В-физика на LHC Статус и перспективы поиска новой физики

> Е. Гущин ИЯИ РАН

Оглавление

- Экспериментальный статус и глобальный фит SM модели и основные направления поиска НФ с тяжелыми кварками
- LHCb is B-meson experiment for search NP in CPV and rare decays
 - Основные параметры и экспериментальные методы
- Физическая программа и ключевые результаты по поиску НФ
 - ϕ_s , A^q_{SL} , $B_s \rightarrow \mu\mu$, $B \rightarrow K^*\mu\mu$
- Заключение

Параметризация СКМ матрицы

• CKM матрица: унитарность \rightarrow 4 действительных свободных параметра – **A**, λ , ρ , η . Фазоинвариантная параметризация, сохраняющая унитарность до любого порядка по λ (Wolfenstein parametrisation with Jarlskog like phase invariants ; Charles et al. EPG C41,1-131(2005))

$$\lambda^{2} = \frac{\left|V_{us}\right|^{2}}{\left|V_{ud}\right|^{2} + \left|V_{us}\right|^{2}} \qquad A^{2}\lambda^{4} = \frac{\left|V_{cb}\right|^{2}}{\left|V_{ud}\right|^{2} + \left|V_{us}\right|^{2}} \qquad \overline{\rho} + i\overline{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \qquad V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- λ измерена из значений $|V_{ud}|$ и $|V_{us}|$, берущихся из суперразрешенного ядерного β-распада и полулептонных распадов К-мезонов.
- А определяется из значений $|V_{cb}|$ и λ .
- **ρ**, **η** определяются из измерений углов и сторон B_d унитарного треугольника.
- В_d унитарный треугольник:

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

BELLE

В последние 10 лет огромное количество данных получено на Вфабриках, уточняющих параметры В_d треугольника.

Total cross section and trigger rates with $L = 8 \times 10^{35} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

Physics process	Cross section (nb)	Rate (Hz)
$\Upsilon(4S) \to B\bar{B}$	1.2	960
Hadron production from continuum	2.8	2200
$\mu^+\mu^-$	0.8	640
$ au^+ au^-$	0.8	640
Bhabha $(\theta_{\text{lab}} \ge 17^{\circ})$	44	$350^{(a)}$
$\gamma\gamma \ (\theta_{\rm lab} \ge 17^{\circ})$	2.4	$19^{(a)}$
2γ processes ($\theta_{\rm lab} \ge 17^{\circ}, p_t \ge 0.1 {\rm GeV}/c$)	~ 80	~ 15000
Total	~ 130	~ 20000

 $^{(a)}$ rate is pre-scaled by a factor of 1/100

Экспериментальный статус СКМ матрицы

Observables

 $|V_{ud}|, |V_{us}|$

 $|V_{cb}|, |V_{ub}|$

 $\mathfrak{B}[B \to \tau \nu]$

 $\overline{\rho} = 0.144^{+0.027}_{-0.018}, \quad \overline{\eta} = 0.343^{+0.014}_{-0.014}$

 $\lambda = 0.22518$

 $A = 0.816^{+0.011}_{-0.021},$

Спасибо В-фабрикам и Теватрону: огромный прогресс достигнут за последние годы в измерениях параметров СКМ матрицы.

