Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН)

Разработка и создание 3D сегментированного сцинтилляционного детектора нейтрино СуперFGD

Семинар по материалам кандидатской диссертации мнс ОФВЭ Дергачевой Анны Евгеньевны

Специальность 1.3.2 – Приборы и методы экспериментальной физики

Научный руководитель:

доктор физ.-мат. наук, профессор Юрий Григорьевич Куденко

15.01.2025

Аннотация

Диссертация посвящена разработке и созданию **3D сегментированного сцинтилляционного детектора нейтрино СуперFGD (Fine-Grained Detector)**, который является ключевым элементом модернизированного комплекса ближних нейтринных детекторов ND280, расположенного на расстоянии 280 м от протонной мишени ускорительного комплекса J-PARC (Japan Proton Accelerator Research Complex) в эксперименте T2K (Tokai-to-Kamioka).

Модернизация ND280 направлена на снижение систематических ошибок осцилляционного анализа в эксперименте T2K с 6–7% до 3–4% и, как следствие, на повышение чувствительности эксперимента к CP-нечетной фазе.

В диссертации приводятся **результаты работ по разработке и созданию** детектора нейтрино СуперFGD, также **результаты по анализу данных**, полученных в тестах с двумя прототипами СуперFGD на пучках заряженных частиц в ЦЕРН, и **результаты детектирования первых взаимодействий мюонных нейтрино** в детекторе СуперFGD, установленном на нейтринном канале T2K в J-PARC.

Цели и задачи исследования

Целью данной работы является разработка, создание и запуск в работу на нейтринном канале T2K 3D сегментированного детектора нейтрино СуперFGD, который будет выполнять роль полностью активной нейтринной мишени в ближнем детекторе ND280 эксперимента T2K. Для достижения поставленных целей были выполнены следующие задачи:

- 1. Осуществлено постоянное измерение и контроль стабильности световыхода кубических сцинтилляторов объемом 1 см³ на протяжении их изготовления методом литья под давлением для создания детектора CynepFGD.
- 2. Измерены основные параметры кубических сцинтилляторов: световыход, временное разрешение и оптическая связь (crosstalk) между кубическими сцинтилляторами с использованием данных, полученных в тестах прототипов детектора СуперFGD на пучках заряженных частиц в ЦЕРН.
- Осуществлено восстановление треков мюонов и остановившихся протонов в магнитном поле 0.2 Тл в прототипе СуперFGD, состоящем из ~ 10000 сцинтилляционных элементов, и изучены параметры треков.

- 4. Разработан 3D сегментированный детектор СуперFGD, состоящий из ~2×10⁶ сцинтилляционных элементов со спектросмещающими волокнами. Выполнены монтаж, тестирование, настройка и запуск детектора на нейтринном канале T2K.
- 5. Восстановлены и измерены треки космических мюонов, в том числе с остановкой, в CynepFGD. Измерен световыход сцинтилляционных элементов CynepFGD.
- 6. На пучке мюонных нейтрино T2K зарегистрированы в СуперFGD первые взаимодействия нейтрино через реакцию квазиупругого рассеяния, идущую через заряженный ток.
- 7. Восстановлены треки остановившихся протонов, образованных при взаимодействии мюонных нейтрино в детекторе CynepFGD и измерены параметры этих треков.

Положения, выносимые на защиту

- Алгоритм измерения светового выхода кубических сцинтилляторов и контроль за его стабильностью в процессе изготовления с использованием данных, полученных в тестах на стенде из 24 сцинтилляционных элементов с короткими спектросмещающими волокнами.
- Измерение и анализ основных параметров кубических 2. сцинтилляторов CynepFGD: световой выход, временное pазрешение и crosstalk с использованием данных, полученных в тестах двух прототипов CynepFGD на пучках заряженных частиц в ЦЕРН.
- Алгоритм восстановления треков мюонов с импульсом 2 3. ГэВ/с и треков остановившихся протонов с импульсом 0.8 ГэВ/с в магнитном поле 0.2 Тл на основе данных, полученных в тестах прототипа CynepFGD, состоящего из ~10000 сцинтилляционных элементов объемом ~1 см³ каждый. Измеренный световыход релятивистских мюонов и остановившихся протонов в кубических сцинтилляторах.

