
Разработка прецизионных проволочных 
детекторов и создание установки для 

исследования распадов мюонов

Давыдов Ю.И.
ЛЯП ОИЯИ 

19 января 2026



Цели и задачи диссертационной работы
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Целью диссертационной работы является разработка новой методики изготовления планарных проволочных камер и
впервые создание на их основе установки для полного восстановления двумерных спектров позитронов как функции
импульсов и углов их вылета для определения параметров Мишеля в распадах положительных мюонов с предельно
высокой чувствительностью. Для выполнения этой цели необходимо решить задачи:
 Разработать технологию создания прецизионных планарных проволочных камер с малым количеством

материала на пути мюонов и позитронов распада.
 Создать проволочные детекторы на основе разработанной технологии для работы в магнитном поле со

среднеквадратичным отклонением проволок от идеального положения в каждой плоскости менее 20 мкм.
 Разработать методику оценки мертвого времени проволочных камер, наполненных газом DME, после

прохождения мюонов с высокой ионизационной способностью и провести исследования для определения данных для
моделирования отклика детектора.

 Разработать методику исследования времяпроекционных камер (ВПК) низкого давления для определения
геометрических параметров, характеристик и режимов работы.

 Создать установку на основе планарных проволочных камер с положением проволок в плоскостях и положения
плоскостей вдоль оси Z спектрометра, известными с относительной точностью лучше 10−4, для полного
восстановления двумерных спектров позитронов и измерения трех параметров Мишеля. Спектрометр должен
измерять импульсы Мишелевских позитронов распада с точностью на уровне 10−3.



Актуальность и новизна
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Актуальность работы 

Научная новизна 

Апробация работы
Основные результаты, вошедшие в диссертационную работу, докладывались на семинарах в ЛЯП ОИЯИ, в РНЦ
”Курчатовский Институт”, ИЯИ РАН, в университетах США и Канады, на рабочих совещаниях коллаборации
TWIST в ТРИУМФ (Ванкувер, Канада), неоднократно представлялись на международных конференциях и
совещаниях (International Nuclear Physics Conference 2010 (INPC2010) Vancouver, Canada; 25th Lake Louise Winter
Institute (LLWI 2010), Canada, 2010; International Workshop on Neutrino Factories 2009, Chicago,USA, 2009; IEEE
NSS, Dresden, Germany,2008; Conference “New Trends in High Energy Physics”, Yalta, 2007; 8th Pisa Meeting on
Advanced Detector, Italy, 2001; The Meeting of the Division of Particles and Fields of the American Physical Society
(DPF2000),Columbus, USA, 2000 и др.)

Проведение эксперимента для измерения параметров Мишеля с рекордной точностью требует создания
прецизионных проволочных камер и уникальной по своим параметрам установки. Такой эксперимент является
прямым тестом Стандарной модели, подтверждая актуальность проведенной работы

Заключается в разработке технологии и в создании прецизионных планарных проволочных камер и уникальной
установки, позволившей восстановить двумерные спектры N(p, θ) позитронов распада и на порядок улучшить
точность измерений трех параметров Мишеля в распадах положительных мюонов
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• C.D. Anderson and S.H. Neddermeyer. Phys. Rev., 50, p.263-271, (1936) : мезотрон – первое наблюдение мюона 
• C.M.G. Lattes, H. Muirhead, G.P.S. Occhialini and C.F. Powell. Nature, 159, p.694-697 (1947) : открытие π-мезона
• E.P. Hincks and B. Pontecorvo. Phys. Rev., 74(6), p.697-698 (1948) : 
• J. Steinberger. Phys. Rev., 75(8), p.1136-1143 (1949) 

 L. Michel. Proc. Phys. Soc., A63, p.514-531 (1950)                       параметр ρ
 C. Bouchiat and L. Michel. Phys. Rev., 106(1), p.170-172 (1957) параметр η

 T. Kinoshita and A. Sirlin. Phys. Rev., 107(2), p.593-599 (1957) параметр δ
Phys. Rev., 108(3), p.844-850 (1957) параметр ξ

Louis Michel (1923-1999)

ρ = 0.75 
δ = 0.75 
ξ = 1.0 
η = 0  

Стандартная модель:



Распад мюона
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При низких энергиях распад мюона может быть с хорошим приближением 
представлен как локальное четырехфермионное взаимодействие

i и j - спиральность мюона и электрона (L или R) 
- 10 комплексных амплитуд констант связи 

k – S, V или T 
Допускают взаимодействие между любыми комбинациями левых (L) 
или правых (R) мюонов и позитронов и связанными с ними нейтрино
В контексте V-A взаимодействия Стандартной модели 𝑔𝑔𝐿𝐿𝐿𝐿𝑉𝑉 ≡1

Спектр распадов позитронов является линейной функцией параметров ρ и η и произведений степени 
поляризации мюона и параметров Мишеля Pµξ и  Pµξδ .