Предсказания CKMfitter 2011

В целом согласие предсказаний с экспериментом, но ... Продолжается противоречие между BR[B $\rightarrow \tau v$] и sin(2 β_{cc}). Исключение одной из этих наблюдаемых из фита уменьшает χ^2_{min} на 2.6 о, т.е. в рамках стандартной модели либо BR[B $\rightarrow \tau v$] слишком велик, либо sin(2 β_{cc}) слишком мал.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Observable	Measurement	Prediction	Pull (σ)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Charged Leptonic Decays				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})$	$(16.8 \pm 3.1) \cdot 10^{-5}$	$(7.57 \ ^{+0.98}_{-0.61}) \cdot 10^{-5}$	2.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{B}(B^+ \to \mu^+ \nu_\mu)$	$< 10^{-6}$	$(3.74 \ {}^{+0.44}_{-0.38}) \cdot 10^{-7}$	- 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	${\cal B}(D^+_s o au^+ u_ au)$	$(5.29 \pm 0.28) \cdot 10^{-2}$	$(5.44 \ ^{+0.05}_{-0.17}) \cdot 10^{-2}$	0.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	$(5.90 \pm 0.33) \cdot 10^{-3}$	$(5.39 \ ^{+0.21}_{-0.22}) \cdot 10^{-3}$	1.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	$(3.82\pm0.32\pm0.09)\cdot10^{-4}$	$(4.18 \ ^{+0.13}_{-0.20}) \cdot 10^{-4}$	0.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Neutral Leptonic B decays	3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B^0_s \to \tau^+ \tau^-)$	-	$(7.73 \ ^{+0.37}_{-0.65}) \cdot 10^{-7}$	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$< 32 \cdot 10^{-9}$	$(3.64 \ ^{+0.17}_{-0.31}) \cdot 10^{-9}$	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{B}(B^0_s o e^+ e^-)$	$< 2.8 \cdot 10^{-7}$	$(8.54 \ ^{+0.40}_{-0.72}) \cdot 10^{-14}$	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{B}(B^0_d \to \tau^+ \tau^-)$	$< 4.1 \cdot 10^{-3}$	$(2.36 \ ^{+0.12}_{-0.21}) \cdot 10^{-8}$	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{B}(B^0_d \to \mu^+ \mu^-)$	$< 6 \cdot 10^{-9}$	$(1.13 \ ^{+0.06}_{-0.11}) \cdot 10^{-10}$	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	${\cal B}(B^0_d o e^+ e^-)$	$< 8.3\cdot 10^{-9}$	$(2.64 \ {}^{+0.13}_{-0.24}) \cdot 10^{-15}$	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$B_q - \bar{B}_q$ mixing observable	s		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta \Gamma_s / \Gamma_s$	$0.092^{+0.051}_{-0.054}$	$0.179 \ ^{+0.067}_{-0.071}$	0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a^d_{ m SL}$	$(-47 \pm 46) \cdot 10^{-4}$	$(-6.5 \ ^{+1.9}_{-1.7}) \cdot 10^{-4}$	0.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$a^s_{ m SL}$	$(-17 \pm 91^{+12}_{-23}) \cdot 10^{-4}$	$(0.29 \ ^{+0.09}_{-0.08}) \cdot 10^{-4}$	0.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$a^s_{ m SL}-a^d_{ m SL}$	-	$(6.8 + 1.9)_{-1.7} \cdot 10^{-4}$	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\sin(2\beta)$	0.678 ± 0.020	$0.832 \begin{array}{c} +0.013 \\ -0.033 \end{array}$	2.7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$2\beta_s$	$[0.04; 1.04] \cup [2.16; 3.10]$ $0.76 \stackrel{+0.36}{_{-22}} + 0.02$	$0.0363 \begin{array}{c} ^{+0.0016}_{-0.0015} \end{array}$	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Radiative B decays				
$\begin{array}{c ccccc} \mathcal{B}(B^- \to K^{*-}(892)\gamma) & (42.1 \pm 1.5) \cdot 10^{-6} & (66 \begin{array}{c} +21 \\ -20 \end{array}) \cdot 10^{-6} & 1.1 \\ \mathcal{B}(B_s \to \phi\gamma) & (57^{+21}_{-18}) \cdot 10^{-6} & (65 \begin{array}{c} +21 \\ -20 \end{array}) \cdot 10^{-6} & 0.1 \\ (57^{+21}_{-18}) \cdot 10^{-6} & (65 \begin{array}{c} +21 \\ -20 \end{array}) \cdot 10^{-6} & 0.1 \\ (57^{+21}_{-24}) \cdot 10^{-6} & 0.1 \\ (3.346 \pm 0.247) \cdot 10^{-3} & (3.03 \begin{array}{c} +0.34 \\ -0.32 \end{array}) \cdot 10^{-3} & 0.2 \end{array}$ $\begin{array}{c} & \\ \mathbf{Rare} \ K \ \text{decays} & \\ \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) & (1.75^{+1.15}_{-1.05}) \cdot 10^{-10} & (0.854 \begin{array}{c} +0.116 \\ -0.098 \end{array}) \cdot 10^{-10} & 0.8 \\ (0.277 \begin{array}{c} +0.028 \\ -0.008 \end{array}) \cdot 10^{-10} & - \\ \end{array}$	$\mathcal{B}(B_d \to K^*(892)\gamma)$	$(43.3 \pm 1.8) \cdot 10^{-6}$	$(64 + 22) + 10^{-6}$	1.2	
$\begin{array}{c cccc} \mathcal{B}(B_s \to \phi \gamma) & (57^{+21}_{-18}) \cdot 10^{-6} & (65^{+31}_{-24}) \cdot 10^{-6} & 0.1 \\ \mathcal{B}(B \to X_s \gamma) / \mathcal{B}(B \to X_c \ell \nu) & (3.346 \pm 0.247) \cdot 10^{-3} & (3.03^{+0.34}_{-0.32}) \cdot 10^{-3} & 0.2 \\ \hline & & \\ \hline & & \\ \hline & & \\ \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) & (1.75^{+1.15}_{-1.05}) \cdot 10^{-10} & (0.854^{+0.116}_{-0.098}) \cdot 10^{-10} & 0.8 \\ \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) & - & (0.277^{+0.028}_{-0.035}) \cdot 10^{-10} & - \\ \hline \end{array}$	$\mathcal{B}(B^- \to K^{*-}(892)\gamma)$	$(42.1 \pm 1.5) \cdot 10^{-6}$	$(66 + 21) - 20 \cdot 10^{-6}$	1.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	${\cal B}(B_s o \phi \gamma)$	$(57^{+21}_{-18}) \cdot 10^{-6}$	$(65 + 31) - 10^{-6}$	0.1	
Rare K decays $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ $(1.75^{+1.15}_{-1.05}) \cdot 10^{-10}$ $(0.854^{+0.116}_{-0.098}) \cdot 10^{-10}$ 0.8 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ - $(0.277^{+0.028}_{-0.035}) \cdot 10^{-10}$ -	$\mathcal{B}(B \to X_s \gamma) / \mathcal{B}(B \to X_c \ell \nu)$	$(3.346 \pm 0.247) \cdot 10^{-3}$	$(3.03 \ ^{+0.34}_{-0.32}) \cdot 10^{-3}$	0.2	
$\begin{array}{c c} \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) & (1.75^{+1.15}_{-1.05}) \cdot 10^{-10} & (0.854 \ \substack{+0.116\\ -0.098}) \cdot 10^{-10} & 0.8 \\ \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) & - & (0.277 \ \substack{+0.028\\ -0.035}) \cdot 10^{-10} & - \end{array}$	Rare K decays				
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ - $(0.277 + 0.028) \cdot 10^{-10}$ -	$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	$(1.75^{+1.15}_{-1.05}) \cdot 10^{-10}$	$(0.854 + 0.116 - 0.098) \cdot 10^{-10}$	0.8	
	${\cal B}(K_L o \pi^0 u ar u)$	-	$(0.277 \ ^{+0.028}_{-0.035}) \cdot 10^{-10}$	-	

