

Микропиксельные лавинные фотодиоды

Ю.В. Мусиенко

Институт ядерных исследований РАН, Москва

- Микропиксельные гейгеровские лавинные фотодиоды (МГЛФД) ("кремниевые фотоэлектронные умножители")
 - особенности структуры
 - достоинства и недостатки
- Обзор новых разработок МГЛФД
- Примеры применений МГЛФД в физике элементарных частиц и астрофизике
- Заключение

Принцип работы ЛФД (лавинное умножение носителей заряда)

Лавинные фотодиоды - фотодиоды со встроенной областью с высокого (>10⁵ В/см) электрического поля. С увеличением напряжения смещения, электроны (или дырки) ускоряются и в результате процесса ударной ионизации могут создать вторичные электрон-дырочные пары.

Типичная структура ЛФД для телекоммуникации

Коэффициенты ионизации электронов и дырок в кремнии

ЛФД, работающие при напряжениях выше напряжения пробоя - в режиме Гейгера (ГЛФД)

Один из недостатков "обычных" ЛФД - хорошо работают только при низких коэффициентах усиления (М<100). Увеличение коэффициента усиления приводит к росту шум-фактора и температурной нестабильности ЛФД. ГЛФД, работающие при напряжениях выше напряжения пробоя, в режиме Гейгера, разработаны в начале 60-х (*R.Haitz et al, J.Appl.Phys. (1963-1965)*)

Сейчас производятся несколькими компаниями, например, Perkin Elmer Optoelectronics (макс. Ø500 мкм)

Планарный ГЛФД

ГЛФД (Perkin Elmer)

Схема включения, "пассивное гашение".

Features

- Peak Photon Detection Efficiency @
 650 nm:
- 70% Typical
- Active Area: SPCM-AQR-1X: 175 μm
- Timing Resolution of 350 ps FWHM
- User Friendly
- Gated Input
- Single +5v Supply

Dark count rate - 500 Hz (25 Hz -selected)

Недостатки ГЛФД

Неспособны регистрировать многофотонные сигналы, если они короче времени восстановления напряжения на ГЛФД

Уувствительная площадь ГЛФД ограничена из-за высокого темнового счёта при комнатной температуре (ГЛФД "блокируется" темновыми импульсами, если темновой счёт~1/время восстановления). ГЛФД площадью >1 мм² приходится охлаждать и/или использовать "активное гашение"

(A. Dorokhov, A. Glauzer, Y. Musienko et.al., Journal Mod.Opt. v51 2004 p.1351)

<u>Решение проблемы</u>: ГЛФД состоящие из большого числа маленьких ячеек, соединённых параллельно и имеющих индивидуальные резисторы для гашения разряда - микропиксельные ГЛФД (МГЛФД).

ЛФД со структурой металл-резисторполупроводник (МРП ЛФД)

Самый первый микропиксельный ЛФД со структурой металл-резистор-полупроводник (МРП ЛФД) предложен в 1989 г. А. Гасановым, В. Головиным, З. Садыговым, Н. Юсиповым (патент #1702831, от 11.10.1989). ЛФД площадью 5х5 mm² были произведены на МЭЛЗе (Москва).

1- Si p-n-junction; 2- Si-SiC-planar structure 3- Si-SiC-micro-pixsel (micro-channel)

Первые МРП ЛФД: на ЛФД площадью 0.5x0.5 мм² была достигнута эффективность регистрации несколько процентов для "красных" фотонов.

Удалось различить сигналы вызванные отдельными фотонами

(A. Akindinov et al., NIM387 (1997) 231)

Разработчики и производители

- ЦПТА(Москва) В. Головин
- ОИЯИ/ИЯИ (Дубна, Москва)/Zecotek (Singapur) 3. Садыгов
- Институт электроники (Минск), В. Залесский
- МИФИ/Пульсар (Москва) Б. Долгошеин, Е. Попова, С. Клёмин
- Hamamatsu Photonics (Hamamatsu, Japan)
- SensL (Cork, Ireland)
- RMD (Boston)
- MPI Semiconductor Laboratory (Munich, Germany)
- FBK (Trento, Italy)
- ST-Micro (France/Italy)
- Amplification Technologies Inc. (New York)
- KETEK (Munich, Germany)
- Novel Device Laboratory (Beijing, China)
- Philips Digital Photon Counting (Aachen, Germany)
-

Каждый производитель предложил своё название для МГЛФД : MRS APD, MAPD, SiPM, SSPM, SPM, G-APD, MPPC, PPD, DAPD ...