- 4. Сборка ~ 2×10^6 кубических сцинтилляторов, объемом 1 см³ каждый, в сегментированный детектор СуперFGD объемом $\sim 200 \times 200 \times 60 \text{ см}^3$ со спектросмещающими волокнами и микропиксельными лавинными фотодиодами в количестве ~56000. Монтаж детектора в магните ND280 и запуск в работу на нейтринном канале Т2К для набора статистики на пучке мюонных нейтрино.
- Восстановление треков космических мюонов, в том числе 5. остановившихся, в детекторе СуперFGD. Измерение и анализ параметров сцинтилляционных элементов CynepFGD с использованием космических мюонов: средний световыход и временное разрешение.
- Регистрация взаимодействий мюонных нейтрино в детекторе СуперFGD в измерениях с нейтринным пучком T2K в первом сеансе в 2024 году.
- Восстановление треков вторичных частиц: мюонов и остановившихся протонов, образованных в результате квазиупругого рассеяния мюонных нейтрино через заряженный ток в полной конфигурации CynepFGD. Измерение световыхода вдоль треков остановившихся протонов и среднего световыхода в точке остановки протонов.

Апробация работы

Результаты диссертационной работы опубликованы в 7 статьях, индексируемых базами данных Web of Science и/или Scopus:

- 1. Scintillator cubes for 3D neutrino detector SuperFGD / S. Fedotov, .., A. Dergacheva [et al.]// J. Phys. Conf. Ser. — 2022. — Vol. 2374, no. 1. — P. 012106.
- 2. 3D SuperFGD detector for the T2K experiment / A. Dergacheva [et al.] // Nucl. Instrum. Meth. A. 2022. — Vol. 1041. — P. 167219.
- Instrumentation. 2023. Vol. 18, no. 01. P01012.
- Total Neutron Cross-section Measurement on CH with a Novel 3D-projection Scintillator Detector / 4. A. Agarwal, ..., A. Dergacheva [et al.] // Phys. Lett. B. — 2023. — Vol. 840. — P. 137843.
- 5. Current Status of the Novel 3D SuperFGD Detector for the T2K Experiment /A. Dergacheva [et al.] // Physics. — 2023. — Vol. 5, no. 3. — Pp. 690–703.
- Новый высокосегментированный нейтринный детектор SuperFGD для эксперимента T2K / C. A. 6. Федотов, .., А.Е. Дергачева [и др.] // УЗФФ. — 2023. — Т. 2. — С. 2320205.
- 7. Ближний нейтринный детектор SuperFGD эксперимента Т2К / А. Е. Дергачева [и др.] // ЭЧАЯ. 2025. — Т. 56., вып. 3.

3. SuperFGD prototype time resolution studies / I. Alekseev .., A. Dergacheva [et al.] // Journal of

Результаты диссертационной работы были представлены в виде устных докладов на следующих всероссийских и международных конференциях:

- Current status of the novel 3D SuperFGD detector for the T2K Анализ данных теста прототипа детектора SuperFGD на пучке в 8. 1. experiment. The 6th International Conference on Particle Physics and CERN. Международная конференция студентов, аспирантов и Astrophysics (ICPPA-2022), Moscow, Russia, 29 Nov-2 Dec 2022. молодых ученых «Ломоносов-2021», Москва, Россия, 12-23 апреля Текущий статус 3D сегментированного детектора нейтрино 2021. 9.
- SuperFGD для эксперимента T2K. 65-я Всероссийская научная Исследование характеристик сцинтилляционных сегментов 2. конференция МФТИ в честь 115-летия Л.Д. Ландау, Москва, ближнего нейтринного детектора SuperFGD для эксперимента Россия, 3-8 апреля 2023. Т2К. Международная конференция студентов, аспирантов и молодых ученых «Ломоносов-2021», Москва, Россия, 12-23 апреля 2021.
- Scintillator cubes for 3D neutrino detector SuperFGD. International 3. Conference on Technology and Instrumentation in Particle Physics (TIPP 2021), 24-28 May 2021, online.
- 11. Исследование протонных треков в прототипе нейтринного детектора SuperFGD для эксперимента T2K. II Всероссийская Результаты теста прототипа нейтринного детектора SuperFGD на 4. школа для студентов старших курсов и молодых учёных по физике пучке заряженных частиц в CERN. Молодежная конференция по высоких энергий и ускорительной технике, Саров, Россия, 24-29 теоретической и экспериментальной физике МКТЭФ-2021, июля 2023. Москва, Россия, 15-18 ноября 2021.
- 12. Segmented scintillator neutrino detector SuperFGD for T2K Реконструкция треков заряженных частиц в прототипе 5. нейтринного детектора SuperFGD в магнитном поле. 64-я experiment. The 06th Technology and Instrumentation in Particle Physics conference (TIPP 2023), Cape Town, South Africa, 4-8 Всероссийская научная конференция МФТИ, Москва, Россия, 29 September 2023. ноября-3 декабря 2021.