Выводы из СКМ фитирования

- Механизм СКМ очевидно работает, но есть место для Новой Физики в механизме смешивания в обоих B_d и B_s мезонах: как показывает анализ, дополнительные фазы смешивания могут компенсировать имеющееся противоречие между BR[B→τν] и sin(2β_{cc}).
- Противоречия в наблюдаемых подталкивают к перепроверке и обновлению измерений, в первую очередь тех, что на подходе: φ_s, A^q_{SI}, B_s→µµ, B → K*µµ.

LHCb Collaboration: 755 Members, from 55 Institutes in 15 Countries

LHCb HCS

LHCb experiment for studies of B-meson CPV and rare decays

LHCb operation

LHCb collected ~37 pb⁻¹ in 2010 and already ~ 940 pb⁻¹ recorded in 2011 By end of 2011 LHCb hopes to collect >1 fb⁻¹

LHC as B - factory

LHCb detector

LHCb is forward spectrometer optimized for studies of CPV and B-meson rare decays

Preshower/SPD built in INR (Moscow)

Vertex / Time resolution

LHCb lifetime measurements using 36 pb⁻¹ of 2010 data – world class!

Mass resolution

Mass resolution is based on precise momentum measurement with LHCb magnet and tracker: Δp/p<0.5% up to 100 GeV/c

With 2010 data!