Структура и принцип действия

Структура на кремнии р-типа

(B. Dolgoshein et. al., "An advanced study of silicon photomultiplier", ICFA-2001)

> Все ячейки срабатывают индивидуально при попадании в них фотонов (если не учитывать оптическую связь между ячейками)

- » При срабатывании нескольких ячеек сигнал суммируется
- > Попадание нескольких фотонов в одну ячейку вызывает только одно срабатывание ячейки
- » Разряд ячейки "гасится" индивидуальным резистором (R=100 кОм 100 МОм)
- » Сигнал от одной ячейки Q=C*(V-VB), С ёмкость ячейки, V-VB "перенапряжение"

> После срабатывания напряжение на ячейке падает до напряжения пробоя VB, после чего оно восстанавливается с постоянной времени ~ R*C

Вероятность регистрации фотона пропорциональна активной площади ячейки и растёт с увеличением перенапряжения

PDE (λ , U,T) = QE(λ)*G_f*P_b(λ ,U,T)

Линейность

В случае однородного освещения (в отсутствие "оптической связи" и послеимпульсов) число сработавших ячеек можно выразить через полное число ячеек, число фотонов и PDE:

$$N_{firedcells} = N_{total} \cdot (1 - e^{\frac{N_{photon} \cdot PDE}{N_{total}}})$$

Однородность сигналов от различных пикселей

Два амплитудных спектра (сработало в среднем ~2.5 и 21 ячейка). Распределения хорошо описываются статистикой Пуассона

Временное разрешение

Measured with MEPhl/Pulsar SiPM using single photons (B. Dolgoshein, Beaune-02)

Зависимость РDE от длины волны

T=22 C

МГЛФД. изготовленные на кремнии п-типа, благодаря своей структуре, имеют лучшую PDE в коротковолновой области спектра

MRS APD, CPTA, 400 cells/mm²

(Y. Musienko, PD-07, SCINT-07, DESY-10)

Отличный фотоприёмник-кандидат для модернизации сцинтилляционного трекера эксперимента LHCB

Оптическая связь

"Hot-carrier luminescence":

10⁵ носителей заряда, прошедших через ячейку, приводят к высвечиванию ~3 фотонов с длиной волны < 1 мкм (А. Lacaita)

Эффект растёт с увеличением "перенапряжения" !!

A. Lacaita et al, IEEE TED (1993)

Из-за оптической связи между ячейками, образовавшийся в ячейке (в процессе фотоили тепловой генерации) носитель заряда, может вызвать срабатывание не только этой ячейки, но и соседних ячеек.

R. Mirzoyan, NDIP08, Aix-les-Bains

"Одноэлектронный" спектр и шум-фактор МГЛФД, в присутствии "оптической связи" между ячейками

SES MEPhI/PULSAR APD, U=57.5V, T=-28 C

ADC ch.

MEPhI/PULSAR APD

Y. Musienko, NDIP-05, Beaune, France

Ю. Мусиенко

"Отическая связь" и темновой счёт МГЛФД

Типичный темновой счёт МГЛФД при комнатной температуре: 0.1 - 10 МГц/мм²

Из-за оптической связи между ячейками темновой счёт падает с увеличением порога электроники гораздо медленнее, чем ожидалось бы из-за случайных совпадений.