Прецизионное измерение параметров Мишеля является прямым тестом (V-A) структуры 
электрослабого взаимодействия в Стандартной модели и может быть чувствительным к 
физическим процессам за ее пределами

H.-J. Gerber, W. Fetscher and K.F. Johnson. 
Physics Letters B, 173(1), p.102-106 (1986)



Предыдущие измерения параметров Мишеля
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 А.И. Алиханян, В.Г. Кириллов-Угрюмов, Л.П. Котенко, Е.П. Кузнецов и Ю.С. Попов.   ЖЭТФ 34 253-254 (1958) [Soviet 
Physics JETP 7, p.176 (1958)] 

 В.В. Бармин, В.П. Канавец, Б.В. Морозов, И.И. Першин. ЖЭТФ 34, 830-835 (1958) [Soviet Physics JETP 7, p.573 (1958)] 
 С.А. Али-Задэ, И.И. Гуревич, Ю.П. Добрецов, Б.А. Никольский, Л.В. Суркова.  ЖЭТФ  36 1327-1329 (1959) [Soviet 

Physics JETP 9, p.940 (1959)] 
 В.В. Ахманов и др.  ЯФ  6 316-328 (1967) [Soviet Journal of Nuclear Physics 6, p.230 (1967)]

Измерения на синхроциклотроне ЛЯП:

ρ = 0.7518 ± 0.0026 S.E. Derenzo. Physical Review, 181, p.1854 (1969)
δ = 0.7486 ± 0.0026 ± 0.0028  B. Balke et al. Physical Review D, 37, p.587 (1988)
Pµξ = 1.0027 ± 0.0079 ± 0.0030  I. Beltrami et al. Phys. Lett. B194, p.326 (1987)
η = -0.007 ± 0.013 H. Burkard et al. Phys. Lett. B160, p.343 (1985)

Наиболее точные измерения параметров Мишеля до TWIST:

 Эксперимент LAMPF Е455 в Лос-Аламосе (США) с использованием времяпроекционной 
камеры закончился неудачей из-за искажения электрического поля положительными 
ионами [Ming-Jen Yang. NIM A270, p.126-139 (1988)] 

 Эксперимент LAMPF Е969 на установке MEGA в Лос Аламосе также завершился неудачно 
из-за низкой эффективности камер недостаточной точностью знания  положения проволок 
в детекторе [Fei-Sheng Lee, PhD thesis, Virginia Tech, 2001].

Эксперименты с восстановлением двумерных спектров N(p, θ) позитронов распада:



Эксперимент TWIST
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 Эксперимент по измерению параметров Мишеля с точностью на уровне ~10-4 c использованием разработанной 
методики для изготовления прецизионных камер был принят на ускорителе в ТРИУМФ (Ванкувер, Канада).

 Целью созданной коллаборации TWIST (TRIUMF  Weak Interaction Symmetry Test) было измерение параметров 
Мишеля ρ, δ,  Pµξ из двумерного спектра данных N(p, θ) ( p, θ - импульс и угол вылета позитрона распада) в 
распадах положительных мюонов с точностью примерно на порядок лучше существовавших до нашей работы 
неопределенностей в измерениях всех трех параметров.  Pµ и  ξ экспериментально неразделимы, поэтому 
измеряется только их произведение.  



Требования к спектрометру
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 Детектор из планарных, расположенных ортогонально внешнему однородному  магнитному полю, может 
удовлетворять требованиям эксперимента по одновременному измерению нескольких параметров Мишеля 

 Рассеяние позитронов в детекторе должно быть минимальным. 
 Необходимо с высокой точностью знать расположение проволочек камер как в плоскости (X,Y), так и по Z 

координате вдоль оси пучка 
 Монте Карло моделирование показало, что среднеквадратичное отклонение проволок от идеального 

положения в каждой плоскости должно быть не более 20 мкм 
 Положение анодных плоскостей камер в спектрометре должно быть известно с точностью примерно 10−4

ΔE(E, θ) = ΔE(E, θ = 0)/cosθ - потери энергии позитрона при вылете под углом θ

A.A Khrutchinsky, Yu.Yu Lachin, and V.I Selivanov. A Monte-Carlo study of a precision magnetic 
spectrometer with planar geometry.  NIM A396, p.135-146 (1997).



Спектрометр TWIST
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 Концепция спектрометра TWIST основана на 
использовании симметричной сборки планарных 
многопроволочных дрейфовых камер, помещенных в 
однородное соленоидальное магнитное поле

 Мюоны останавливаются в мишени в центре сборки 
и треки позитронов от их распадов с высокой 
точностью регистрируются дрейфовыми камерами.

Все плоскости в модулях и модули 
касаются друг друга только 
ситаловыми кольцами и дисками
Наружные катоды из майлара 6.35 
мкм одновременно служат 
разделительным окном между 
рабочим газом и внешним объемом



Конструкция камер и технология изготовления
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Особенности изготовления камер:
 Использование немагнитных материалов 
 Стеклянные столы (диски) с оптически полированными поверхностями для изготовления камер
 Оптически полированные ситалловые спейсеры для сборки камер (4.000±0.003 мм) и модулей 

(8, 20 и 40 мм, ±0.003 мм), стеклянные линейки (4.000±0.003 мм) с прецизионно нанесенными 
рисками (1.000±0.0015 мм) 

 Алюминизированный майлар толщиной 6.35 мкм  
 Материалы, не портящиеся в агрессивной среде DME

Процесс изготовления камер включал несколько этапов:
• Подготовка и вклеивание ламели на стеклянную рамку;
• Вклеивание ситаловых колец в стеклянные рамки;
• Подготовка катодных плоскостей;
• Натяжение проволок;
• Контроль натяжения проволок и их положений;
• Сборка камер в модули;
• Предварительное тестирование модулей.