PDG [MeV/c²]

	•••		
$M(B^+ \rightarrow J/\psi K^+)$	=	$5279.27 \pm 0.11 (\text{stat}) \pm 0.20 (\text{syst})$	52
$M(B^0 \to J/\psi K^{*0})$	=	$5279.54 \pm 0.15 (\text{stat}) \pm 0.16 (\text{syst})$	52
$M(B^0 \to J/\psi K_{\rm S}^0)$	=	$5279.61 \pm 0.29 (\text{stat}) \pm 0.20 (\text{syst})$	52
$M(B_s^0 \to J/\psi \phi)$	=	$5366.60 \pm 0.28 (\text{stat}) \pm 0.21 (\text{syst})$	53
$M(\Lambda_b \rightarrow J/\psi\Lambda)$	=	$5619.49 \pm 0.70 (\text{stat}) \pm 0.19 (\text{syst})$	56
$M(B_c^+ \to J/\psi \pi^+)$	=	$6268.0 \pm 4.0 \text{ (stat)} \pm 0.6 \text{ (syst)}$	62

1 HCh_CONF_2011_027 masses [Me\//c²]

 $[MeV/c^{2}]$ 5279.17 ± 0.29 5279.50 ± 0.30 5279.50 ± 0.30 5366.30 ± 0.60 5620.2 ± 1.6 6277 ± 6

World-best mass measurements!

Particle Identification

CPV measurements and flavour tagging

- Measurement of CPV despite of huge data sample & reconstruction precision relies most heavily on flavour tagging based on correlation of daughter particles charges and flavour of tagging B_{tag}-meson. Often there is used a charge of lepton or kaon (pion) coming from B_{tag}-decay.
- Tagging is never perfect → observable assymetry is always lower than real one.
- Tagging is deluted by
 - Mixing of B_{tag} (for B^0 or B_s)
 - In semileptonic decay through charm due to wrong sign of lepton: $b
 ightarrow c(\overline{c})
 ightarrow l$
 - Other particles from underlying event
 - Misidentification

٠

• If ω is a wrong tag fraction, then measured asymmetry is smaller by dilution coefficient $D=1-2\cdot\omega$:

$$A_{measured} = \frac{\overline{N}(1-\omega) + N\omega - (\overline{N}\omega + N(1-\omega))}{\overline{N} + N} = (1-2\omega)\frac{\overline{N} - N}{\overline{N} + N} = DA_{tru}$$

If ε_{tag} is tagging efficiency, then effective statistics is lower by factor $\varepsilon_{eff} = D^2 \cdot \varepsilon_{tag}$.

LHCb tagging power ε_{eff} :

семинар ИЯИ РАН, Москва

LHCb physics program and key measurements

LHCb is optimized for study of CP-violation and rare decays in Bmesons.

LHCb physics program includes measurements:

- CP-violation in B⁺, B⁰, B_s
 - Prospects for γ-angle measurement
 - Tree-level processes (B \rightarrow DX),
 - Loop processes (charmless B decays)
 - Direct CP-violation (B \rightarrow K π)
 - Mixing induced CPV (ϕ_s)
- Rare decays &NP

$$- \quad B_d \longrightarrow K^* \mu \mu$$

$$- B_s \rightarrow \mu \mu$$

- ...
- Quarkonia studies (X(3872),X(4140), $\chi_c,\chi_b,...$)
- Physics with charm (CPV,..)
- Soft QCD
- Electroweak physics (W,Z)

Highlights in his talk:

$$\phi_s, B_s \rightarrow \mu \mu, B \rightarrow K^* \mu \mu$$

+ A^q_{SL}, \dots

Direct CP asymmetry measurement in $B^{0}_{d,s} \rightarrow K\pi$

LHCb with L=320pb⁻¹ of 2011 data already has done:

 $B^0 \rightarrow K\pi$ - the most precise single measurement and first 5 σ observation at hadron machine!

 $B^{0}_{s} \rightarrow K\pi$ - the first evidence of CP-violation in B_s decay!