(E.Popova, CALICE meeting)

Для уменьшения оптической связи между ячейками, В. МГЛФД разделил ячейки (ЦΠΤΑ) своих Головин 8 непрозрачным веществом, канавками, заполненными значительно уменьшив, тем самым, вероятность "поджига" соседних ячеек

Вероятность "поджига" соседних ячеек 1-3%

(Ю. Мусиенко, INSTR-08, Новосибирск)

Послеимпульсы в МГЛФД

Послеимпульсы в МГЛФД возникают из-за слишком быстрого восстановления напряжения на ячейке, вследствие малого "гасящего" сопротивления (R~100-200 кОм). Заряд, образовавшийся в предыдущем разряде, не успевает уйти из ОПЗ ячейки (либо "застревает" на короткоживущих ловушках) и вызывает повторное срабатывание ячейки

Послеимпульсы увеличивают не только темновой счёт МГЛФД, но и его шум-фактор

MPPC TA9445 (T=15.15 C)

Шум-фактор Hamamatsu MPPC измерен в зависимости от "перенапряжения" при двух длительностях ворот интегрирования сигнала (100 и 500 нс). Длительность сигнала от светодиода не превышала 50 нс по основанию

МГЛФД - новые разработки

МГЛФД с "объёмными" (вертикальными) резисторами

Концепция этих МГЛФД предложена в Институте Макса Планка (Германия)

J. Ninkovic, et al., Nucl. Instr. and Meth. A 610 (2009) 142.

Advantages:

- → no need of polysilicon
- → free entrance window for light, no metal necessary within the array
- → coarse lithographic level
- → simple technology
- → inherent diffusion barrier against minorities in the bulk -> less optical cross talk

→ hopefully better radiation hardness Drawbacks:

- → required depth for vertical resistors does not match wafer thickness
- → wafer bonding is necessary for big pixel sizes
- → significant changes of subpixel size requires change of material
- → vertical 'resistor' is a JFET -> parabolic IV -> longer recovery times

Nuclear Instruments and Methods in Physics Research A 621 (2010) 116-120

Линейность отклика для света от WLS Y-11

1000

N,×PDE

1500

2000

2500

Novel Device Laboratory (Пекин, Китай) разработали и изготовили МГЛФД с "объёмными" резисторами:

- чувствительная площадь 0.25 мм²
- число ячеек 2 500
- рабочее напряжение 26.5 В
- величина гасящего сопротивления 200-300 кОм

В отличие от МГЛФД (MPI), китайский ЛФД изготовлен на кремнии р-типа.

Параметры китайских МГЛФД

SiPM pixel recovery (U=26.5 V, double pulse, N,>10⁶ 1/mm²/pulse)

EN

МГЛФД с большим динамическим диапазоном (число ячеек ~15 000 мм⁻²)

МК ЛФД разработан 3. Садыговым (ОИЯИ(Дубна)/Zecotek)

Структура с потенциальными ямами, находящимися на глубине 2-3 МКМ. Область усиления находится перед потенциальной ямой. Резистора, как нет. "Гашение" разряда такового. происходит за счёт накопления заряда в потенциальной яме уменьшения U 0П3. электрического поля 8 Образовавшийся заряд уходит в подложку через прямо смещённый p-n переход. Зависимость амплитуды фотоотклика А (в относительных единицах) МК ЛФД от числа падающих фотонов N для МК ЛФД площадью 3х3 мм² содержит 135 000 ячеек

Параметры МЛФД фирмы Zecotek (15 000 ячеек, 1 mm²)

Восстановление амплитуды сигнала одной ячейки МЛФД Zecotek

Измерения проводились с использованием импульсов света от двух быстрых светодиодов. Первый импульс имел амплитуду, "блокирующую" ячейки МЛФД. Амплитуда второго (задержанного) импульса нормирована на его же амплитуду, измеренную при задержке 10 мсек.

MPPC (Hamamatsu) с увеличенным динамическим диапазоном

Нататаtsu изготовила МГЛФД (МРРС) с увеличенным динамическим диапазоном (до ~4400 ячеек/мм²).