6

- 3D SuperFGD detector for the T2K experiment. The 16th Vienna 6. Conference on Instrumentation (VCI 2022), 21-25 February 2022, online.
- 3D scintillator neutrino detector SuperFGD of the T2K experiment. 7. The14th International School on Neutrino Physics and Astrophysics, Sarov, Russia, 18-23 July 2022.

10. Исследование треков заряженных частиц в прототипе нейтринного детектора SuperFGD для эксперимента T2K. Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2023», Москва, Россия, 10-21 апреля 2023.

- 13. Ближний нейтринный детектор SuperFGD эксперимента T2K. Научная сессия секции ядерной физики ОФН РАН, Дубна, Россия, 1-5 апреля 2024.
- 14. Detection of muon neutrinos using 3D segmented scintillator detector SuperFGD. XVI International School on Neutrino Physics and 6 Astrophysics, Sarov, Russia, 23-27 September 2024.

Т2К эксперимент ("Tokai to Kamioka")

Цели эксперимента:

- измерение параметров осцилляций на пучке ν_{μ} ($\bar{\nu}_{\mu}$);
- поиск CP-нарушения в нейтринном секторе, измерение δ_{CP}

Монитор у – пучка (INGRID)

Т2К отдает предпочтение нормальной иерархии масс и верхнему октанту

Обратная иерархия масс исключена на уровне $\sim 1\sigma$

		$\sin^2 \theta_{23}$		Sum	
		< 0.5	> 0.5	Sum	
Δm_{32}^2	> 0 (NO)	0.195 (0.260)	0.613 (0.387)	0.808 (0.647)	
	< 0 (IO)	0.035 (0.152)	0.157 (0.201)	0.192 (0.353)	
Sum		0.230 (0.412)	0.770 (0.588)	1.000	

Результаты Т2К

- CP-сохранение ($\delta_{CP} = 0, \pi$) исключено на уровне >90% CL
- значительная область $\delta_{CP} > 0$ исключена на уровне >3 σ
- $\delta_{CP} = \pi$ лежит внутри интервала 2σ
- Предпочтение максимальному СР-нарушению ($\delta_{CP} \sim -\pi/2$)
- $\delta_{CP} = -1.97^{+0.97}_{-0.70}$

Nature 580(2020) 339–344 Eur.Phys.J.C 83 (2023) 9, 782

Атмосферные параметры осцилляций (NO):

$$\sin^2 \theta_{23} = 0.561^{+0.021}_{-0.032}$$
$$\Delta m^2_{32} = 2.494^{+0.041}_{-0.058} \times 10^{-3} \text{ }\text{s}\text{B}^2$$

Результаты Т2К

Реакторный угол смешивания θ_{13} :

$$\sin^2 \theta_{13} = 28.0^{+2.8}_{-6.5} \times 10^{-3}$$
 NO
 $\sin^2 \theta_{13} = 31.0^{+3.0}_{-6.9} \times 10^{-3}$ IO

Nature 580(2020) 339–344 Eur.Phys.J.C 83 (2023) 9, 782

Сечения ν_{μ} , взаимодействующих на водной мишени в NEUT

Серая область — поток ν_{μ} в ND280 (до осцилляций) Белая линия — поток ν_{μ} в Супер-Камиоканде (после осцилляций)

Результаты Т2К

Eur.Phys.J.C 83 (2023) 9, 782

JT

Поиск легких стерильных нейтрино в модели "3+1" $\sin^2 \theta_{24}$: $\Delta m_{41}^2 < 10^{-3}$

. . .