First LHCb result (with 37pb⁻¹ data of 2010) LHCb-CONF-2011-011 $A_{cp}(B^0 \rightarrow K^+\pi^-) = -0.074 \pm 0.033(stat) \pm 0.008(syst)$ $A_{cp}(B^0_s \rightarrow K^-\pi^+) = -0.15 \pm 0.19(stat) \pm 0.02(syst)$

$$A_{CP} = [\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)] / [\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)]$$

Raw asymmetry (has to be corrected for detector and production asymmetry)

LHCb-CONF-2011-042 $A_{cp}(B^{0} \rightarrow K\pi) = -0.088 \pm 0.011(stat) \pm 0.008(syst)$ To be compared with world average: $-0.098^{+0.012}_{-0.011}$

 $A_{cp}(B_s \rightarrow K\pi) = 0.27 \pm 0.08(stat) \pm 0.02(syst)$

CP-violation in B_s mixing: $B_s \rightarrow J/\psi \Phi$

- Dominant contribution tree-level diagram
- Contribution from "penguin" is small $(10^{-3} 10^{-4})$
- Interference between direct decay and decay via mixing gives CPV phase: $\phi_s = \phi_M 2\phi_D$
- In Standard Model $\phi_s \approx 2 \ \beta_s = -2arg(V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) \approx -0.0363 \pm 0.0017 \ rad$
- Search New Physics in mixing: $\phi_s = \phi_s^{SM} + \phi_s^{NP}$

NP can modify mixing phase

Strategy to measure ϕ_s :

• Trigger and select $B_s \rightarrow J/\psi \Phi$ events

$$\varepsilon_{\rm tag} \mathcal{D}^2 = (2.08 \pm 0.41)\%$$

- measure proper time
- Measure transversity angles of final decay products to disentangle CP -odd and –even states
- Tag initial flavor
- Fit ϕ_s with other unknown parameters

CP-violation phase in B_s -mixing: $B_s \rightarrow J/\psi \Phi$

LHCb provides the world most precise measurement with 0.337 fb⁻¹ of 2011

•

CP-violation phase in B_s -mixing: $B_s \rightarrow J/\psi f_0(980)$

LHCb first measurement of mixing phase in $B_s \rightarrow J/\psi f_0(980)$ with 0.378 fb⁻¹ of 2011

Search for NP effects in $B_d \rightarrow K^* \mu \mu$

• In SM via FCNC (box and penguin diagrams)

K.

θκ

π

- Helicity structure is sensitive to right-handed and new scalar operators
- The most known observable sensitive to NP is A_{FB}

NP can modify helicity structure

Zero-crossing point A_{FB}(q²)=0 is predicted in SM
 LHCb can reach precision for ZCP Δq² < 0.5 GeV² at 2 fb⁻¹

Search for NP in rare decays: $B_d \rightarrow K^* \mu \mu$

LHCb has largest data sample in the world

Analysis strategy:

- Events selection using Boosted Decision Tree (composition of topological and kinematical observables)
- Correction for non-uniformity of reconstruction and selection
- MC check with control channels
- Validation using $B_d \rightarrow J/\psi K^*$
- Fit the angular observables

LHCb with 309 pb⁻¹achieved (preliminary) the most precise measurement to date

Results are consistent with SM prediction for forward-backward asymmetry A_{FB}, longitudinal polarization FL and differential brunching fraction dBF/dq²:

$$\begin{array}{rcl} A_{FB} = & -0.10^{+0.14}_{-0.14} \pm 0.05 \\ F_L = & 0.57^{+0.11}_{-0.10} \pm 0.03 \\ \mathrm{d}BF/\mathrm{d}q^2 = & 0.39 \pm 0.06 \pm 0.02 \end{array}$$

Statistical errors are dominated now and will be improved with more data. Systematical error is also expected to be improved with more statistics.

BaBar [PRD 79 (2009)], Belle [PRL 103 (2009)], CDF [PRL 106 (2011)]

семинар ИЯИ РАН, Москва

Golden mode: $B_{s,d} \rightarrow \mu \mu$

Ultra rare decays in SM (FCNC and helicity suppressed))
SM predicts (via box and penguin diagrams):	
$BR(B_s \rightarrow \mu\mu) = (3.2 \pm 0.2) \cdot 10^{-9}$	
$BR(B_d \rightarrow \mu\mu) = (1.1 \pm 0.1) \cdot 10^{-10}$	

NP can modify decay branching value

٠

•

Rare decays: $B_{s,d} \rightarrow \mu \mu$

CDF reported the observation: BR($B_s \rightarrow \mu\mu$) = (1.8 ^{+1.1}_{-0.9}) · 10 ⁻⁸ arxiv: 1107.2304

LHCB: With ~300 pb-1 of data at SM level after selection: ~3.2 $B_s \rightarrow \mu\mu$ and ~0.32 $B_d \rightarrow \mu\mu$ events

LHCb: most-precise measurement!

