Первые результаты ускорительного нейтринного эксперимента Т2К

Александр Измайлов (от имени коллаборации Т2К)

Семинар ОФВЭ ИЯИ РАН, 10 октября 2011 года

Neutrino oscillation parameters and PMNS matrix

Flavor weak eigenstates related to mass eigenstates

T2K collaboration

~ 500 members, 58 national institutes, 12 countries

T2K (Tokai-to-Kamioka) experiment

T2K physics goals

Search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations and hence non-zero θ_{13}

$$P_{\nu_{\mu} \to \nu_{e}} \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}\left(1.27 \frac{\Delta m_{31}^{2}L}{E}\right)$$

- last unknown PMNS mixing angle; non-zero θ_{13} is crucial for further lepton CPV and mass hierarchy experimental observations
- expected T2K sensitivity w/full T2K dataset (8x10²¹ p.o.t.):
 ~20 times better than CHOOZ limit

Precise measurements of Δm_{23}^2 and $\sin^2(2\theta_{23})$ in $v_{\mu} \rightarrow v_{\mu}$ channel

$$P_{\nu_{\mu} \to \nu_{\mu}} \approx 1 - \sin^2 \left(2\theta_{23} \right) \sin^2 \left(1.27 \frac{\Delta m_{23}^2 L}{E} \right)$$

- expected sensitivity w/ full T2K dataset:

 $\delta(\Delta m_{23}^2) \sim 1 \times 10^{-4} \,\text{eV}^2, \, \delta(\sin^2 2\theta_{23}) \sim 1\% \quad (90\% \text{ C.L.})$

T2K off-axis conception and neutrino interactions

Far Detector (Super-K)

6

"Pre-oscillation" neutrino beam monitoring

ND280 off-axis detector :

- neutrino spectra measurements

- cross-section measurements

before oscillations

- background estimation

K.Abe et al. (T2K collaboration), arXiv:1106.1238 [physics.ins-det] accepted by NIM

Muon monitor (MUMON):

- installed behind the beam-dump
- spill-by-spill monitoring via detecting high energy muons
- muon direction and intensity *monitoring*

ND280 on-axis detector (INGRID):

- direct neutrino beam day-by-day monitoring
- beam profile and center position monitoring
- neutrino beam intensity

monitoring

7

Детектор мюонного пробега SMRD

Задачи и структура SMRD

- Регистрация СС-QE мюонов, вылетающих под большими углами к оси нейтринного пучка
- Идентификация фоновых событий
- Калибровка внутренних детекторов
- Воздушные прослойки UA1 магнита, оборудованные сцинтилляционными счетчиками

SMRD счетчики разработаны и созданы в ИЯИ РАН

- ~2200 индивидуальных сцинтилляционных счетиков
- светосбор с двух торцов сцинтиллятора: Y11 (d=1мм) WLS оптоволокно S-формы, Hamamatsu MPPC фотодетекторы
- суммарный световыход 25-50 р.е./МІР (~1.5 МэВ) для центра счетчика T=20-22 С
- эффективность регистрации MIP >99.9%
- σ_x < 10 см; σ_t ~1 нс

SMRD детектор

Космический мюон SMRD

Стабильная работа детектора в течение
 ~3 лет
 Число «проблемных» каналов
 -5 (один полностью мертв)(!) из 4016
 Детектор успешно запущен после
 землетрясения в Японии 11 марта 2011 года

Far Detector Super-Kamiokande (SK)

simulation

- 50 kT water Cherenkov detector 11k PMTs (Inner Detector ID)
- Detector performance is well-matched at sub GeV
- Excellent performance for single
- particle events
- Good e-like ("fuzzy" ring)/ μ -like rings separation

-6 -4 -2 0

Particle ID using

Probability that μ is mis-identified as electron is ~1%

Particle ID parameter

Анализ нейтринных осцилляций

Neutrino beam data used in analysis

- Jan 2010 start of data taking
- 145 kW stable operation achieved in Run 2
- Run1 + Run2 total datasets:
 1.43 × 10²⁰ p.o.t.
 (2% of T2K final goal)

all collected data used in analysis

Stable operation of neutrino beam during data collecting - beam direction stability is well within 1mrad ($\delta E/E < 2\%$)

