НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ»

На правах рукописи

Долганов Григорий Дмитриевич

Кинетика электронов в двухфазных аргоновых детекторах для поиска Тёмной материи

Специальность: 1.3.15. — Физика атомных ядер и элементарных частиц, физика высоких энергий

Диссертация на соискание учёной степени кандидата физ.-мат. наук

Научный руководитель: д.ф.-м.н. Скорохватов М.Д.

Москва - 2024 г.

Актуальность работы:

Для корректной работы двухфазных время-проекционных камер (ВПК) на основе сжиженных благородных газов необходимо знать точную конфигурацию электрического поля, а также кинетику электронов в нём.

Цель работы:

Исследование кинетики электронов в условиях неоднородности электрического поля в двухфазных ВПК на основе сжиженных благородных газов.

В соответствии с поставленной целью решались следующие задачи:

- **1. Моделирование электрического поля и кинетики электронов** в двухфазных ВПК детекторов ReD и DarkSide-20k.
- **2.** Проверка результатов моделирования путём сравнения расчетов процессов дрейфа и диффузии электронов с имеющимися экспериментальными данными для детектора ReD.
- **3.** Выявление причин возникновения неоднородностей электрического поля и их влияния на работу двухфазных аргоновых ВПК на примере детекторов ReD и DarkSide-20k.
- **4. Определение оптимальных значений рабочих потенциалов**, задающих электрическое поле в детекторе и обеспечивающих минимальное искажение выходных сигналов, как для работающего детектора ReD, так и для будущего крупномасштабного детектора DarkSide-20k.

Основные положения, выносимые на защиту:

- **1.** Предложена оптимизация метода **3D-моделирования кинетики электронов** в двухфазных ВПК на основе сжиженных благородных газов.
- 2. Показано влияние эффекта неоднородности электрического поля на амплитудные и пространственно-временные характеристики событий в двухфазных аргоновых ВПК ReD и DarkSide-20k.
- 3. Продемонстрирована необходимость учёта накопление заряда на стенках двухфазных ВПК на основе сжиженных благородных газов для повышения точности результатов моделирования электрического поля.
- **4.** Показано, что фокусировка электронов при прохождении через сетку ВПК приводит к возникновению запаздывающих электронов и меняет форму электролюминесцентного сигнала.

Поиск Тёмной материи

Двухфазные время-проекционные камеры (ВПК) на основе сжиженных благородных газах

Эксперимент ReD (Recoil Directionality Experiment)

Зависимость скорости дрейфа от напряжённости электрического поля в детекторе ReD

Напряжённость дрейфового поля согласно старой 2D модели

Напряжённость поля с учётом гексагональной формы вытягивающей сетки

Оценить эффективное значение дрейфового поля в детекторе можно с помощью полуэмпирической формулы^[1]. Такая оценка позволяет исправить ошибки 2D приближения, но не позволяет учесть краевые эффекты и возникающие из-за них неоднородности поля

[1] - Read F. H. et al. Short-and long-range penetration of fields and potentials through meshes, grids or gauzes //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. − 1999. − T. 427. − №. 1-2. − C. 363-367.

Результаты моделирования электрического поля в детекторе ReD (анод — 5211 В, катод — (-840) В, первое кольцо — 60 В)

Из-за разницы диэлектрической проницаемости аргона и акрила, внутри акриловой стенки возникает избыточная утечка поля приводящая к образованию локальной неоднородности поля

Моделирование дрейфа и диффузии электронов

Скорость дрейфа электронов в жидком аргоне под воздействием электрического поля [1]:

$$v\left[\frac{mm}{\mu s}\right] = \mu \frac{E}{100} \qquad \mu = \left(\frac{a_0 + a_1 E + a_2 E^{3/2} + a_3 E^{5/2}}{1 + (a_1/a_0)E + a_4 E^2 + a_5 E^3}\right) \left(\frac{T}{T_0}\right)^{-\frac{3}{2}}$$

 μ [cм²/B/c] – подвижность электронов;

 a_0 = 551.6 [cм²/B/c]; a_1 = 7158.3; a_2 = 4440.43, a_3 = 4.29; a_4 = 43.63; a_5 = 0.2053; T_0 = 89 K; E [кВ/см] — напряжённость электрического поля; T [K] — температура жидкого аргона

