором (2) звеньях цепочки.

Характеристики некоторых нейтронных источников спонтанного деления представлены в Таблице 2 [17,18]. Наиболее интенсивным является источник с калифорнием-252. Калифорний-252 имеет высокий коэффициент размножения нейтронов (3.757) и один грамм его производит поток интенсивностью 2.34·10¹² нейтрон в секунду, что при активации только реакций (1), будет соответствовать мощности 0.77 Вт. Однако калифорний-252 дорог и имеет сравнительно небольшой период полураспада 2.645 года.

Более доступными являются источники нейтронов на основе альфа-активных изотопов, в которых нейтроны образуются в результате (α, n) реакций, обычно, на ядрах бериллия-9. Характеристики ⁹Be (α, n) источников, активируемых альфа-активными изотопами, представлены в Таблице 3 [17]. Альфа-активность некоторых изотопов даёт значительно больший выход нейтронов, чем их нейтронная активность. Например, для Cm-242 выход нейтронов за счёт нейтронной активности в 500 раз больше, чем за счёт его альфа- активности (см. Таблицы 2 и 3).

Нуклид	Период полу- распада	Еа (МэВ)	Выход на 10 ⁶ альфа (n.c ⁻¹)	Выход нейтронов (n.c ⁻¹ .r ⁻¹)	Энергия ней- тронов (МэВ)	γ-доза на 1 м для 10 ⁶ n/c в мГр/час
Pu-238	89 лет	5.50	-	$4.5 \cdot 10^{7}$	4.0	< 0.01
Pu-239	24110 лет	5.14	65	$1.2 \cdot 10^{5}$	4.59	≤0.01
Po-210	138 дней	5.30	73	$1.1 \cdot 10^{10}$	4.54	< 0.001
Am-241	433.6 года	5.48	82	$6.5 \cdot 10^8$	4.46	0.01
Cm-242	163 дней	6.10	118	$\sim 1 \cdot 10^{10}$	4.16	< 0.01
Cm-244	18.1 лет	5.79	100	$2.5 \cdot 10^8$	4.31	< 0.01
Ra-226	1620 лет	7.69-4.77	502	$1.5 \cdot 10^7$	3.94	0.5
Ac-227	22 года	7.36-5.65	702	$1.7 \cdot 10^{9}$	3.87	0.07

Таблица 3. Характеристики ${}^{9}\text{Be}(\alpha,n)$ источников

Если нейтрон- и альфа- активные изотопы непосредственно добавить в литий- или бор-бериллиевую смесь, то эффективность активации базовых реакций будет значительно выше, чем при использовании этих изотопов в качестве внешних источников нейтронов, так как альфачастицы будут непосредственно активировать цепные реакции (1)–(2). Например, альфа-активность 10 граммов Cm-242 составит ~8.5·10¹⁴ альфа-частиц/сек, что при условии активации ими реакций (2) и (1) даже без дальнейшей реактивации соответствует выделяемой мощности ~1.42 кВт. Таким образом, непосредственное добавление изотопов в ак-

Рис. 3. Сечение взаимодействия протонов (А) и ядер гелия-3 (В) с ядрами лития-6

тивируемую смесь может быть очень эффективно, но необходимы исследования химических и физических взаимодействий веществ и влияния конкурирующих реакций.

2.2. Активация протонами и дейтронами

Важным преимуществом заряженных частиц по сравнению с нейтронами является возможность их ускорения до необходимых энергий. Если техническая проблема доставки их в зону реакции будет решена, то они могут быть достаточно эффективны из-за активации сразу нескольких цепочек базовых реакций (1)–(2) и большого выхода энергии, что компенсирует небольшие сечения ядерных взаимодействий заряженных частиц.

Доминирующей ядерной реакцией при взаимодействии протонов 0.3-5.0 МэВ с ядрами лития-6 является реакция (данные EXFOR представлены на Рисунке 3А):

$$p + \frac{6}{3} \text{Li} \rightarrow \frac{3}{2} \text{He} + \alpha + 4.0 \text{ M} \Im \text{B}$$
(3)

Сечение этой реакции в области 1–2 МэВ составляет 0.2–0.3 барн. Энергетический выход 4.0 МэВ распределяется между ядром гелия-3 и альфа-частицей, которая, при добавлении бериллия-9, может активировать базовые реакции (1)–(2). В свою очередь, ядра гелия-3 с энергией 1-3 МэВ взаимодействуют с ядрами лития-6: ${}^{6}\text{Li}({}^{3}\text{He},\text{D}){}^{7}\text{Be}$ (~0.4 барн) и ${}^{6}\text{Li}({}^{3}\text{He},\alpha+p){}^{4}\text{He}$ (~0.04 барн) (см. Рисунок 3В).