Конструкции индивидуальных плоскостей камер и модулей, технология 
изготовления основаны на предложенной уникальной технологии с 
использованием прецизионных компонентов



Геометрические точности изготовления
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Намотку проволок осуществляли 2 человека 
Контроль положения проволок с помощью CCD камер

ДК:  80 проволок диаметром 15 мкм, шаг 4 мм,
ПК:  160 проволок диаметром 15 мкм, шаг 2 мм
ПК (мишенный модуль): 48 проволок диаметром 
15 мкм, шаг 2 мм

Распределение смещений 
проволок от их 
номинальных положений 
для 70 плоскостей.  
σ = 3.5 мкм

Точность положения проволок в плоскости



Модули проволочных детекторов
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 14 модулей ДК, составленных из двух плоскостей
 2 модуля ДК, содержащих по 8 плоскостей каждый; 
 2 модуля ПК, содержащих по 4 плоскости каждый; 
 мишенный модуль, составлен из четырех плоскостей ПК

 Тестирование модулей на утечку газа (не более 0.3 см3 в минуту) 
 Однородность газового усиления по площади камер (55Fe) 
 Тесты при повышенной загрузке на способность держать ток
 Измерение эффективности регистрации на пучке пионов 120 МэВ/с

Тестирование модулей:



Мишенный модуль
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 Майлар с нанесенным на него с двух сторон углеродным слоем толщиной 
примерно по 10 мкм. Общая толщина - около 145 мкм. 

 Алюминиевая фольга толщиной 71.6±0.5 мкм высокой чистоты (>99.999%) 
 Серебро высокой чистоты (>99.999%) толщиной 30.9±0.6 мкм. 
 Тормозная способность трех типов мишеней близка друг другу.

Энерговыделение в 
камерах ПК5 и ПК6 
позволяет выделить 
остановки мюонов в 
газе и в мишени



Особенности газа DME

15

 Агрессивный газ, необходим выбор материалов конструкции
 Малый угол Лоренца
 Ненасыщенная скорость дрейфа
 Хорошие гасящие свойства:
o Однопроволочные камеры, 12х12 мм2

o Проволоки диаметром 15, 25 и 50 мкм 
o Альфа источники 148Gd (3.183 МэВ) и 241Am (5.44 и 5.48 МэВ)
o Программа SRIM для определения пробегов альфа частиц

При нормальном падении альфа 
частиц от 241Am наблюдаются 
только одиночные СГС сигналы, 
независимо от длины трека

Зарядовые характеристики при облучении альфа частицами 
с разной длиной треков при падении перпендикулярно и под 
углом 20º. Диаметр проволоки 50 мкм

Доли пропорциональных и СГС сигналов при длине 
наклонных треков 2 мм (слева) и 4 мм (справа)

148Gd, коллиматор ø1 мм и щелевой 
0.5х3 мм2



Особенности газа DME (2)
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Разность времен дрейфа электронов с трека альфа частицы длиной 4 
мм при падении под углом 20º в зависимости от приложенного 
напряжения

G.D. Alekseev et al.  Nucl. Instrum. Meth., 153, p.157 (1978)

η = ld∙𝑡𝑡𝑑𝑑

η = ∑𝑓𝑓𝑖𝑖 � 𝛿𝛿𝑖𝑖 � 𝑡𝑡𝑡𝑡𝑡𝑡

- определение мертвой зоны

𝑓𝑓𝑖𝑖 - доля событий с i стримерами
𝛿𝛿𝑖𝑖 - длина нечувствительной зоны
𝑡𝑡𝑑𝑑𝑖𝑖 – мертвое время

Проекция трека длиной 4 мм на проволоку при  20º равна 1.37 мм

Оценка величины мертвой зоны в камере с 
диаметром проволоки 50 мкм

Оценка мертвой зоны дает значение 
около 70×10-3 мкс×см при 3.3 кВ. 
Эта величина на 3 порядка меньше 
величины мертвой зоны, полученной 
в газовых смесях на основе 
благородных газов



Камеры низкого давления для контроля пучка мюонов
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Блок времяпроекционных камер для контроля пучка мюонов: 
 Каждая камера имеет поперечное сечение чувствительной области 60∙60 мм2

и длину по пучку 46 мм 
 ВПК наполнены газом DME при давлении 60 Торр 
 Диаметры проволок выбраны после специального исследования 
 Поле в дрейфовом промежутке ~160 В/см

Электрическое поле в дрейфовом промежутке 
искажается за счет проникновения более сильного 
поля из области газового усиления, а также за счет 
влияния соседней камеры блока



Камеры низкого давления для контроля пучка мюонов (2)
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 ВПК имели 100% эффективность восстановления треков мюонов с сигналами в среднем на 18 каналах из 24 

Зависимость числа сработавших 
проволок от длины дрейфа при
прохождении мюона

Коллиматор для исследования 
дрейфовых характеристик ВПК

Профили пучка при прохождении через 
коллиматоры: штриховые линии - до 
корректировки на искажение поля, 
сплошные линии - после корректировки

Измеренное разрешение 
отдельной ячейки как 
функция расстояния 
трека мюона от анодной 
проволоки

Угловое разрешение ВПК 
составляет ~3 мрад, 
пространственное разрешение, 
экстраполированное в середину 
зоны между X и Y модулями, 
равно ~150 мкм



Особенности газового усиления при высоких значениях Е/р
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- Газовое усиление 
в общем виде

α - первый 
коэффициент 
Таунсенда

Sc = Ec/p ≈ 40-90 В/см∙Торр

Sm = Em/p ≈ 350-520 В/см∙Торр

• Однопроволочные камеры, 12х12 мм2

• Проволоки диаметром 15, 25, 50 и 100 
мкм 

• iso-C4H10, 92, 52, 32 и 12 Торр 
• Источник 55Fe

Пробег электрона в iso-C4H10
при фотопоглощении:

1 атм: 700-750 μm
92 Торр: ~  6 mm
52 Торр: ~ 11 mm
32 Торр: ~ 17 mm
12 Торр: ~ 45 mm



Особенности газового усиления при высоких значениях Е/р (2)

20P.Segur et al.  Radiation Protection Dosimetry, Vol.29 №1/2, p.23-30 (1989) 
P.Segur et al.  Radiation Protection Dosimetry, Vol.31 №1-4, p.107-118 (1989)

В работах P.Segur et al. проведены микроскопические расчеты первого коэффициента 
Таунсенда и газового усиления при низких давлениях:

• при низком давлении электроны при дрейфе в направлении проволоки могут пролететь 
мимо нее, добавляя дополнительную ионизацию при таком вращении вокруг проволоки

• при высоком значении Е/р электроны находятся в неравновесном состоянии с 
электрическим полем, поэтому имеют меньшую ионизационную способность

На основе этих измерений принято решение в ВПК использовать 
проволоки диаметром 25 мкм вместо планировавшихся 10 мкм

Газовое усиление при различных давлениях газа

12 Torr



Сборка проволочных детекторов в TWIST
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 Сжатие сборки с усилием 1470 N на каждую колонку ситалловых 
колец обеспечивало оптический контакт между кольцами и точность 
определения длины всей сборки лучше 50 микрон на длине 1000 мм 

 Все плоскости и модули касаются друг друга только поверхностями 
ситалловых колец/спейсеров

 Положения всех анодных плоскостей по Z координате известно с 
точностью в несколько десятков микрон

 16 модулей ДК и 3 модуля ПК 
 Наружные катоды модулей служили разделительным 

окном с внешним объемом
 Пространство между модулями заполнялось газовой 

смесью He+3%N2
 Все ДК продувались газом DME, все ПК – смесью 

CF4/iso-C4H10 (80/20) 
 Газовая система поддерживала дифференциальное 

давление в модулях и гелий-азотном объеме

CH3OCH3 – диметил эфир,  DME



Магнитное поле спектрометра
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 Cверхпроводящий соленоидальный магнит (Oxford Instruments). 
Внутренний диаметр магнита составляет 1 метр 

 Карта поля снималась при напряженностях поля 1.96 Тл, 2.00 Тл и 2.04 Тл 
во всем объеме магнита и за пределами ярма на входе мюонного пучка

 Вариация поля составляла менее 8 мТл в пределах рабочего объема 
спектрометра 



Пучок мюонов: канал М13

23

 Протонный циклотрон ТРИУМФ: Ep=520 МэВ, банчи длительностью около 4 нсек, период 43 нсек 
 Углеродная мезонообразующая мишень
 Канал М13 захватывал заряженные частицы, вылетающие из мишени Т1 под углом 135º
 Импульсное разрешение канала составляет 0.7% (FWHM)

При распаде остановившегося пиона мюон 
имеет практически 100% поляризацию и 
импульс 29.79 МэВ/с



Выделение пучка поляризованных мюонов
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 Длина канала М13  L=11.4 м 
 Канал настраивался на захват частиц с импульсом 29.6 МэВ/с, чуть ниже импульса мюона при распаде пиона в покое 
 Время пролета канала мюонами с импульсом 29.6 МэВ/с равно 141 нс, а пионов с тем же импульсом – 183 нс, что 

позволяет разделить мюоны и пионы

Мюоны с импульсом  29.6 МэВ/с захватываются из тонкого слоя 
мезонообразующей мишени (до 15 микрон) и практически не теряют 
поляризацию за счет многократного рассеяния. 
Такие мюоны называются поверхностными.



Контроль остановок пучка
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 Мюоны, входящие в спектрометр, пересекают специальный модуль, включающий газовый 
деградер, пленочный деградер, мюонный и позитронный сцинтилляционные счетчики 

 Пленочный деградер выполнен в виде ленты, на которой были закреплены пленки 
различной толщины от 0 (открытое окно) до 1 мм 

 Газовый деградер имел длину 21.7 см и наполнялся смесью He/CO2 при атмосферном 
давлении. Количество вещества на пути мюонов варьировалось от 3.6 мг/см2 (100% He) до 
40.3 мг/см2 (100% CO2) 



Контроль поляризации пучка

26

Блок времяпроекционных камер использовался для контроля пучка 
мюонов: 
 Каждая камера имеет поперечное сечение чувствительной области 

60х60 мм2 и длину по пучку 46 мм 
 ВПК наполнены газом DME при давлении 60 Торр 
 ВПК имели 100% эффективность восстановления треков мюонов с 

сигналами в среднем на 18 каналах из 24 
 Угловое разрешение ВПК составляет ~3 мрад, пространственное 

разрешение, экстраполированное в середину зоны между X и Y 
модулями, равно ~150 мкм

ВПК устанавливалась в канале в 
начале и в конце набора данных



Пространственное разрешение
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Пучок пионов с импульсом 120 МэВ/с при выключенном магнитном поле 
Для уменьшения многократного рассеяния пионов использовались 8 
плоскостей для построения треков и определялось разрешение девятой 
плоскости 

Точки- экспериментальные значения
Штриховая линия- GARFIELD
Сплошная линия – с учетом 
многократного рассеяния (~30 мкм) и 
временного джиттера (1.5 нс) 

Точность восстановления 
треков в одной из камер для 
расстояний более 0.5 мм  от
проволоки. Полная ширина на 
полувысоте составляет 80 мкм.