Фотография ячеек МРРС, сделанная при помощи оптического микроскопа

Основные параметры MPPC (Hamamatsu)

MPPC type	# cells 1/mm²	C, pF	R _{cell,} kOhm	C _{cell} , fF	τ=R _c xC _c , ns	VB, V T=23 C	V _{op} , V T=23 C	Gain(at V _{op}), X10 ⁵
15 μm pitch	4444	30	1690	6.75	11.4	72.75	76.4	2.0
20 μm pitch	2500	31	305	12.4	3.8	73.05	75.0	2.0
25 μm pitch	1600	32	301	20	6.0	72.95	74.75	2.75
50 μm pitch	400	36	141	90	12.7	69.6	70.75	7.5

РDE и временной отклик

Ю. Мусиенко

Линейность отклика для света от WLS Y-11 и быстрого ультрафиолетового светодиода

МГЛФД, 4444 ячеек

МГЛФД, 2500 ячеек

Диапазон линейности новых МРРС для света от Y-11 увеличился в несколько раз, по сравнению с теоретическим значением, определяемым количеством ячеек МГЛФД. Причина - время восстановления ячейки сравнимо (или даже короче) времени высвечивания WLS Y-11 (~10 нсек)

SiPM (KETEK) с увеличенным динамическим диапазоном

КЕТЕК изготовила МГЛФД (SiPM) с увеличенным динамическим диапазоном (2500 и 4489 ячеек/мм²).

Основные параметры (S=4.84 mm²):

- Шаг между ячейками 20 µм
- Коэффициент усиления 1.1х10⁶
- Квантовая эффективность (515 нм) 22 %
- Ёмкость 360 пФ
- Темновой счёт (Т=22 С) 1.4 МГц
- Шум-фактор 1.2
- Время восстановления ячейки 29 нс

Основные параметры (S=1 mm²):

- Шаг между ячейками 15 µм
- Коэффициент усиления 0.7х10⁶
- Квантовая эффективность (515 нм) 14 %
- Ёмкость 75 пФ
- Темновой счёт (Т=22 С) 100 кГц
- Шум-фактор 1.15
- Время восстановления ячейки 8 нс

Исследования радиационной стойкости МГЛФД

Нейтроны, Е~1 МеВ

230 Mev Protons at Boston General hospital

⁽A. Heering, IEEE 2008)

Два года назад только MAPD (Zecotek) могли работать при потоках нейтронов >3*10¹² см⁻². Сейчас MAPDs (Zecotek), MPPCs (15 и 20 µm) (Hamamatsu) и SiPM (NDL, China) способны работать в потоках нейтронов вплоть до 3*10¹² см⁻² (падение амплитуды сигнала менее 30%). Однако, темновые токи и шумы ГМЛФД сильно возрастают после облучения.

МГЛФД большой площади

МГЛФД большой площади (3х3 мм² и больше) производятся уже многими производителями :Hamamatsu, CPTA/Photonique, Pulsar, Zecotek, SensL, FBK-irst ...

Hamamatsu MPPC, матрица 4х9 мм² (или 1 MPPC 6х6 мм², 14 400 ячеек)

FBK SiPM, 4х4 мм² (6400 ячеек)

(C. Piemonte: June 13th, 2007, Perugia)

МГЛФД матрицы

МРРС матрица для ПЭТ (16х9 мм²)

FBK SiPM матрица для ПЭТ (16х1 мм²)

МРРС матрица для эксперимента MAGIC

МРРС матрица для трекера на основе тонких (250 μm Ø) сцинт. волокон (NIM A 622 (2010) 542)

Примеры применений МГЛФД в физике элементарных частиц и астрофизике

Тестовый стенд время-пролётной системы эксперимента ALICE

160 scintillation counters with 320 MRS APDs

Signal and dark noise rate vs. electronics threshold

(A. Akindinov et. al, NDIP-08, Aix-les-Bains)

Микропиксельные ЛФД для подземного эксперимента ЕММА (Experiment with Multi-Muon Array)

- изучение энергетического спектра и химического состава первичных космических лучей в области "колена" E=3x10¹⁵ eB
- > измерение множественности космических мюонов и их поперечнного распределения ...