- Эксперименты отдают предпочтение нормальной иерархии масс, при этом: • Т2К наблюдает максимальное нарушение СР-четности с $\delta_{CP} = 1.37^{+0.31}_{-0.20}\pi$ rad • NOvA наблюдает сохранение CP-четности с $\delta_{CP} = 0.82^{+0.27}_{-0.87}\pi$ rad

Оба эксперимента:

- В случае IO исключают CP-сохранение на уровне $>3\sigma$
- И для NO и для IO исключают значение $\delta_{CP} = \pi/2$ на уровне > 3σ

Результаты Т2К и NOvA

T2K: Eur.Phys.J.C 83 (2023) 9, 782 **NOvA:** Phys.Rev.D 106 (2022) 3, 032004 **PDG:** Phys. Rev. D. 110 (2024) 3, 030001

Детектор ND280. Физическая мотивация модернизации

• Детектирование заряженных частиц в 4π

Мотивация: Снизить систематические неопределенности в Т2К с 6-7% до 3-4%.

Новый трекер:

- 2 × High-Angle TPC (большой угол дет-я)
- $1 \times \text{SuperFGD}$ (трековый детектор)
- 6 × Time-of-Flight (вето-система, триггер космических мюонов)
- Детектирование нейтронов:

Детектор СуперFGD (Super Fine-Grained Detector)

Детектор (56 слоев) собран в январе 2021 года в ИЯИ РАН (Троицк, г. Москва)

WLS — Wave-Length Shifting **MPPC** — Multi-Pixel Photon Counter

- Размеры: $192(x) \times 182(z) \times 56(y) \text{ cm}^3$
- **1,956,864** кубических сцинтилляторов 1×1×1 см³ \bullet
- 3 ортогональных отверстия Ø1.5 мм
- 55,888 каналов считывания:
 - спектросмещающие WLS волокна Kuraray Y-11(200) МS-типа Ø1 мм
 - микропиксельные счетчики фотонов Hamamatsu Photonics MPPCs S13360-1325PE
- Активная масса детектора ~2 тонны

Сцинтилляторы СуперFGD

- <u>Предприятие</u>: "Унипласт" (Владимир, Россия)
- <u>Размеры</u>: 10×10×10 мм³
- Материал: полистирол, легированный 1,5% РТР и 0,01% РОРОР
- <u>Метод</u>: литье под давлением
- Светоотражающий слой: толщина 50-80 мкм
- <u>Три ортогональных сквозных отверстия</u>: Ø1.5 мм для спектросмещающих волокон

Литье под давлением с помощью пресс-формы

Events

Тесты с космическими мюонами

- 24 кубических сцинтиллятора в виде одного слоя 8×3 см²
- волокна Kuraray Y-11 длиной 35 см
- Два триггера: $100 \times 100 \text{ мм}^2$ и $120 \times 100 \text{ мм}^2$.
- Температура: 17-25°С

Цифровой преобразователь **CAEN DT5742**

MPPC Hamamatsu S13081-050C

- Чувствительная площадь: 1.3 × 1.3 мм²
- Число пикселей: 667
- Размер пикселя: 50 мкм
- Усиление: 1.5 × 10⁶
- Рабочее напряжение: ~54.6 В
- Скорость темнового счета: 90 кГц
- Оптическая связь (crosstalk): ~1%
- Эффективность детектирования фотонов: 35%

Измерение световыхода. Калибровка

Signal – Pedestal Light Yield (LY) =Gain

, фотоэлектроны (ф.э.)

Световыход для трех

наборов данных

AN AR

Измерение световыхода. Результаты

Световыход для 10-ти наборов данных, с учетом температурной зависимости

 $< L \cdot Y \cdot > = 41.9 \pm 0.9$, ϕ .3.

Измерение световыхода. Результаты

 $< L \cdot Y \cdot > = 44.1 \pm 0.6, \phi.3.$

Тест I-го прототипа СуперFGD

Прототип CynepFGD был протестирован на пучке заряженных частиц 6 ГэВ/с в ЦЕРН в Октябре 2017.