• LHCb presents preliminary result with 300 pb⁻¹ LHCb-CONF-2011-037: BR $(B_s^{\ 0} \rightarrow \mu\mu) = 1.3 (1.6) \cdot 10^{-8}$ at 90%(95%)C.L. BR $(B^0 \rightarrow \mu\mu) = 4.2 (5.2) \cdot 10^{-9}$ at 90%(95%)C.L.

• Combining with preliminary result with 37 pb⁻¹ PLB 699(2011) 330,[hep-ex/1103.2165] BR($B_s^{\ 0} \rightarrow \mu\mu$) = 1.2 (1.5) · 10 ⁻⁸ at 90%(95%)C.L.

Combining with CMS observation
 LHCb-CONF-2011-047:

$$BR(B_s^0 \rightarrow \mu\mu) = 0.9 (1.1) \cdot 10^{-8} \text{ at } 90\%(95\%)C.L.$$

Excess seen by CDF is not confirmed

CMS vs LHCb prospect: $B_{s,d} \rightarrow \mu \mu$

- CMS/LHCb luminosity factor is ~4 now and can increase in 2012
- CMS performance for large number of primary vertices > 12 ?
- Caution: prediction is based on assumption, that background is like it was before summer 2011!

D0 result on A^q_{SL}

A_{CP} in D⁰ system

- D0-mixing is established, but no CPV is seen yet. In SM expected to be small (<10⁻³)
- Very large statistics is available in LHCb: more than 10⁶ of D^{*+} \rightarrow D⁰(K⁺K⁻) π ⁺
- Measurement of $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) A_{CP}(D^0 \rightarrow \pi^+\pi^-)$ is very robust: detection and production asymmetries are cancelled
- LHCb result with 37 pb⁻¹ of 2010 data $\Delta A_{CP} = (-0.28 \pm 0.70 \pm 0.25)\%$

CDF with 6 fb⁻¹ (CDF note 10296) $A_{CP}(D^0 \rightarrow \pi^+\pi^-) = [+0.22 \pm 0.24 (stat.) \pm 0.11 (syst.)]\%$ $A_{CP}(D^0 \rightarrow K^+K^-) = [-0.24 \pm 0.22 (stat.) \pm 0.10 (syst.)]\%$ BaBar with 386 fb⁻¹ PRL100,061803 $a_{CP}^{KK} = (0.00 \pm 0.34 (stat) \pm 0.13 (syst))\%$ $a_{CP}^{\pi\pi} = (-0.24 \pm 0.52 (stat) \pm 0.22 (syst))\%$ Belle with 386 fb⁻¹ PRL100,061803 $A_{CP}^{KK} - A_{CP}^{\pi\pi} = (-0.86 \pm 0.60 \pm 0.07)\%$

LHCb prospects for upgrade

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s \rightarrow K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 \rightarrow \phi K_S^0)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s o \phi \gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	$4.3 imes 10^{-3}$	4×10^{-4}	$8 imes 10^{-5}$	-

LHCb sensitivities for key observables

CERN-LHCC-2011-001

Conclusion

- Last decade precise tests of CKM in B-sector and full success of SM
- B-factories and Tevatron have done great job in B-mesons: mixing, CPV, CKM-angles, but still a room for NP:

BR[$B \rightarrow \tau \nu$] and sin(2 β_{cc}), ϕ_s , $B_d \rightarrow K^* \mu \mu$, $B_s \rightarrow \mu \mu$, γ -angle, ΔA^q_{sl} ...

- Now this is a job for (Super!)LHCb and for SuperB-factories
- New Physics can be just around the corner
- LHCb expecting ~1 fb⁻¹ of data this year and many most-precise measurements very soon! Waiting for winter conferences!
- LHCb searches for New Physics with unprecedented precision!
- But CMS&ATLAS too!

Физики нервничают

- Где же Новая Физика?
- Но не только физики нервничают...

Поздравляем юбиляра! Желаем новых успехов в науке!