Две альфа-частицы, возникающие в реакции ${}^{6}\text{Li}({}^{3}\text{He},\alpha+p){}^{4}\text{He}$, могут активировать сразу две цепочки базовых реакций, и протон также может поддержать активацию через реакцию (3). Дейтерий, образующийся в реакции ${}^{6}\text{Li}({}^{3}\text{He},\text{D}){}^{7}\text{Be}$, проходящей с большим энергетическим выходом 16.9 МэВ, взаимодействует с литием-6 также с большим выделением энергии 22.4 МэВ:

$$D + \frac{6}{3} \text{Li} \to \alpha + 22.4 \text{ M} \Im B, \tag{4}$$

а две альфа-частицы, рождающиеся в данной реакции, могут активировать две цепочки базовых реакций (1)–(2). Конкурирующие реакции:

 ${}^{6}\text{Li}(D,n)^{7}\text{Be}$ и ${}^{6}\text{Li}(D,p)^{7}\text{Li}$ идут с выделением энергии 3.4 и 5.0 МэВ соответственно, а образующиеся нейтрон и протон через реакции (1) и (3) также могут активировать цепочки базовых реакций.

В случае бора-10 при добавления бора-11 базовые реакции могут быть активированы протонами с помощью реакции: ¹¹В(*p*,2α)⁴He (см. [10]), которая имеет высокий выход энергии 8.7 МэВ, и образующиеся альфа-частицы могут активировать сразу три цепочки базовых реакций.

Таким образом, несмотря на сравнительно небольшие сечения ядерных взаимодействий, протоны и дейтроны могут быть эффективны, так как активируют сразу несколько цепочек базовых реакций и идут с выделением большого количества энергии.

3. Практическое применение

Выход энергии доминирующих цепных базовых реакций: ⁶Li(*n*,*α*) $\{^{10}B(n,\alpha)\} \rightarrow {}^{9}Be(\alpha,n) \rightarrow ...$, активируемых в смеси лития-6 или бора-10 с бериллием-9 на каждом шаге цепочки, в пересчёте на единицу массы сравним с выходом энергии распада ядер урана-235, и эта энергия может быть использована в ядерной энергетике. Наиболее простой для реализации на практике способ активации базовых реакций – использовать существующие нейтронные генераторы, радиоизотопные (ампульные)

Рис. 4. Схема устройств активации (А) и автономных источников (В)

источники или ядерные реакторы. Повышение эффективности активации и минимизация потерь – первостепенные задачи при разработке конструкций любых активационных энергетических установок.

3.1. Эффективность активации

К нейтронным генераторам можно отнести ADS системы [19,20] и ADSR реакторы [21-23], в которых ядерные реакции деления активируются потоком нейтронов, выбиваемых интенсивным пучком протонов, ускоренных до энергии 0.5–1.5 ГэВ из мишени тяжёлых металлов в результате адронно- ядерного каскада. Принципиальная схема таких установок, позволяющая минимизировать потери энергии и используемая в проектах современных ADSR-реакторов: MYRRHA в Бельгии [22] и CLEAR-I в Китае [23], представлена на Рисунке 4А. Здесь в активаторе 1 (в ADSR — это мишень из тяжёлых металлов) формируется поток нейтронов, которые инициируют и поддерживают ядерные реакции в реакторе 2. Теплообменник 3 осуществляет передачу тепловой энергии в преобразователь 4, где энергия трансформируется в форму, необходимую для потребителя 5. Часть энергии используется для обеспечения работы энергетической установки, например, для работы ускорителя в ADSR реакторах. Через блок контроля 6 с помощью управления 7 и обратные связи 8 осуществляется контроль за режимами работы установки. Потери в установке минимизируются, так как ни тепловая энергия, ни энергия частиц, вылетающих из активатора или реактора, не теряются, а аккумулируются в теплообменнике, который одновременно служит защитой от радиации.