WLS волокна: Kuraray Y11(200) Sтипа, Ø1 мм, 1.3 м в длину **MPPCs:** Hamamatsu 12571-025C

125 кубиков с 3D оптическим считыванием, $5 \times 5 \times 5 \text{ cm}^3$

Nucl.Instrum.Meth.A 923 (2019) 134-138

Измерены основные параметры сцинтилляторов:

- Световыход на одно/несколько WLS волокон
- Среднее временное разрешение на одно/несколько волокон
- Оптическая связь (crosstalk) между кубиками

Тест I-го прототипа СуперFGD

13 точек сканирования пучка

с шагом 2 мм в горизонтальном направлении (108 ÷ 132 мм):

Первый слой: СН0-СН5 Пятый слой: CH6-CH11

Тест І-го прототипа

Центр тяжести точек сканирования пучка

Восстановление событий из пучка

Point #122 mm

tdc[i] — время с і-го волокна

Восстановление событий из пучка

10

اللہ 0

0.1

Оптическая связь между кубическими сцинтилляторами (crosstalk)

0.3

0.4

0.2

0.5

0.6

0.7

0.9

Crosstalk, a.u.

0.8

<u>Crosstalk для прототипа:</u> $\sim 3\%$

Тест II-го прототипа CynepFGD

Description	Туре І	Type II	Type III	
Manufacturer ref.	S13360-1325CS	S13081-050CS	S12571-025C	
No. in Prototype	1152	384	192	
Pixel pitch [µm]	25	50	25	
Number of pixels	2668	667	1600	
Active area [mm ²]	1.3×1.3	1.3×1.3	1.0×1.0	
Operating voltage [V]	56–58	53–55	67–68	
Photon detection eff. [%]	25	35	35	
Dark count rate [kHz]	70	90	100	
Gain	7×10^{5}	1.5×10^{6}	5.15×10^5	
Crosstalk probability [%]	1	1	10	

акриловые плоскости толщиной 8 мм CERN-PS T9 beamline, 2018 $\pm 0.4 \Gamma_{3}B/c - \pm 8 \Gamma_{3}B/c$

Beam mode	Particle trigger	Trigger setup	Purity
Hadrons	All	$S_{2L} \times S_3 \times S_1$	N/A
Hadrons	р	$S_{2S} \times S_3 \times S_1$	> 90%
Hadrons	e^+	$S_{2L} \times S_3 \times C_2$	> 90%
Hadrons	π/μ	$\operatorname{All} \times \overline{e} \times \overline{p}$	$[e^+ (40-50\%)]$
Muons	μ	All $\times \overline{e} \times \overline{p}$	[<i>e</i> ⁺ (10–20%)]

Слева: прототип, собранный с использованием калиброванной лески Справа: прототип со стороны нижней плоскости с установленной электроникой

Триггерная система:

Сцинтилляционные детекторы (*S*1, *S*2, *S*3) Черенковский детектор (С2)

Тест II-го прототипа CynepFGD. Электроника Baby-MIND

- FEB (Front End Board)
 - ← 3 Cherenkov Imaging Telescope Integrated Read Out Chip (CITIROC)
 - 1 Field Programmable Gate Array (FPGA) \Leftarrow
 - ← 18-канальный Analogue-to-Digital Converter (ADC)
- CITIROC chip

⇐ 32 входных каналов МРРС

Тест II-го прототипа СуперFGD. Калибровка

Тест II-го прототипа СуперFGD. Калибровка

LG vs HG

channels 3000 FEB_4_channel_18_pfx FEB_20_channel_20_pfx DQV 2500 ADC ິບ 2000⊢ . ЭН õ HG, ADC channels

HG vs ToT

LG vs ToT

Протоны 0.8 ГэВ/с с остановкой в прототипе CynepFGD

150 ns < Time_delay < 225 ns

Восстановление треков протонов 0.8 ГэВ/с в СуперFGD

- Трек протона с остановкой в плоскости YZ Считывание сигнала выполняется с X-волокон
- Ограничение на LY:

 $LY_{YZ} > 300 \text{ }\phi.\text{ }$. && $LY_{XZ} > 300 \text{ }\phi.\text{ }$.