BACK-UP

First observations of B-decays in LHCb

•	$B_a \rightarrow DK^*$	LHCb-CONF-2011-	008	
•	$B \rightarrow DK\pi\pi$	CS-mode, can be u	sed for γ-measurements LHCb-CONF-2011-02	4
•	$B \rightarrow \psi(2s)_{\Phi}$	LHCb-CONF-2011-	.014 – mixing CP	
•	$B_s \rightarrow J/\psi K^*$	penguin-suppress	ed LHCb-CONF-2011-025	
•	$B_{s} \rightarrow K^{*bar}K^{*}$	time-dependent CI	P LHCb-CONF-2011-019	
•	$\frac{\mathbf{s}}{B_s} \to D_{s2}^{*+} X \mu^- \overline{\upsilon}$	•	PLB 698(2011)14	
•	$B_s \rightarrow J/\psi f_0(980)$	mixing phase	PLB 698(2011)115	
•	$B_s \rightarrow J/\psi f_2'(152s)$	5) mixing phase	LHCb-CONF-2011-035	
•	$B_{a} \rightarrow J/\psi \pi \pi \pi$	first observation	LHCb-CONF-2011-040	

Наблюдаемые и методы измерения

Phys.param.	Exp. observable	Theory method/ingredients	
IV _{ud} I	Superallowed β decays	Towner & Hardy, PRC 77, 025501 (2008)	
IV _{us} I	K _{ıs} (WA Flavianet)	f ₊ ^{Rπ} (0)=0.964(5) (most precise: RBC-UKQCD)	
IV _æ l	HFAG incl.+excl. B→X _c Iv	40.59(38)(58) x10 ⁻³	
IV _{ub} I	HFAG incl.+excl. B→X _d Iv	(specif. uncer. budget): 3.87(9)(46)x10 ⁻³	
Δm _ď	last HFAG WA B _d -B _d mixing	$B_{Bs}/B_{Bd} + f_{Bs}/f_{Bd} + f_{Bs} + B_{Bs}$	
Δm,	CDF B _s -B _s mixing	$B_{Bs} + f_{Bs} + f_{Bd}$	
Β ⁺→τ⁺ν	last 08 WA: BaBar/Belle	f _{Bs} /f _{Bd} & f _{Bs}	
lε _κ l	Kº-Kº (PDG08: KLOE, NA48,KTeV)	PDG param. (<i>Buchalla et al. '96</i>) + B _K = 0.721(5)(40)	
β/φ,	latest WA HFAG charmonium	-	
α/φ ₂	last WA ππ/ρπ/ <mark>ρρ</mark>	isospin SU(2) (GL)	
γ/φ₃	lαtest WA HFAG B ⁻ →D ^(*) K ^{(*)-}	GLW/ADS/GGSZ	

γ -angle measurements

Measurement of Δm_s

World-class measurement!

Other channels relevant for ϕ_s measurement

"**Penguin**" diagram dominated can help to control penguin effect in $Bs \rightarrow J/\psi \Phi$ for ϕ_s extraction :

- $B_s \rightarrow \Phi \Phi$
- $B_s \rightarrow K^* \overline{K^*}$ The first observation ! Can help to extract β_s and γ
- $B_s \rightarrow J/\psi K^*$
- $B_s \rightarrow K^+ K^-$ Most precise lifetime measurement !

LHCb-CONF-2011-019

LHCb-CONF-2011-025

LHCb-CONF-2011-018

Box diagram dominated *can* be used for ϕ_s measurement :

- $B_s \rightarrow J/\psi f_0(980)$ The first observation ! CP-odd eigenstate
- $B_s \rightarrow J/\psi f_2'(1525)$ The first observation !

Phys. Lett. B 698 (2011) 115

LHCb-CONF-2011-035

Other channels relevant for ϕ_{s}

• "Penguin" diagram dominated: $B_s \rightarrow \overline{\Phi} \Phi \ B_s \rightarrow K^* K^* \ B_s \rightarrow J/\psi K^* B_s \rightarrow K^+ K^-$

LHCb-CONF-2011-025 Assuming all events are from $K^* \rightarrow K\pi$ for mass $|M(K\pi)-M(K^*)| < 150 \text{ MeV}$ $\mathcal{B}(B^0_s \rightarrow J/\psi \overline{K}^{*0}) = (3.5^{+1.1}_{-1.0}(stat.) \pm 0.9(syst.)) \times 10^{-5}$ Can help to control penguin effect in $Bs \rightarrow J/\psi \Phi$ for ϕ_s extraction

Other channels sensitive for ϕ_{s}

• **Box** diagram dominated: $B_s \rightarrow J/\psi f_0(980) B_s \rightarrow J/\psi f_2'(1525)$