T2K oscillation analysis principles

T2K neutrino flux prediction

Proton monitors measurements as inputs for actual beam profile and position

- Hadron production in T2K target:
- NA61 experiment
 - pions in p+C interactions
 - same as T2K proton energy and target material
 - systematic uncertainty evaluated in each (p,θ) bin, typically 5-10%
 - normalization error 2.3%
- kaon production, pion outside NA61 acceptance, other target interactions modeled with FLUKA
- Out of target interactions, horn focusing, secondary interactions, particle decays
- GEANT3 simulation
- interaction cross-sections tuned to existing data

31 GeV/c protons on carbon target; 2007 data

Flux predictions and uncertainties

Systematic errors from beam uncertainty $(v_e \text{ appearance})$:

$$\delta N_{ND}^{MC} = 15.4\% \quad \delta \left(\frac{N_{ND}^{MC}}{N_{SK}^{MC}} \right) = 8.5\%$$
$$\delta N_{SK}^{MC} = 16.1\%$$

- significant uncertainty reduction when normalizing to near detector (far/near correlation)
- kaon production uncertainty is dominant (7.6% out of 8.5%) to be improved with NA61 kaon measurements

Expected intrinsic beam v_e contamination ~ 1% in the oscillation region

- mainly comes from muon decays
- NA61 pion data predicts v_e from pion parents

Neutrino interactions uncertainties

SK signal: CCQE neutrino interactions producing leptons (μ or e)

	Cross section uncertainty
Process	relative to the CCQE total x-section
CCQE	energy dependent ($\sim \pm 7\%$ at 500 MeV)
CC 1π	$30\% (E_{\nu} < 2 \text{ GeV}) - 20\% (E_{\nu} > 2 \text{ GeV})$
CC coherent π	100%
CC other	$30\% (E_{\nu} < 2 \text{ GeV}) - 25\% (E_{\nu} > 2 \text{ GeV})$
NC $1\pi^0$	$30\% (E_{\nu} < 1 \text{ GeV}) - 20\% (E_{\nu} > 1 \text{ GeV})$
NC coherent π	30%
NC other π	30%
Final State Int	. energy dependent ($\sim\pm10\%$ at 500 MeV)

Background:

- v_e appearance: π^o from NC interactions
 - $\gamma\,$ misidentified as e at SK
- v_{μ} disappearance: CC1 π interactions

Neutrino interaction uncertainties come from:

ν ^π

small opening

angle

- comparison of models to data: SciBooNE, MiniBooNE, SK atm.
- different models
- parameter variation in models

Total influence on systematics:

- 14% for v_e appearance background (w/o osc.)
- 8% for v_{μ} disappearance

Cross section ratio ν_e/ν_μ uncertainty is ~6%

ND280 input

Entries / (100 MeV/c)

- Run I (2.9x10¹⁹ p.o.t.) used for ND280 analysis
- measure inclusive CC v_{μ} and intrinsic beam v_{e}
- analysis based on Tracker (FGD+TPC) data
- useTPC PID (dE/dX) to select muons and electrons

- 90% purity and 38% efficiency in CC selection
- systematics mainly from tracking efficiency and TPC-FGD matching
- good agreement between Data and MC based on NA61 + FLUKA (flux) and NEUT (neutrino interactions)

$$\frac{V_{ND}^{obs}}{V_{ND}^{MC}} = 1.036 \pm 0.028 (\text{stat})_{-0.037}^{+0.044} (\text{det. syst}) \pm 0.038 (\text{phys. model})$$

0 600 800 1000 1200 1400 400 1800 200 1600 p (MeV/c)

- intrinsic beam v_e form main background for v_e appearance
- observed ND280 v_e / v_{μ} ratio is in consistence with MC expectations
- confirms flux predictions

$$R(v_e / v_{\mu}) = (1.0 \pm 0.7 (\text{stat}) \pm 0.3 (\text{syst}))\%$$

$$\frac{N(v_e)^{DATA} N(v_{\mu})^{MC}}{N(v_{\mu})^{DATA} N(v_e)^{MC}} = 0.6 \pm 0.4(stat) \pm 0.2(syst)$$