• Средневзвешенная по LY координата Y:

$$<\mathbf{Y}>_{LY} = \frac{\sum_{i=Y_{max-1}}^{Y_{max+1}} LY_i \times i}{\sum_{i=Y_{max-1}}^{Y_{max+1}} LY_i},$$

 $2 \leqslant p0_Y \leqslant 7$ и-0.1 < p1 < 0.1

 $\chi^2/{\rm ndf} < 0.5$

Протоны 0.8 ГэВ/с. Световыход в точке остановки

Протоны 0.8 ГэВ/с. Измерение crosstalk

Bертикальный crosstalk

Crosstalk_YZ = 1.0 %

Протоны 0.8 ГэВ/с. Измерение crosstalk

(c Tyvek):

LY_Crosstalk = $80.4 \text{ }\phi.3$. LY_Track = $6817 \text{ }\phi.3$.

(**6e3 Tyvek**):

LY_Crosstalk = 219.1 ϕ .э. **LY_Track** = 6323 ϕ .э.

Мюоны 2 ГэВ/с в прототипе СуперFGD

250 ns < Time delay < 300 ns

Мюоны, 2 ГэВ/с. Световыход

Мюоны, 2 ГэВ/с. **Time-walk эффект**

разница между приходом сигнала на дискриминатор и эталонным временем VS световыход с Ү-волокон

JINST 18 (2023) 01, P01012

w/o Time-walk

250

200

150

100

50

Light yield, p.e

with Time-walk

Разница во времени для двух кубических из одного трека мюона

 $\sigma_{\rm cube} = 0.96 \text{ ns} / \sqrt{2} = 0.68 \text{ ns}$

JINST 18 (2023) 01, P01012

N = 0.5: $\sigma_{channel} = 0.97$ ns

Тест прототипов CynepFGD на пучках нейтронов в LANL

Два прототипа SFGD были протестированы на пучке нейтронов с кинетической энергией в в диапазоне от 0 до 0.8 ГэВ в LANL в 2019 и 2020 годах.

Прототип 1. $24 \times 8 \times 48$ см³. SuperFGD прототип (SFGD)

0.9 **Fotal Cross-section (barn)** 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 100

Прототип 2. $8 \times 8 \times 32$ см³. Американо_Японский прототип (USJ)

Neutron Cross Section vs Neutron Energy

Полное сечение нейтрон-СН, как функция кинетической энергии нейтрона

Phys. Lett. B. 840 (2023) 137843.

Монтаж детектора СуперFGD в J-PARC (Tokai, Japan)

2022

- *Июнь:* сцинтилляторы доставлены в J-PARC
- *Июль:* сборочная платформа доставлена в J-PARC

Платформа для сборки СуперFGD — специальная конструкция, разработанная и изготовленная группой ОИЯИ (Дубна, Россия), которая обеспечивает:

- •беспрепятственный доступ ко всем сторонам детектора во время его сборки
- •надежную фиксацию детектора в корректном положении на протяжении всех стадий сборки.

Тефлоновые слои и расширительные панели на нижней панели контейнера

Первый слой СуперFGD

Выравнивание отверстий кубиков стальными спицами (~1000, 20 см, Ø1.3 мм) и деревянными стоп-панелями

Сборка слоев СуперFGD

Собранные 56 слоев СуперFGD:

Установка верхней панели контейнера СуперFGD

Сварочные стержни выровнены по уровню foam-слоя

Схема установки верхней панели механического контейнера

Процесс установки верхней панели

Сварочные стержни
(~12k, 94 см, Ø1.2 мм)

Транспортировка СуперFGD в mini Baby-Basket

Транспортировка СуперFGD в mini Baby-Basket с использованием кранового оборудования и специализированного подъемного устройства с опорной системы

СуперFGD внутри рамы mini Baby-Basket

МРРС64 – PSB. Характеристики МРРСѕ

□ 55,888 микропиксельных счетчиков фотонов (MPPCs) □ MPPC S13360-1325PE (Hamamatsu Photonics K.K) матрица 8 × 8 MPPCs на одной печатной плате (PCB) BCETO 881 MPPC-PCBs в СуперFGD

ltem	Specification
Размер пикселя (мкм)	25
Чувствительная площадь (мм ²)	1.3×1.3
Число пикселей	2668
Тип	На поверхности
Коэффициент заполнения (%)	47
Напряжение пробоя (Вольт)	53 ± 5
Эффективность детектирования фотонов (%)	25
Усиление	7.0×10^5
Скорость темпового счета (кГц) при 0.5 ф.э.	70
Оптическая связь (кросстолк)(%)	1

Взаимо́действие заряженной частицы с веществом в CynepFGD:

Два типа МРРС64-РСВ с различным расположением разъемов для электроники

Калибровочная система CynepFGD

Нижний и боковой LGP модули с длинами: 1 м и 0.6 м

LGP – Light Guide Plate LED – Light-Emitting Diode

Установка спектросмещающих WLS волокон

- ~56k WLS волокон Ø1 мм
- Замена лесок (~21k, Ø1.3 мм) & стержней (~12k, Ø1.2 мм)

 ${\mathcal X}$

Z

Upstream панель

Модуль 8 × 8 сквозных отверстий со стороны upstream панели

	1. 1.	142	a state and	-	1.2	2, 2,	170	
Sec.	n5 💽	HOPC64 TYPE 1	15k 260	1202/0/2	Second Second			
	• 1] •	2	8	* 1]?	n s 🚺 c	8 9 03	-	- s
						-		
•		anti -		S S		S. S.	81112	"EF
2	\$ 55 6	******		88	ļ,	-	e e	2
•	÷.	* ** *	3	s e		S. S	s)]]3	2 6 1 92
2	\$ 1];	3 11 3	e te	* • •	3 66 3	3	3 11 3	2012 2012 - 2
1	s (je s	z i jez	3	2007 2007		3	2	a a a
	8 11 8	⊕ zij 2	8	8	2 1 22	8	3	200 2
2	• • • • • • • • • • • • • • • • • • •	s ili s		8 11) 8	2	2	432.4	4 1 12
and in the	-	And in case of the local division of the loc	-	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-	and the second second	-	

MPPC64-PCB

Контроль качества WLS волокон

Критерий качества: Световыход > 70%

Вертикальные волокна:

- Протестировано: ~35 тыс. волокон (552 PCBs)
- Отбраковано: 42 волокна

Горизонтальные волокна:

- Протестировано: ~21 тыс. волокон (329 PSBs)
- Отбраковано: 21 волокно

основная причина поломки волокна:

Измерение прогиба нижней панели контейнера СуперFGD

Приборы для измерений:

- Лазерный источник (плоскость)
- Механический штангенциркуль
- Электронный штангенциркуль

Прогиб в центральной области СуперFGD ~3 мм

0.5 -0.5-1-1.5-2-2.5

СуперFGD смонтированный в mini Baby-Basket

Верхняя панель механического контейнера СуперFGD с установленными платами MPPC64-PCBs

Механический контейнер с ~2 млн кубиков СуперFGD с установленными волокнами WLS, системой калибровки, печатными платами, световым барьером и сигнальными кабелями в корпусе mini Baby-Basket

• Крейт СуперFGD включает:

- 14 Front-End Boards (FEBs) Ο
- Optical Concentrator Board (OCB) Ο
- Объединительная плата (Backplane) Ο

• Вне крейта:

• 1 Master Clock Board (MCB)

СуперFGD, оборудованный 222 FEBs и 16 OCBs, успешно установлен в магнит ND280 на пучке мюонных нейтрино T2K

События, зарегистрированные в СуперFGD на пучке ν_{μ} для одного спилла (8 банчей)

СуперFGD на нейтринном канале Т2К

Мощность пучка: 810 kW

off-axis ν_{μ} -пучок Под углом 2.5° к оси протонного пучка

СуперFGD на пучке мюонных нейтрино T2К

СуперFGD

Взаимодействия, зарегистрированные в полной конфигурации модернизированного ближнего детектора ND280, включая CynepFGD, на пучке мюонных нейтрино T2K

Upgraded ND280

Калибровка с использованием LED

Амплитудный спектр для одного канала МРРС

Временное разрешение

 $< \sigma_t > \sim 1$ нс/МІР/волокно для событий с LY ~100 ф.э. $< \sigma_t > ~ 0.2$ нс/МІР/волокно для треков длиной ~70 см

*ν*_μ- взаимодействия в СуперFGD

20

160 180 Z-axis, cm

140

180

Реакция квазиупругого рассеяния ν_{μ} через заряженный ток (CCQE) с образованием мюона and протона:

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$

*ν*_μ- взаимодействия в СуперFGD

Реакция квазиупругого рассеяния ν_{μ} через заряженный ток (ССQЕ) с образованием мюона and протона:

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$

*ν*_μ- взаимодействия в СуперFGD

Реакция квазиупругого рассеяния ν_{μ} через заряженный ток (ССQЕ) с образованием мюона and протона:

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$

Восстановленные треки мюона и протона в СуперFGD

Космические мюоны в CynepFGD

Å

$86 \le X \le 106$

Космические мюоны с остановкой в CynepFGD

Космические мюоны с остановкой в СуперFGD

1166 *µ*-треков:

Muons stopping point

Протоны от u_{μ} -взаимодействий

Диссертация посвящена разработке и созданию 3D сегментированного сцинтилляционного детектора нейтрино **СуперFGD** для ускорительного эксперимента с длинной базой Т2К. В заключении диссертации представлены полученные результаты и выводы.

- 1. Световой выход кубических сцинтилляторов объемом 1 см³, измеренный в процессе их изготовления для детектора CynepFGD, в тестах с космическими мюонами на стенде из 24 сцинтилляционных элементов с короткими спектросмещающими волокнами длиной 35 см составил ~45 фотоэлектронов на один канал считывания. Световыход отобранных для CynepFGD сцинтилляторов отклоняется не более чем на 10% от этой величины.
- На пучке заряженных частиц в ЦЕРН измерены основные параметры 2. запущен в работу на нейтринном канале T2K в J-PARC. Детектор кубических сцинтилляторов: световыход ~45.0 фотоэлектронов/ начал набор данных с пучком мюонных нейтрино в феврале 2024 МІР/волокно, временное разрешение ~0.95 нс/волокно, средний года. crosstalk через одну сторону кубического сцинтиллятора ~3.0%. Восстановлены треки релятивистских мюонов с импульсом 2 ГэВ/с и Измерены параметры детектора с использованием космических 5. треки остановившихся протонов с импульсом 0.8 ГэВ/с в прототипе мюонов. Средний световыход, измеренный в центральном объеме СуперFGD, состоящем из ~10000 сцинтилляционных элементов. детектора $20 \times 20 \times 56$ см³, составил ~30 фотоэлектронов/МІР/ Показано, что по длине трека протона амплитуда сигнала с Х(Y)волокно. Временное разрешение составило ~1 нс/волокно. волокон меняется в интервале от ~100 фотоэлектронов в начале Восстановлены треки космических мюонов с остановкой в трека до ~500 фотоэлектронов в точке остановки протонов. СуперFGD. Световыход в точке остановки космического мюона Полученные параметры удовлетворяют требованиям к детектору составил ~150 фотоэлектронов/волокно. СуперFGD для его применения в качестве центрального элемента ближнего детектора в экспериментах Т2К и Гипер-Камиоканде.

- По результатам тестов двух прототипов CynepFGD окончательно определена конфигурация 3D сегментированного детектора СуперFGD, разработана схема регистрации сцинтилляционных сигналов с помощью спектросмещающих волокон, микропиксельных лавинных фотодиодов MPPCs и электроники на основе чипа CITIROC. Структура детектора массой ~2.0 тонны включает в себя около 2-х миллионов сцинтилляционных элементов (сцинтилляционных кубических детекторов объемом 1 см³ каждый с тремя ортогональными отверстиями), ~56000 спектросмещающих волокон и лавинных фотодиодов MPPCs.
- Детектор СуперFGD успешно собран, протестирован и 4. прокалиброван с использованием космических мюонов и LED калибровочной системы на поверхности Земли. СуперFGD установлен в магнит ND280 в шахте ближнего детектора и

Заключение

6. В детекторе CynepFGD в первом физическом сеансе зарегистрированы мюонные нейтрино, идентифицированные по восстановленным трекам мюонов и протонов, образованным в результате квазиупругого рассеяния мюонного нейтрино в веществе детектора через заряженный ток. В результате анализа восстановленных в CynepFGD треков остановившихся протонов получено распределение световыхода вдоль треков протонов относительно точки их остановки (пик Брэгга). Средний световыход в точке остановки протона составил ~400 фотоэлектронов/волокно. Полученные результаты позволяют повысить точность измерения энергии нейтрино в ближнем детекторе эксперимента Т2К, используя восстановленные кинематические параметры всех заряженных частиц, возникающих в результате квазиупругого взаимодействия мюонного нейтрино через заряженный ток.