Коэффициенты продольной (D_L) и поперечной (D_T) диффузии электронов в жидком аргоне [1]:

$$D_L = \frac{\mu \epsilon_L}{\rho} \qquad \qquad \frac{D_L}{D_T} = 1 + \frac{E}{\mu} \frac{\partial \mu}{\partial E}$$

$$\epsilon_L = \left(\frac{b_0 + b_1 E + b_2 E^2}{1 + (b_1/b_0)E + b_3 E^2}\right) \left(\frac{T}{T_1}\right)$$

 ϵ_L [эВ] - продольная энергия дрейфующих электронов; b_0 = 0.0075 [эВ]; b_1 = 742.9; b_2 = 3269.6; b_3 = 31678.2; T_1 = 87 K; E [кВ/см] — напряжённость электрического поля; T [K] — температура жидкого аргона

Максимальное (полное) время дрейфа (анод — 5211 В, катод — (-744) В, первое кольцо — 86 В)

Моделирование без учёта диффузии

Экспериментальные данные для одного набора данных

Моделирование с учётом диффузии

Экспериментальные данные, объединённые для нескольких измерений

$$f(t_{drift}; p, \sigma_1, \sigma_2, t_{total}) = A \cdot \left(p \cdot \operatorname{erfc}\left(\frac{t_{drift} - t_{total}}{\sigma_1}\right) + (1 - p) \cdot \operatorname{erfc}\left(\frac{t_{drift} - t_{total}}{\sigma_2}\right) \right)$$

Зависимость полного времени дрейфа от неоднородности поля (анод — 5211 В, катод — (-744) В)

Влияние накопленного (≈21.4 пКл) заряда на стенках детектора ReD (анод — 5211 В, катод — (-744) В, первое кольцо — 86 В)

≈21.4 пКл распределённого заряда 11/22

Изменение полного времени дрейфа и амплитуды сигнала S2 со временем в детекторе ReD

(анод — 5211 В, катод — (-744) В, первое кольцо — 86 В)

Полное время дрейфа, мкс

≈21.4 пКл распределённого заряда

Источник: 241 Am, $E_{v} = 59,54$ кэВ

Фокусировка электронов при прохождении сетки в детекторе ReD _{Анод} — 5211 В, катод — (-744) В, первое кольцо — 86 В

Зависимость дисперсии времени дрейфа электронов облака от среднего времени дрейфа электронного облака

Фокусировка электронов с учётом диффузии в детекторе ReD (анод — 5211 В, катод — (-744) В, первое кольцо — 70 В)

Дисперсия времени дрейфа электронов облака

Электроны запускались с 5 мм под сеткой

Усреднённое распределение времён дрейфа электронов в облаке относительно среднего

Погрешность определения координаты события, обусловленная неоднородностью дрейфового поля

Эксперимент DarkSide-20k

Форма вытягивающей сетки в модели

Нагрузочные анкеры

Калибровочная трубка

Верхняя матрица SiPM

Анодное окно из чистого акрила

Проволочный каркас

Анод

Отражатель внутреннего вето

Сосуд из нержавеющей стали

Стенки из акрила с добавлением

гадолиния

Формирующие поле кольца

Панели отражателя

Катод

Катодное окно из чистого акрила

Нижняя матрица SiPM

Временные опоры

Однородность электрического поля в эксперименте DS-20k (2D приближение)

200 В/см в дрейфовом объёме и 4200 В/см в газовом кармане достигаются при подаче -4010 В на сетку, -4580 В на первое кольцо и -73380 В на катод. Анод заземлён.

Фокусировка электронов в зависимости от параметров сетки

 $\sigma_L^2 = \sigma_0^2 + 2D_L t$; D_L - коэффициент продольной диффузии, σ_0^2 - поправка на искажение электронного облака при его прохождении через сетку

Моделирование формы сигнала S2

Функция, задающая форму сигнала S2 [1]:

$$y_{ideal}(t;\tau_{1},\tau_{2},p,T) = p \cdot y_{ideal}'(t;\tau_{1},T) + (1-p) \cdot y_{ideal}'(t;\tau_{2},T)$$

$$y_{ideal}'(t;\tau,T) = \frac{1}{T} \begin{cases} 0, & \text{if } t < 0 \\ 1 - e^{-t/T}, & \text{if } 0 < t < T \\ e^{-(t-T)/T} - e^{-t/T}, & \text{if } t < T \end{cases}$$