Pihasalmi mine, central Finland 85 m depth, ~240 m.w.e.

EMMA counter

Groove for WLS fiber

Fiber with optical connector

122×122×30 mm³ scintillator chemical reflector ~90 cm Y11 WLS fiber with Al mylar at far end photosensor: MRS APD

Technique developed for T2K detectors at INR

About 2200 MRS APD's were manufactured by CPTA for EMMA

(Yu. Kudenko, PD-09, Japan, 25 June 2009))

_

Ю. Мусиенко

Structure of MRS APD

Исследование осцилляций нейтрино эксперимент Т2К

SMRD detectors

Extruded plastics ~7x170x870 mm³ Y11 fibers embedded in S-grooves

MIP detection efficiency	> 99.9%
σ _t (MIP)	~ 0.7 ns
Spatial resolution	~ 7 cm

Light yield

I.y. (sum of 2 ends) = 58 p.e./MIP

Scintillator detectors with WLS fibers

- Individual fiber readout
- FGD, POD, Ecal, SMRD, INGRID: ~ 60000 readout channels
- Limited space for photosensors
- Magnetic field

Hamamatsu MPPC: active area 1.3×1.3 mm²

Number of pixels	667
Pixel size	50×50 μm
Gain	~0.7×10 ⁶
PDE at 525 nm	25-30%
Dark rate, th = 0.5 p.e.,22C	≤1000 kHz
Pulse width	<100 ns
Cross-talk	10-15%
After pulses	10-15%

(Yu. Kudenko, G-APD workshop, GSI, Feb. 2009)

Адронный калориметр с МАРД для эксперимента NA61/SHINE

Structure of the PSD:

44 individual modules with segmentation into 10 longitudinal sections.

16 central modules – 10x10x125 cm³

28 outer modules -20x20x125 cm³

Total weight – 17 tons

Structure of the module:

60 lead/scintillator sandwiches with WLSfibers glued in round grooves inside the scintillator.

WLS-fibers of 6 consecutive scintillator plates of each longitudinal section are bundled and readout by 3x3 mm² MAPD-3A. 10 longitudinal sections in one module are readout by 10 individual MAPDs.

The advantages of micropixel avalanche photodiodes (type MAPD-3A) produced by Zecotek Photonics Inc. satisfy the above requirements. They have a pixel density of 10⁴/mm² due to the specific micro-well structure.

Front view of hadron calorimeter.

10 MAPDs in each module -Light emitting diode for the monitoring system

Spectral response of MAPD-3A: dependence of PDE on the wavelength of the light.

Photo of rear side of hadron calorimeter during the MAPD installation

(A. Ivashkin, NDIP-2011)

Адронный калориметр эксперимента Компактный Мюонный Соленоид (CMS) на БАК (ЦЕРН)

Адронный калориметр CMS - неоднородный (сэмплинг) калориметр, состоящий из сцинтилляционных счётчиков со съёмом света при помощи спектросмещающих волокон и пластин поглотителя (латунь и нержавеющая сталь). Калориметр состоит из 3-х частей: НВ, НО и НЕ.

Ю. Мусиенко

HE

Апгрейд адронного калориметра эксперимента CMS

В 2008, начале 2009 года в ЦЕРНе и в Fermilab прошли несколько совещаний посвящённых модернизации (апгрейду) установки СМS для работы в условиях высокой светимости ускорителя SLHC (~3x10³⁴ см⁻²сек⁻¹). Одним из важных результатов этих совещаний стало предложение заменить фотоприёмники адронного калориметра HPD на микропиксельные лавинные фотодиоды.

Большая часть апгрейда будет финансироваться DOE и NSF.

Причины апгрейда:

- при напряжённости магнитного поля ~1-2 Тл (поле в HO) в HPD возникает электрические разряды, приводящие к увеличению шума HPD и к выходу их из строя;

- радиационные повреждения передних слоёв сцинтиллятора в НЕ и НВ
- необходимость увеличения продольной гранулярности калориметра для улучшения его параметров в условиях высокой светимости SLHC.