Эффективность установки (η) может быть определена как отношение полезной энергии (P_U) (поступающей потребителю) и общей энергии (P) реактора: $\eta = P_U/P$. Тогда общие потери энергии $\Delta P = P - P_U$ будут состоять из потерь ΔP_i во всех частях установки: в активаторе, реакторе, теплообменнике и др., и эффективность будет:

$$\eta = P_U / P = 1 - \Delta P / P = 1 - (\Delta P_1 + \Delta P_2 + \dots + \Delta P_n) / P$$
(5)

Общая энергия (P) реактора складывается из кинетической энергии активирующих частиц (ε_A) с интенсивностью I_A и энергии (ε_N), выделяемой в ядерных реакциях, активируемых ими: $I_N = k_L k_N I_A$: $P = k_L \varepsilon_A I_A + \varepsilon_N I_N$. Здесь k_L — коэффициент, характеризующий потери активирующих частиц при доставке их в зону реакции, $k_N = k_N (n_N, \sigma_N)$ — коэффициент их ядерных взаимодействий, зависящий от концентрации (n_N) ядер активируемых реакций и их сечений (σ_N). Таким образом, общая энергия реактора может быть выражена как:

$$P = K_A I_A = q K_A J_A, K_A = k_L (\varepsilon_A + k_N \varepsilon_N)$$
(6)

где $J_A{=}qI_A$ — ток активирующих частиц, если они имеют электрический заряд (q).

В режиме холостого хода, то есть при нулевой полезной энергии ($P_U=0$) или нулевой эффективности ($\eta=0$) установки, для компенсации потерь требуется пороговая энергия: $P_0=\Delta P_0=\Delta P(\eta=0)$, следовательно, пороговая интенсивность или ток активирующих частиц: $P_0=K_A I_0=K_A J_0/q$. Если бы общие потери не зависели от общей энергии реактора, то $\Delta P\approx P_0$ и эффективность установки была бы равна:

$$\eta = 1 - \Delta P / P \approx 1 - P_0 / P = 1 - I_0 / I_A = 1 - J_0 / J_A \tag{7}$$

В реальности, если при изменении общей энергии от P_{\min} до P_{\max} общие потери меняются от ΔP_{\min} до ΔP_{\max} , эффективность установки будет лежать между двух кривых:

$$1 - I_{\max} / I_A < \eta < 1 - T_{\min} / I_A ,$$
(8)

где $I_{\text{max}} = \Delta P_{\min} / K_A$ и $T_{\min} = \Delta P_{\max} / K_A$.

Примерный график зависимости эффективности от интенсивности активации при увеличении общих потерь представлен сплошной красной линией на Рисунке 1В. Отрицательные значения пороговой энергии P_0 (или пороговой интенсивности I_0) соответствуют цепным ядерным реакциям в реакторе, поэтому для безопасности работы установки положительные пороговые значения должны быть предусмотрены во всех режимах работы установки. При выгорании ядерного топлива концентрация активируемых атомов (n_N) уменьшается, что приводит

Рис. 5. Конструкции гибридных автономных источников энергии (A) и реакторов (B) к уменьшению коэффициентов k_N и K_A , то есть к увеличению пороговых значений (P_0,I_0) и уменьшению эффективности (η).

Таким образом, для повышения эффективности активационных установок необходимо повышать интенсивность активации. В ADS системах это приводит к повышению мощности пучка ускорителей, к увеличению общих потерь и пороговых значений, то есть к необходимости ещё большего увеличения интенсивности активации. Оценки показывают, что мощность ADSR-реактора, необходимая для обеспечения его эффективной работы, должна быть не менее 10 MBt, что соответствует мощности реактора в проекте CLEAR-I в Китае [23]. Мощность реактора в проекте MYRRHA в Бельгии составляет 65-100 MBt [22].