Временное разрешение в ячейке вдоль оси Z 
для различных расстояний от проволоки
при расчете пространственно-временных 
соотношений при помощи GARFIELD 
(вверху) и после калибровки при помощи 
пучка (внизу). 
Получено пространственное разрешение 
камер в диапазоне 50-100 мкм практически во 
всем дрейфовом промежутке



Импульсное разрешение спектрометра
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Энергетическая калибровка при любых углах θ определяется с использованием 
граничной энергии позитронов Е = 52.8 МэВ и заключена в самом спектре.
Внешние калибровки в прежних экспериментах давали систематику > 10-3 .
Импульсное разрешение спектрометра определялось с использованием позитронов
распада c импульсом 𝑝𝑝>52 МэВ/с

Разрешение является функцией 1/cosθ
Импульсное разрешение в пределах рабочего объема (70-160) кэВ/с

Моделированный спектр имеет большую 
величину по сравнению с измеренным спектром 
примерно на 10 кэВ/с.



Методика обработки данных со спектрометра TWIST
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 Определение параметров Мишеля проводилось путем 
сравнения двумерных экспериментальных Мишелевских 
спектров позитронов в распадах мюонов как функции 
импульсов и углов вылета позитронов N(p, cosθ) и 
моделированных спектров, полученных при аналогичных 
условиях. 

 Моделированные спектры получались при проводке 
позитронов распада через установку и последующего 
восстановления их углов вылета и импульсов. 

 Экспериментальные и моделированные данные 
обрабатывались одними и теми же программами, что 
позволяет компенсировать возможные неучтенные 
эффекты в отклике детекторов при прохождении мюонов 
и позитронов.

При анализе данных использовался “blind analysis” метод – слепой или скрытый анализ. 
При моделировании спектра позитронов распада N(p, cosθ) параметры Мишеля выбирались случайным 
образом в пределах ρ = 0.75±0.01, η = 0, Pµξ = 1±0.01,  δ = 0.75±0.1. 
Параметры Мишеля, использовавшиеся при моделировании спектра позитронов,  оставались скрытыми 
до окончания анализа данных.



Экспериментальные данные
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I раунд:  майларовая мишень. Измерение ρ и δ
II раунд: мишень из Al высокой чистоты (>99.999%). Измерение ρ, δ и Pµξ
III раунд: мишени из Al и Ag высокой чистоты (>99.999%). Измерение ρ, δ и Pµξ

В финальном раунде набрано 11х109 событий, из них 0.55х109 в рабочем объеме



Моделированные данные
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При моделировании отклика установки TWIST был использован пакет GEANT3.21
Для каждого типа набора экспериментальных данных производилось моделирование данных при тех же условиях

1. Моделирование пучка 
Начальной точкой мюонов и пучковых позитронов при моделировании пучка была координата 
z=−195 см. Начальный профиль пучка мюонов и его расходимость при z=−195~см 
определялись при помощи блока ВПК 

2. Моделирование отклика детектора
Монте-Карло моделирование включало полную геометрию установки с точным положением каждой проволочки камер 
и катодных плоскостей, материал конструкций камер. При моделировании треков мюонов и позитронов в детекторе 
использовалась измеренная карта магнитного поля

4. Отклик камер 
Включены параметры газа, газовое усиление для точного воспроизведения экспериментальных данных. Длина 
нечувствительной зоны проволоки 0.06 см и среднее время восстановления чувствительности 3 мкс. Время дрейфа 
электронов и координаты треков определялись при помощи программы GARFIELD с уточнением при помощи пучка.

3. Спектр позитронов распада  
При моделировании спектра позитронов распада брались сгенерированные со скрытыми параметрами в 
соответствии с теоретическим спектром распада мюона  данные со значениями импульса и угла вылета 
позитронов (p, cosθ).  Спектр распада позитронов включал радиационные поправки трех первых порядков. 



Верификация моделированных данных
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Моделированные и экспериментальные данные сверялись на всех этапах 
Для сравнения экспериментальных и моделированных данных проводились специальные наборы данных с 
остановками мюонов в начале или конце спектрометра, до входа в спектрометр и т.п. Моделирование 
производилось при тех же параметрах, при которых производился набор экспериментальных данных. 

Распределение остановок 
позитронов в детекторе

Взаимодействие позитронов в Ag мишени: 
Остановка мюонов в начале спектрометра
Восстановление треков в двух частях независимо



Рабочий объем
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Отбор спектра по рабочему объему:

 0.54 < |cosθ| < 0.96: при малых и больших углах вылета позитронов 
реконструкция треков будет ненадежна 

 p < 52.0 МэВ/с: треки позитронов с импульсом p > 52.0МэВ/с 
используются в энергетической калибровке и поэтому исключены из 
фитирования параметров распада.

 pl > 14.0 МэВ/с: такое обрезание по продольной компоненте импульса 
исключает область с потенциальными неопределенностями в связи с 
геометрией расположения плоскостей

 pt < 38.0 МэВ/с: треки позитронов с большим поперечным импульсом 
могут выйти за пределы области чувствительности детекторов. 

 pt > 10.0 МэВ/с: это ограничение исключает из анализа треки с малым 
радиусом спиралей треков.