Neutrino events selection in Far Detector

- T2K selection cuts predefined and fixed prior to analysis using MC and atmospheric data
- + GPS time synchronization between SK and J-PARC beam: -2~+10 μs on-time window
- Select fully contained (FC) events in ID; <16 PMT clusters in Outer Detector (OD)
- 121 total FC events selected expected background (cosmics) 0.023
- Event vertex >200 cm from the ID wall (fiducial volume FV cut) → FCFV events
 - poor reconstruction accuracy for events too close to ID walls
 - reject events outside ID
 - 22.5 kT fiducial volume
- Select events with exactly one ring
- + PID based on ring shape to select \vec{e} 's and μ 's

88 FCFV events

41 one-ring FCFV events

33 $\mu-$ an 8 e-like events selected

121 FC events

T2K ν_{μ} disappearance analysis

T2K ν_{μ} events selection

After "basic" selection cuts 33 μ -like event candidates remained Additional Far Detector cuts applied for remaining events:

- number of reconstructed decay electrons <2
- reconstructed muon momentum > 200 MeV
- 31 events survived all cuts

Selected and expected v_{μ} events in T2K

31 events remained after selection cuts

No oscillation hypothesis: 103.7 events expected

For $sin^2 2\theta_{23}$ =1.0 and Δm^2_{23} =2.4x10⁻³ eV²: 28.3 events expected

$N_{exp.}^{orr}$ error table				
Error source	$\sin^2 2\theta = 1.0, \Delta m^2 = 2.4$	Null Oscillation		
SK Efficiency	$+10.3\% \ 10.3\%$	+5.1% $-5.1%$		
Cross section and FSI	+8.3% $-8.1%$	+7.8% -7.3%		
Beam Flux	+4.8% $-4.8%$	+6.9% $-5.9%$		
ND Efficiency and Overall Norm.	+6.2% $-5.9%$	+6.2% $-5.9%$		
Total	+15.4% $-15.1%$	+13.2% $-12.7%$		

Null-oscillation hypothesis is excluded at 4.5 sigma level!

Expected events systematics

T2K ν_{μ} disappearance analysis methods

• Fit with 2 flavor oscillation scenario $P_{\nu_{\mu} \rightarrow \nu_{\mu}} = 1 - \sin^2 (2\theta_{23}) \sin^2 \theta_{23}$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^{2} \left(2\theta_{23} \right) \sin^{2} \left(1.27 \frac{\Delta m_{23}^{2} L}{E} \right)$$

- Two independent methods to extract oscillation parameters
- Feldman-Cousins method to produce confidence intervals
- Method A maximum likelihood $L(\sin^2 2\theta, \Delta m^2, \vec{f}) = L_{norm}(\sin^2 2\theta, \Delta m^2, \vec{f})L_{shape}(\sin^2 2\theta, \Delta m^2, \vec{f})L_{shape}(\vec{f})$
 - L_{norm} number of the observed events (Poisson distributed)
 - L_{shape} unbinned energy spectrum shape
 - $f = f(f_{F/ux}, f_{Xsec}, f_{ND}, f_{SK})$ parameter representing systematic errors
- Method B likelihood ratio

$$\chi^2 = 2 \sum_{i=1}^{N_{\text{bin}}} \left[n_i^{obs} \cdot \ln(\frac{n_i^{obs}}{n_i^{\text{exp}}}) + n_i^{\text{exp}} - n_i^{obs} \right]$$

- i - SK energy bin

- $n_i^{obs(exp)}$ - number of observed (expected) events in particular SK energy bin

• Main difference: systematic parameters fitting in A, no fitting in B

T2K v_{μ} disappearance analysis results

Two methods are in a good agreement

T2K v_e appearance analysis

T2K v_e events selection

Start from 8 e-like single-ring FCFV events after "basic" T2K selection criteria T2K v_e selection cuts in SK optimized for intrinsic beam v_e and NC π^o background minimization After all cuts:

- signal efficiency 66%
- intrinsic v_e rejection 77%
- NC background rejection 99%

No Michel electrons \rightarrow

Force reconstruction to fit light pattern under two e-like rings assumption,

Energy deposited in ID $>100 \text{ MeV} \rightarrow 7 \text{ events}$

Reconstructed neutrino energy <1250 MeV \rightarrow 6 events

Expected events in Far Detector

After all cuts 6 final candidate events remained!