3.2. Гибридные энергетические системы

Варианты конструкции гибридных автономных источников энергии с минимизированными потерями, где в качестве активаторов базовых реакций используются радиоизотопные источники (см. раздел 2.1), представлен на Рисунке 5А. Базовые реакции (1)–(2) активируются в литий-бериллиевой смеси 1 радиоизотопным источником нейтронов 3, слой 2 — замедлитель нейтронов, слои 4 и 5 — отражатель и поглотитель нейтронов, 6 — корпус источника. Центральное расположение стержней с литий- или бор-бериллиевой смесью позволяет увеличить плотность нейтронного потока. Отражатели, возвращая активирующие частицы внутрь источника, повышают энерговыделение. Вариант источника без отражателя 4 и поглотителя 5 можно использовать для работы в общем корпусе с отражателем, поглотителем и биологической защитой. Такая конструкция даст возможность изменять мощность генерации энергии путём изменения взаимного расположения источников: при сближении стержней плотность нейтронных полей возрастает и выход энергии увеличивается. Как отмечалось в разделе 2.1, более эффективно добавлять нейтрон- или альфа-активные изотопы непосредственно в литий- или бор- бериллиевую смесь, но необходимы детальные исследования взаимодействия веществ и влияния конкурирующих реакций.

В качестве активаторов базовых реакций (1)–(2) можно использовать нейтронные поля, существующие в реакторах атомных станций, работающих как на тепловых, так и на быстрых нейтронах. Предлагаемая конструкция гибридного реактора и примерная геометрия его активной зоны (вид сверху) представлены на Рисунке 5В. Стержни 1 заполнены ураном или плутонием, стержни 2 — литием-6 или бором-10 с добавлением бериллия-9 или без него, стержни 3 являются замедлителями, 4 — теплоноситель, 5 — отражатель, 6 — корпус реактора, 7 — регулирующие стержни, 8 и 9 — вход и выход теплоносителя.

Помещая стержни 2 с литий-бериллиевой смесью внутрь реактора, можно активировать базовые реакции, энерговыделение от которых позволит сократить количество используемого радиоактивного топлива и, следовательно, количество радиоактивных отходов. Более эффективно добавлять литий- бериллиевую смесь внутрь топливных стержней с ураном или плутонием, но необходимы детальные исследования взаимодействия веществ и влияния конкурирующих реакций.

Ещё более перспективным выглядит использование литий- бериллиевого расплава (литий имеет низкую температуру плавления) в качестве теплоносителя 4 в атомных реакторах. При этом при прохождении через плотные нейтронные поля в зоне реактора, в теплоносителе будут активироваться базовые реакции, и будет выделяться энергия, дополнительно разогревающая теплоноситель. Вне зоны реактора базовые реакции не активируются и затухают, и расплав ведёт себя как обычный теплоноситель.

Бор-10, некоторые его соединения (карбид, нитрид) и сплавы, напротив, имеют высокую температуру плавления и обладают большой прочностью, поэтому его целесообразно использовать в качестве поглотителя нейтронов и защиты реакторов 5,6 атомных станций. При этом, поглощая нейтроны, бор также будет являться дополнительным источником энергии.

Таким образом, использование литий- и бор- бериллиевых смесей позволит сократить использование радиоактивного топлива и радиоактивных отходов в атомной энергетике.

Заключение

В смеси лития-6 или бора-10 с бериллием-9 могут быть активированы доминирующие базовые реакции: ${}^{6}\text{Li}(n,\alpha) \rightarrow {}^{9}\text{Be}(\alpha,n) \rightarrow \dots$, которые являются цепными, так как идут с репродукцией активирующих частиц. Выход энергии базовых реакций составляет 9–11 МэВ на каждом шаге цепочки, что в пересчёте на единицу массы сравнимо с выходом энергии распада ядер урана-235 и может быть использовано в ядерной энергетике. Множественный выход нейтронов в реакции распада ${}^{9}\text{Be}(\alpha,n+\alpha)^{8}\text{Be}$ конкурирует с общими потерями активирующих частиц, что приводит к зависимости коэффициента реактивации цепных реакций от множества физических и конструктивно-технологических факторов, таких как соотношение концентраций веществ, температура, давление, геометрия активной зоны, наличие отражателей и т.п.

Рассмотрены варианты активации базовых реакций с помощью нейтронов, альфа-частиц, протонов и дейтронов. Активация с помощью протонов и дейтронов может быть эффективна, если решена проблема доставки активирующих частиц в зону реакции. Существующие радиоизотопные источники нейтронов, на основе урана-235, плутония-239, калифорния-252 и др., могут быть использованы для активации базовых реакций. Эффективной может быть активация при непосредственном добавлении нейтрон- и альфа-активных изотопов деления непосредственно в литий- или бор-бериллиевую смесь, но необходимы детальные исследования взаимодействия веществ и влияния конкурирующих реакций.