Отбор событий
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Отбор индивидуальных событий: 
 Время пролета мюонов 
 Тип события 
 Остановка в ПК 
 Радиус остановки в мишени (< 2.5 см)
 Длительность сигнала в ПК5 и ПК6 
 Наличие трека позитрона 
 Статус фита 
 Заряд частицы (позитрон) 
 Парное соответствие (наличие излома или пучкового позитрона) 
 Расстояние между вершинами в мишени 
 Время распада мюона (1050 – 9000 нс)

После отбора в спектрах для анализа 
оставались около 7% событий в 
экспериментальных данных и около 
12% - в моделированных



Метод определения параметров Мишеля 
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 Метод определения параметров Мишеля использует линейную зависимость спектра 
позитронов от параметров Мишеля ρ и η и от произведения параметров Pµξ и Pµξδ. 

 При анализе использовались события, отобранные в спектре в рабочем объеме. Создается  
базовая гистограмма, содержащая бины данных Монте Карло и взвешенные бины 
производных спектров. Cпектр делился на 2442 бина с шагом 0.5 МэВ/с по импульсу и 
0.02 по (cos𝜃𝜃).

 Различия между бинами экспериментальных данных и соответствующими бинами 
базового спектра использовались для построения функции χ2, которая минимизируется 
при помощи стандартного алгоритма MINUIT с весами производных спектров как 
параметрами фита. 

 В результате определялась разница параметров Δρ, Δδ, ΔPµξ между экспериментальными 
значениями параметров Мишеля и скрытыми значениями, использованными при 
генерировании спектра позитронов N(p, cosθ).

 Экспериментальные значения параметров Мишеля находились путем добавления 
найденных разностей Δρ, Δδ, ΔPµξ к скрытым параметрам Мишеля, использовавшимся в 
моделировании



Систематические неопределенности
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• Точность определения параметров Мишеля в 
эксперименте TWIST  ограничена 
систематическими неопределенностями. 

• Оценки систематических неопределенностей 
сделаны для большинства известных источников 
таких ошибок методом сравнения двух 
моделированных спектров либо изменением 
условий отбора событий

Основные источники систематических 
неопределенностей:

 Отклик камер 
 Взаимодействие позитронов с материалами
 Радиационные поправки и коррелляция с η  
 Импульсная калибровка 
 Разрешение реконструкции треков
 Тормозное излучение и δ-электроны 
 Толщина мишени/место остановок 
 Деполяризация мюонов на входе в 

спектрометр
 Деполяризация мюонов в мишени 



Оценка систематических неопределенностей 
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1. Оценки систематических неопределенностей из-за 
тормозного излучения и рождения дельта-электронов:

2. Остановки в мишени/газе ПК6

𝑞𝑞 - источник систематической неопределенности при определении параметра Мишеля, 
𝜎𝜎𝑞𝑞 – его ошибка 
𝜆𝜆 - один из параметров Мишеля (𝜌𝜌, 𝛿𝛿 или 𝜉𝜉)

σλ= Δλ
Δ𝑞𝑞
σq - неопределенность в определении параметра λ

Остановки в начале спектрометра
Сравнение экспериментального и моделированного, 
моделированного и моделированного с 3х-кратной 
частотой тормозного излучения

величина
неопределенности 
параметров Мишеля
𝜌𝜌, 𝛿𝛿 и 𝑃𝑃𝜇𝜇𝜉𝜉
составляет 
±1.8×10−4, 
±1.6×10−4 и 
±0.5×10−4 для Ag
мишени

Отсутствие отбора остановок в мишени приведет к 
изменению калибровок. Для проверки этого эффекта 
проводился анализ данных с учетом длительности 
сигнала с ПК6 и без такого отбора. Это приводит к 
изменению параметров 𝜌𝜌 и 𝛿𝛿 на 0.04x10-4 и 0.04х10-4

соответственно



Оценка систематических неопределенностей 
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Неопределенности     Δρ = 1.0х10-4 Δδ = 1.1х10-4

Импульсная калибровка 
 Используется край спектра 52.8 МэВ/с 
 Потери энергии зависят от угла вылета θ
 Различие ≈ 10 кэВ/с до калибровки 
 Калибровка – как сдвиг или масштабирование 
 Различие ≈ 2-3 кэВ/с после калибровки 

Сдвиг Масшт.
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В  раунде I набора данных использовалась мишень из майлара, имевшая разброс по толщине. Поляризация мюонов 
не сохраняется в майларе, поэтому эти данные использованы для определения только параметров ρ и δ

Получены результаты: ρ = 0.75080 ± 0.00032(stat) ± 0.00097(syst) ± 0.00023(η)
δ = 0.74964 ± 0.00066(stat) ± 0.00112(syst)  

Оба результата в 2006 году были включены в данные Particle Data Group как наиболее точные

Раунд II:
Мишенный модуль из алюминиевой фольги 
Использование блока ВПК позволило провести юстировку пучка по X координате и получить 
более точные входные данные мюонного пучка для моделирования 

Получены результаты: ρ = 0.75014 ± 0.00017(stat) ± 0.00044(syst) ± 0.00011(η)
δ = 0.75067 ± 0.00030(stat) ± 0.00067(syst)
Pµξ = 1.0003 ± 0.0006(stat) ± 0.0038(syst)

Результаты были включены в данные Particle Data Group в 2008 году как наиболее точные
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Раунд III: использовались два типа мишеней – Al и Ag высокой чистоты (>99.999%) 
Пространственно-временные характеристики начали вычисляться комбинированно по 
результатам моделирования в GARFIELD и по результатам измерений времен дрейфа в камерах