Микропиксельные лавинные фотодиоды (MAPD) были выбраны из-за их высокой квантовой эффективности, нечувствительности к магнитному полю, компактности и сравнительно низкой стоимости. В качестве кандидатов рассматриваются MAPD двух производителей: Zecotek и Hamamatsu.

Сигналы от мюонов в НО (фотоприёмники: НРD и микропиксельные ЛФД)

Планы апгрейда CMS HO HCAL :

- выбор 3x3 мм² MAPD для CMS HO HCAL (Hamamatsu MPPCs, 3 600 cells, Апрель 2010);
- производство 2500 3000 MAPD (первая половина 2011);
- изготовление RM (Readout Module) для CMS HO HCAL (вторая половина 2011)
- замена RM с HPD на RM с MAPD (2013)

MPPC Operating Voltage (2100 devices)

MPPC Dark Count (2100 devices)

2100 HO MPPCs

Ю. Мусиенко

Планы апгрейда CMS HB/HE HCAL

Переход к продольной сегментации CMS HCAL необходим для улучшения параметров калориметра, а также для его работы в условиях высоких доз радиации на SLHC

МГЛФД для CMS HCAL SLHC upgrade

В качестве фотоприёмников для CMS HCAL SLHC upgrade предложены МГЛФД с большим динамическим диапазоном: PDE выше, чем у HPD, очень быстрый отклик (важно в условиях высокой светимости на SLHC), более компактны, лучше работают в сильных магнитных полях и, что немаловажно, дешевле.

Light-tight 18-connector Faceplate

Working on 2 concepts:

- ODU (Optical Decoder Unit (as we have now)
- EDU (Electrical Decoder Unit (On this page)
 - Do Optical/Electrical Conversion at the Megatile Connector
 - 1 SiPMs (1mm²) per fiber
 - · Perform Analog Addition to form (segmented) towers

линейки Конструкция MAPD. предложенная компанией Zecotek для CMS HCAL (18x1 mm²)

Заключение

Что же нового и наиболее интересного было сделано в области разработки МГЛФД? Новые МГЛФД:

- МАРD, разработанный и изготовленный З. Садыговым (ОИЯИ, Дубна) совместно с компанией Zecotek (Сингапур): 3х3 мм², 135 000 ячеек, PDE(370-550 нм)=25-30%, способны работать при потоках нейтронов (E=1 МэВ) до 3*10¹² см⁻²

- МГЛФД с "объёмными резисторами" предложенные в МРІ (Германия) и изготовленные NDL (Китай): 10 000 ячеек на мм², PDE(515нм)~8%, время восстановления ячейки <5 нсек, способны работать при потоках нейтронов (E=1 МэВ) до 3*10¹² см⁻²

- MPPCs/SiPMs с увеличенным динамическим диапазоном, разработанные и изготовленные Hamamatsu (Япония) и КЕТЕК (Германия) : 4489 ячеек/мм², PDE(515нм)~15-20%, время восстановления ~4-8 нс, способны работать при потоках нейтронов (E=1 МэВ) до 3*10¹² см⁻²

- SiPMs чувствительные в области ультрафиолета, изготовленные сотрудниками Пульсара и МИФИ (Россия): PDE(350-450нм)~50-58%, оптическая связь между ячейками ~3%

- МРП ЛФД с высокой чувствительностью в красно-зелёной области спектра и низкой температурной зависимостью, изготовленные фирмой ЦПТА (Москва, Россия): PDE(490-700нм)~30-45%, температурный коэффициент 0.3-0.5 %/С, оптическая связь между ячейками ~1-3%

В настоящее время наиболее широко МГЛФД применяются в физике элементарных частиц и астрофизике: эксперименты T2K, EMMA, CMS, MAGIC. Изготовлены прототипы детекторов для ПЭТ и ПЭТ/МРТ с МГЛФД в качестве фотоприёмников.