На практике активацию базовых реакций нейтрон- или альфа- активными изотопами деления можно использовать в автономных источниках энергии. Плотные нейтронные поля в реакторах атомных станций также могут быть использованы для активации базовых реакций. В реактор можно помещать стержни с литий- бериллиевыми смесями или использовать смеси в виде расплава (литий имеет низкую температуру плавления) в качестве теплоносителя. В последнем случае при прохождении расплава смеси через плотные нейтронные поля в зоне реактора, в ней будут активироваться базовые реакции, идущие с выделением энергии, дополнительно разогревающей теплоноситель. Вне реактора базовые реакции не активируются и затухают, а расплав используется как обычный теплоноситель. Применение литий- или бор- бериллиевых смесей позволит сократить количество используемого радиоактивного топлива и, как следствие, сократить количество радиоактивных отходов в атомной энергетике.

Базовые цепные реакции в литий- или бор- бериллиевой смеси недостаточно хорошо исследованы. Необходимы экспериментальные исследования коэффициента реактивации цепных базовых реакций при изменении различных влияющих физических и конструктивно-технологических факторов, в первую очередь, зависимость коэффициента реактивации от соотношения концентраций составляющих смеси.

Список литературы

- 1. Artsimovich L.A. Selected Investigations. Atomic and plasma physics *Nauka* Moscow, Russia (1978).
- 2. Freidberg, Jeffrey P. Plasma Physics and Fusion Energy. Cambridge University Press. ISBN 0-521-85107-6, (2007).
- 3. Wesson, J. Tokamaks, 3rd edition page 115, Oxford University Press, (2004).
- 4. McCracken G., Stott P. Fusion: The Energy of the Universe. Academic Press. pp. 198– 199. ISBN 978-0-12-384656-3, (2012).

- 5. Smith Ch.L. The Path to Fusion Power *the Dynasty* Moscow Russia (webpage: <u>http://elementy.ru/lib/430851</u>) (2009).
- 6. ITER Conceptual Design Report 1991 HER Document Series No 18, *IAEA* Vienna, Austria (1991).
- 7. J. Nuckolls et al., Nature 239, 139 (1972).
- 8. J.D. Lindl, Phys. Plasmas 2, 3933 (1995).
- 9. S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion, Oxford Science Publ. (2004).
- В.С. Беляев и др. Возможность реализации цепной ядерной реакции термоядерного синтеза на основе реакции *p*+¹¹В. ЯФ, том 78 № 7-8, с. 580-590, (2015).
- 11. V.S. Belyaev et al., Phys. Rev. E 72, 026406 (2005).
- 12. C. Labaune et al., Nature Commun. 4, 2506 (2013).
- 13. N. RostokerM.W. Binderbauer and H.J. Monkhorst, Science 278, 1419 (1997).
- 14. S. Son and N.J. Fisch, Phys. Lett. A 329, 76 (2004).
- 15. H. Hora, Opt. Commun. 282, 4124 (2009).
- 16. I. Last, S. Ron and J. Jortner, Phys. Rev. A 83, 043202 (2011).
- 17. Ensslin N. The Origin of Neutron Radiation/ Chapter 11 in Passive Nondestructive Assay of Nuclear Materials ed by T.D. Reilly, N. Ensslin, and H.A. Smith. US Nuclear Regulatory Commission NUREG/CR-550, (1991).
- 18. IAEA. Isotopic Neutron Sources for Neutron Activation Analysis *IAEA*-Tecdoc-465, Vienna, Austria, (1988).
- 19. OECD Nuclear Energy Agency. Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. A Comparative Study (the NEA webpage: http://www.nea.fr/html/ndd/reports/2002/nea3109.html), (2002).
- 20. D.Vanderplassche, L.Medeiros Romao. Accelerator Driven Systems *Proc. of IPAC2012* New Orleans, Louisiana, USA, (2012).
- 21. Nifenecker H., Meplan O. and David S. Accelerator Driven Subcritical Reactors *Taylor and Francis*, (2003).
- 22. H.A. Abderrahim *et al.* MYRRHA A Multi-Purpose Fast Spectrum Research Reactor *Energy Conversion and Management* **63**, 4, (2012).
- 23. Y. Wu. Design and R&D Progress of China Lead-based Reactor for ADS Research Facility Engineering 2(1), 124-131, (2016).

Для заметок