Из фитирования экспериментального и моделированного спектров были определены разности 
Δρ, Δδ и  ΔPµξ для каждой серии набора данных:
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Получены финальные значения: ρ = 0.74977 ± 0.000012(stat) ± 0.00023(syst)
δ = 0.75049 ± 0.00021(stat) ± 0.00027(syst)
Pµξ = 1.00084 ± 0.00029(stat) −0.00063

+0.00165(syst)

Все три результата включены в таблицы Particle Data Group в 2012 году как измеренные с 
минимальными неопределенностями и на сегодняшний день остаются непревзойденными и 
наиболее точными измерениями параметров ρ,  δ и Pµξ. 
Точность измерения параметра Мишеля ρ, существовавшего до TWIST, улучшена в 14 раз, 
параметра Мишеля δ - в 11 раз, значения величины  Pµξ - в 7 раз.

Таким образом, эксперимент TWIST решил принятую на себя задачу примерно на порядок 
уменьшить систематические неопределенности в измерениях параметров Мишеля

Все полученные значения согласуются с предсказаниями Стандартной модели
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I. B. Herczeg. Phys. Rev. D 34(11), p.3449-3456 (1986)

В лево-правой симметричной (LRS) модели электрослабых взаимодействий W (𝑊𝑊𝐿𝐿) бозон Стандартной 
модели и правый массивный калибровочный бозон 𝑊𝑊𝑅𝑅 с массовыми собственными состояниями 𝑊𝑊1 и 
𝑊𝑊2 связаны соотношениями

В рамках обобщенной LRS модели установлен новый предел на угол 
смешивания в мюонном секторе |(𝑔𝑔𝑅𝑅/𝑔𝑔𝐿𝐿)𝜁𝜁|<0.020 (90% C.L.) с 
существовавшего до наших измерений предела |(𝑔𝑔𝑅𝑅/𝑔𝑔𝐿𝐿)𝜁𝜁|<0.066. 
Нижний предел на массу (𝑔𝑔𝑅𝑅/𝑔𝑔𝐿𝐿)𝑚𝑚2 собственного состояния 𝑊𝑊2 в
распадах мюонов увеличен до 578 ГэВ/𝑐𝑐2 с существовавшего до наших 
измерений значения 400 ГэВ/𝑐𝑐2.

D0: 780 ГэВ/𝑐𝑐2 (1996), 800 ГэВ/𝑐𝑐2 (2004), 1 TэВ/с2 (2008).
CMS: > 4.4 TэВ/с2

ATLAS: нижний предел 3.8-5 TэВ/с2
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II. Глобальный анализ распада мюона

H.-J. Gerber W. Fetscher and K.F. Johnson. Physics Letters B173, p.102-106 (1986) 
H. Burkard et al. Physics Letters B160, p.343-348 (1985) 
C.A. Gagliardi, R.E. Tribble, N.J. Williams. Physical Review D. 2005. Vol. 72, 073002.

Вероятность распада левых и правых мюонов на левые или правые 
позитроны можно выразить через константы связи gµe

Кроме параметров Мишеля имеются еще семь дополнительных параметров распада 
мюонов, определяющих продольную и поперечную поляризацию вылетающих 
позитронов, которые являются билинейной комбинацией констант связи gµe

В результате глобального анализа распадов мюонов были получены новые более строгие ограничения на 
некоторые константы связи gµe и новое рекордное ограничение на вероятность распада правого мюона в 
любой тип электрона, запрещенный в Стандартной модели. Новый предел составляет 𝑄𝑄𝑅𝑅

µ < 0.00082 (90% CL)
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Кроме определения с рекордной точностью параметров Мишеля на спектрометре TWIST был
проведен поиск процесса с нарушением лептонного числа в двуxчастичном распаде 𝜇𝜇+→𝑒𝑒+𝑋𝑋0 и
установлены новые пределы на рождение массивных и безмассовых 𝑋𝑋0 бозонов [R. Bayes, J.F.
Bueno, Yu.I. Davydov et al. Search for two body muon decay signals. Phys. Rev. D, Vol. 91, 052020
(2015). URL: https://link.aps.org/doi/10.1103/PhysRevD.91.052020 ]. В ходе этого поиска не было
обнаружено доказательств существования распадов μ+→e+X0. Ограничения на эти распады для
диапазона масс 13 МэВ/c2 < mX

0 < 80 МэВ/c2, где распад X0 не наблюдается, были улучшены в 10
раз по сравнению с ранее опубликованными ограничениями.

Также было проведено исследование распадов отрицательно заряженных мюонов, захватываемых
на оболочку атомов алюминия [A. Grossheim, R. Bayes, J.F. Bueno et al. Decay of negative muons
bound in 27Al. Phys. Rev. D, Vol. 80. P. 052012 (2009)]. В данной работе спектрометром измерялся
спектр электронов распада вплоть до 70 МэВ и получено время жизни отрицательных мюонов,
захватываемых на оболочку атомов 27𝐴𝐴𝑙𝑙, t=(864.6±1.2) нc. Это было первым измерением времени
жизни мюонов, захваченных на оболочку атомов алюминия, и одним из наиболее точных
измерений спектра электронов от распада захваченных на орбиту мюонов.

https://link.aps.org/doi/10.1103/PhysRevD.91.052020
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 Новая методика построения проволочных камер, разработанная и использованная для экспериментальной установки для 
измерения параметров Мишеля, позволила создать прецизионные планарные камеры для работы в магнитном поле. 
Изготовленные на основе данной методики проволочные камеры имели высокие геометрические точности, что стало 
залогом их стабильной работы в течение всего времени набора данных. Распределение отклонений проволок в дрейфовых 
камерах от номинального положения имеет узкое распределение со среднеквадратичным отклонением σ=3.5мкм.