1.5 ν_{e} candidates expected with zero θ_{13} hypothesis

		Beam v₀ background	NC background	Oscillat ν _μ →ν (solar te	:ed ₌ rm)	Total	
The exp of even	ected # 's at SK	0.8	0.6	0.1		1.5	
Systematic uncertainties							
Error source	$\sin^2 2$	$\theta_{13} = 0$	$\sin^2 2\theta_{13} =$	0.1			
(1) Beam flux		$\pm 8.5\%$	$\pm 8.$	5%	Smo	aller cross-	section and
$(2) \ u$ int. cross section	:	$\pm 14.0\%$	$\pm 10.$	5%	SK	uncertainti	es for signal
(3) Near detector		$^{+5.6}_{-5.2}\%$	+55.1	${}_{2}^{6}\%$	evel	nts	
(4) Far detector	:	$\pm 14.7\%$	± 9.4	4%			
(5) Near det. statistics		$\pm 2.7\%$	± 2.7	7%			
Total	($+22.8\ \%$ $-22.7\ \%$	+17.0 -17.1	⁶ 5%			

 $N_{SK,total}^{exp} = 1.5 \pm 0.3$ (for accumulated $1.43 \times 10^{20} p.o.t.$)

Reconstructed vertex distribution

Selected events clustering at large R KS test gives 0.03 p-value for such R² distribution Event outside SK F

Vertex distribution in ID; MC interactions simulated out to 550 cm from ID wall

Vertex distribution in Outer Detector

More checks of vertex distributions:

- good Data-MC agreement
- if outside source then expect events excess at large R² outside FV
- vertex distributions in OD data sample show no significant data excess

T2K v_e appearance result

Probability to observe 6 or more events under zero θ_{13} hypothesis is 0.7% (2.5 sigma significance)

Feldman-Cousins method used to produce confidence intervals For $sin^2 2\theta_{23}$ =1.0 and Δm^2_{23} =2.4×10⁻³ eV²:

Normal mass hierarchy and δ_{CP} =0:

- best fit: sin²2θ₂₃=0.11
- $0.03 < \sin^2 2\theta_{23} < 0.28$ at 90% C.L.

Inverted mass hierarchy and $\delta_{CP}=0$:

- best fit: $sin^{2}2\theta_{23}=0.14$
- 0.04 $< \sin^2 2\theta_{23} < 0.34$ at 90% C.L.

Conclusion

T2K performed two oscillation analysis based on 1.43x10²⁰ p.o.t. dataset (2% of final T2K goal)

 v_{μ} disappearance analysis results:

- no oscillation hypothesis excluded at 4.5 sigma level
- $\sin^2 2\theta_{23}$ > 0.85 and 2.1×10⁻³ eV² < Δm^2_{23} < 3.1×10⁻³ eV² at 90% C.L.

 v_e appearance analysis results:

- 6 events selected with 1.5 ± 0.3 expected w/o oscillations
- probability to observe 6 or more events is 0.7% (2.5 σ significance)
- 0.03(0.04) $< \sin^2 2\theta_{13} < 0.28(0.34)$ at 90% C.L. for normal (inverted) mass hierarchy, $\sin^2 2\theta_{23} = 1.0$, $\Delta m^2_{23} = 2.4 \times 10^{-3}$ and $\delta_{CP} = 0$
- published in PRL, Phys.Rev.Lett.107:041801,2011

The T2K is now recovering from the March 11th earthquake Investigations taken so far indicate that all damage is repairable Plan to restart J-PARC accelerator in December 2011

Backup slides

Comparison of T2K ν_{μ} disappearance result with SK and MINOS

Comparison of T2K v_e appearance result with recent MINOS results

Significant overlap of 90% C.L. allowed regions

J-PARC T2K neutrino beamline

PS proton beam

T2K v_e CCQE event candidate

	D_{wall}	Ring-counting	PID	E_{vis}	POLfit mass	E_{ν}^{rec}
	(cm)	likelihood	parameter	(MeV)	$({ m MeV}/c^2)$	(MeV)
#1	614.4	-5.7	-1.2	381.8	29.9	485.9

34

ND280 neutrino events

Sand muon + DIS candidate

CCQE candidate

DIS candidate

 $CC1\pi$ candidate

մեսիս

v_e vertex distribution from SK atmospheric data

T2K-like v_e selection cuts applied to sub-GeV atmospheric neutrinos