Формула для аппроксимации сгенерированного сигнала [1]:

$$\begin{aligned} y_{fit}(t;\tau_1,\tau_2,p,T,\sigma,A,y_0,t_0) &= y_0 + A \times y(t-t_0;\tau_1,\tau_2,p,T,\sigma) \\ y(t;\tau_1,\tau_2,p,T,\sigma) &= p \cdot y'(t;\tau_1,T,\sigma) + (1-p) \cdot y'(t;\tau_2,T,\sigma) \\ y'(t;\tau,T,\sigma) &= \frac{1}{2T} \left(y''(t;\tau,\sigma) - y''(t-T;\tau,\sigma) \right) \\ y''(t;\tau,\sigma) &= \operatorname{erf} \left(\frac{t}{\sqrt{2}\sigma} \right) - e^{-t/T} e^{\sigma^2/2\tau^2} \operatorname{erfc} \left(\frac{\sigma^2 - t\tau}{\sqrt{2}\sigma\tau} \right) \end{aligned}$$

 $y_0=0$, T = 1,2 мкс, p = 0,08, au_1 = 0,011 мкс, au_2 = 3,2 мкс; t_0 , σ , A — параметры аппроксимации

10 мм под сеткой, начальная координата по центру межпроволочного промежутка

10 мм под сеткой, начальная координата под проволочкой сетки

48 см под сеткой, начальная координата под проволочкой сетки

Сравнение с данными работы эксперимента DarkSide-50

 $\sigma_0^2 = 0,109 \pm 0,006$ мм² $\sigma_0^2 = 0,109$ $\sigma_0^2 = 0,109$

Зависимость квадрата продольного размера облака от времени дрейфа в эксперименте DarkSide-50^[1]

Зависимость дисперсии времени дрейфа электронов от времени дрейфа электронного облака в детекторе ReD

1. Agnes P. et al. Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC // Nucl Instrum Methods Phys Res A. 2018. Vol. 904.

Заключение

Таким образом, для корректного анализа наблюдаемых сигналов в двухфазных ВПК на основе аргона необходимо учитывать особенности кинетики электронов в условиях неоднородности дрейфового поля, которая может возникнуть как в силу геометрии самого детектора, так и быть обусловлена параметрами вытягивающей сетки. **А именно**:

- Неоднородность электрического поля приводит к дополнительной погрешности восстановления координат событий и сопровождается накоплением заряда на стенках детектора. Накапливающийся заряд компенсирует неоднородность поля и, потенциально, обеспечит однородное дрейфовое поле в детекторе. Однако этот процесс может продолжатся в течение нескольких дней, что следует учитывать при калибровке работы детектора. Кроме того, учитывая, что заряд не только оседает, но и постепенно стекает со стенок детектора, моделирования реальной рабочей конфигурации поля в случае значительной её начальной неоднородности становится затруднительным.
- Фокусировка электронов при их прохождении через вытягивающую сетку ограничивает область координат, в которых они могут оказаться на поверхности. Как следствие, вероятность наблюдения события в центрах ячеек сетки (или межпроволочных промежутках) значительно выше, в особенности для событий вблизи сетки. Учёт этой особенности потенциально позволит повысить точность определения горизонтальной координаты события.
- Искажение формы электронного облака сильно зависит от геометрических особенностей вытягивающей сетки. Этот эффект следует учитывать при расчёте продольного размера электронного облака по форме сигнала S2, так как может привести к ложной оценке координаты наблюдаемого низкоэнергетического (без наблюдаемого сигнала S1) события. Это может быть критично для отделения фоновых событий связанных с собственной радиоактивностью материалов сетки.

Выводы:

В рамках настоящей работы реализован метод моделирования электрического поля и кинетики электронов для двухфазных ВПК на основе сжиженных благородных газов. Данный метод позволил определить влияние неоднородностей электрического поля на кинетику электронов и работу двухфазных ВПК на основе аргона.