 Метод калибровки пространственно-временных соотношений на основе пакета GARFIELD и измерений с пучком позволил 
получить пространственное разрешение менее 100 мкм во всем дрейфовом промежутке камер, наполненных газом DME, 
при напряженности магнитного поля 2 Тл.

 Методика оценки мертвого времени при переходе камеры в самогасящийся стримерный (СГС) режим, разработанная при 
выполнении эксперимента, позволила оценить мертвую зону на проволоке после прохождения мюона. Продемонстрировано, 
что при переходе камер в СГС режим газ DME не теряет гасящих свойств и имеет мертвую зону на уровне  70∙10-3 мкс∙см, 
что на три порядка меньше, чем в традиционных газовых смесях на основе благородных газов. Полученные оценки 
мертвого времени и зоны нечувствительности камер использованы при моделировании отклика камер после прохождения 
мюонов.

 Методика исследования камер низкого давления в условиях высокой приведенной напряженности электрического поля была 
разработана и использована в процессе работы с пучком мюонов. В ходе исследований независимо обнаружено, объяснено 
и, по нашим данным, впервые экспериментально продемонстрировано, что при увеличении приведенной напряженности  
электрического поля в камерах с одинаковой геометрией и равными приложенными напряжениями газовое усиление 
становится большим на проволоке большего диаметра. Обнаружение этого эффекта позволило использовать в ВПК 
проволоки диаметрами 25 мкм и 50 мкм вместо планировавшихся 10 мкм, что повысило надежность и стабильность работы 
детектора.
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 Впервые создана экспериментальная установка для одновременного измерения параметров Мишеля ρ, δ, Pµξ в распадах 
положительных мюонов. Положение каждой анодной плоскости в сборке детектора известно с точностью в несколько 
микрон и суммарная длина всей сборки камер известна с точностью около 50 мкм на длине 120 см, что соответствует 
относительной точности 5x10-5. Это стало возможным благодаря выбранной геометрии камер и всей установки. 
Высокая точность геометрических параметров камер существенно упростила моделирование отклика детекторов и 
позволила уменьшить систематические ошибки при определении параметров Мишеля. Импульсное  разрешение 
спектрометра является функцией 1/|cosθ|, где θ - угол вылета позитрона относительно оси магнитного поля, и вблизи 
кинематической границы, экстраполированное к p=52.83 МэВ/с, составляет 58 кэВ/с. Все предыдущие измерения 
параметров Мишеля в распадах мюонов, проводившиеся до нас другими группами, выполнены на экспериментальных 
установках, позволявших измерять только один из параметров.

 Созданный спектрометр позволил впервые при измерении параметров Мишеля в распадах положительных  мюонов 
провести полное восстановление двумерных спектров позитронов как функции импульсов и углов их вылета и с 
рекордной точностью из одних и тех же наборов данных определить  параметры ρ, δ, Pµξ:

Все три результата включены в таблицы Particle Data Group в 2012 году как измеренные с рекордной точностью и  на 
сегодняшний день  остаются наиболее точным измерением этих параметров. Точность предыдущего рекордного измерения 
параметра Мишеля ρ, выполненного до TWIST, улучшена в 14 раз, параметра Мишеля δ - в 11 раз, величины Pµξ - в 7 раз. 
Полученные в эксперименте результаты согласуются с предсказанием Стандартной модели
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 В результате выполнения диссертационной работы решена задача по разработке новой методики
изготовления планарных проволочных камер с рекордными характеристиками и создания на их основе
установки для определения нескольких параметров Мишеля с предельно высокой чувствительностью в
распадах положительных мюонов, позволившая провести измерение трех параметров Мишеля с рекордной
точностью и получить новые данные для проверки Стандартной модели.

 Измеренные с рекордной точностью параметры Мишеля позволили в рамках обобщенной LRS модели
установить новый предел на угол смешивания в мюонном секторе |(𝑔𝑔𝑅𝑅/𝑔𝑔𝐿𝐿)𝜁𝜁|<0.020 (90% C.L.) и новое
рекордное ограничение на вероятность распада правого мюона в любой тип электрона 𝑄𝑄𝑅𝑅

µ < 0.00082 (90%CL),
запрещенный в Стандартной модели

 Созданный спектрометр фактически был многофункциональной установкой. Кроме определения с рекордной
точностью параметров Мишеля на нем был проведен поиск процесса с нарушением лептонного числа в
двуxчастичном распаде 𝜇𝜇+ → 𝑒𝑒+𝑋𝑋0 и установлены новые пределы на рождение массивных и безмассовых 𝑋𝑋0

бозонов. Также было проведено исследование распадов отрицательно заряженных мюонов и получено одно
из наиболее точных измерений времени жизни отрицательных мюонов, захватываемых на оболочку атомов
27𝐴𝐴𝑙𝑙, t=(864.6±1.2)нс и одно из наиболее точных измерений спектра электронов от распада захваченных на
орбиту мюонов.
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Спасибо за внимание!
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