Основные результаты работы можно свести к следующим выводам:

- **1.** Реализован метод **3D**-моделирования электрического поля и движения электронов в нём для двухфазных ВПК на основе сжиженных благородных газов.
- **2. Определены оптимальные значения рабочих потенциалов**, задающих электрическое поле в детекторе как для работающего детектора ReD, так и для проектируемого крупномасштабного детектора DarkSide-20k, обеспечивающие минимальные искажения выходных сигналов.
- **3.** Проведено исследование кинетики электронов в двухфазных ВПК на основе сжиженных благородных газов в условиях неоднородности электрического поля.
- **4. Показано согласие расчетных и экспериментальных характеристик** дрейфа и диффузии электронов в электрическом поле **для детектора ReD**.
- 5. Выявлена причина неоднородностей электрического поля и объяснено их влияние на амплитудные и пространственно-временные характеристики регистрируемых событий.
- 6. Показано, что накопление заряда на стенках детектора существенно изменяет конфигурацию электрического поля в нём.
- **7.** Показано, что фокусировка электронов при их прохождении через сетку сопровождается возникновением запаздывающих электронов и приводит к изменению формы электролюминесцентного сигнала.

Дополнительные слайды

Основное содержание диссертации опубликовано в следующих работах:

Agnes, S. Albergo, ... G. Dolganov [et al.] // European Physical Journal C. — 2021. — Vol. 81, № 11. — P. 1014. — DOI: 10.1140/epjc/s10052-021-09801-6.

2. Dolganov, G. D. Investigation of the Electric Field Uniformity in the ReD Detector / G. D. Dolganov for the

1. Performance of the ReD TPC, a novel double-phase LAr detector with silicon photomultiplier readout / P.

- ReD Working Group of DarkSide Collaboration // Physics of Particles and Nuclei. 2022. Vol. 53, № 2. P. 493–496. DOI: 10.1134/S1063779622020289.
 3. Dolganov, G. D. Estimation of the Influence of the Electric Field Nonuniformity on the Error of Reconstructed Coordinates of Events in the ReD TPC / G. D. Dolganov for the ReD Working Group of the
- Global Argon Dark Matter Collaboration // Physics of atomic nuclei. 2023. Vol. 86, № 5. Р. 838—840. —DOI: 10.1134/S1063778823050149.

 Результаты исследований, положенные в основу диссертации, докладывались на

конференциях:

- 1. The 6-th International Conference on Particle Physics and Astrophysics (Москва, Россия, с 29 ноября по 2 декабря 2022 г.);
- 2. LXX International conference "NUCLEUS 2020. Nuclear physics and elementary particle physics. Nuclear physics technologies" (конференция проводилась дистанционно (online), 11–17 октября 2020 г.).

Разработанный код для расчетов кинетики электронов в электрическом поле ВПК, оформлен в форме РИД:

1. Долганов Г.Д., Ильясов А.И. Программа для ЭВМ: "Программа для моделирования дрейфового движения электронов под воздействием электрического поля для двухфазных аргоновых детекторов "ElectronDrift3D.cpp". Свидетельство о государственной регистрации программы РФ № 2022618774; опубл. 13 мая 2022 г.

Схема эксперимента ReD

Constraints on directionality effect of nuclear recoils in a liquid argon time projection chamber //The European Physical Journal C. -2024. -T. 84. -N0. 1. -C. 24.

Результаты моделирования электрического поля в детекторе ReD

Конфигурация поля: Анод = 5211 В; катод = -234 В; первое кольцо = 216 В

Конфигурация поля: Анод = 5211 В; катод = -4789 В; первое кольцо = -289 В

Результаты моделирования электрического поля в детекторе ReD

Конфигурация поля: Анод = 5211 В; катод = -744 В; первое кольцо = -66 В

Конфигурация поля: Анод = 5211 В; катод = -744 В; первое кольцо = 226 В

Фокусировка электронов при прохождении сетки в детекторе ReD

(анод — 5211 В, катод — (-744) В, первое кольцо — 86 В)

Распределение электронов на поверхности катода, сфокусировавшихся в центральную ячейку сетки

Распределение электронов на поверхности жидкого аргона, прошедших через центральную ячейку сетки

(анод — 5211 B, катод — (-744) B, первое кольцо — 86 B)

≈21.4 пКл распределённого заряда

Фокусировка электронов с учётом диффузии в детекторе DS-20k

 $\sigma_X^2 = \sigma_0^2 + 2D_T t; \sigma_0^2 = 0.666 \pm 0.008 \text{ mm}^2, D_T = 8.215 \pm 0.015 \text{ cm}^2/\text{c}$

 χ^2

аппроксимации

