TMD in collaboration with Rosatom - NIITFA is now able to offer revolutionary, ultra-available RF solid state amplifiers for scientific and medical applications.

Innovative power combining and control system results in:

- Ultra-compact systems, typically one 19" rack / 100 kW (pulse)
- CW / Pulse Systems, long pulse
- Modular Solid State architecture, compact modules (<10 kg)
- Highly Maintainable with Hot Swap capability
- Wall Plug efficiency competitive with tube technology (55% demonstrated)
- Highly robust to VSWR mismatch
- High MTBF and Low MTTR
- No loss of power from any single element failure
- Frequencies available from 2 MHz to 1.3 GHz
- MW power capability

Applications:
- Synchronrons, LINACs for scientific, experimentation/physics and Spallation systems
- Medical Therapy equipment
- Cyclotrons for radioisotope production
-_extra upgrade existing systems

Other Products:
- High Power, Very Low Phase Noise TWT Amplifiers
- Brazed UHV components
- Electron Guns
- Diffusion Bonding
- Vacuum/Hydrogen Brazing
- Specialty Cleaning

For more information on our leading edge technology email us at wecare@tmd.co.uk or visit www.tmd.co.uk

RUSSIA’S PARTICLE-PHYSICS POWERHOUSE

Fifty years after being established, the Institute for Nuclear Research in Moscow continues to leave its mark on neutrino and high-energy physics.

Founded on 24 December 1970, the Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS) is a large centre for particle physics in Moscow with wide participation in international projects. The INR RAS conducts work on cosmology, neutrino physics, astrophysics, high-energy physics, accelerator physics and technology, neutron research and nuclear medicine. It is most well-known for its unique research facilities that are spread across Russia, and its large-scale collaborations in neutrino and high-energy physics. This includes experiments such as the Baksan Neutrino Observatory, and collaborations with a number of CERN experiments including CMS, ALICE, LHCb, NA61 and NA64.

The institute was founded by the Decree of the Presidium of the USSR Academy of Sciences in accordance with the decision of the government. Theoretical physicist Moisey Maslov had a crucial role in establishing the institute and influenced the research that would later be undertaken. His ambition is seen in the decision to base INR RAS on three separate nuclear laboratories of the P.N. Lebedev Institute of Physics of the Academy of Sciences of the USSR. Each laboratory had a leading physicist in charge: the Nuclear Physics Laboratory headed by Nobel laureate Ilya Frank; the Photornuclear Reactions Laboratory under the direction of Lyubov Lazareva; and a neutrino laboratory headed by Georgy Zatsepin and Alexander Chudakov. The man overseeing it all was the first director of INR RAS, Albert Tavkhelidze, a former researcher at the Joint Institute for Nuclear Research (JINR, Dubna).

In 1987 Victor Matveev took over as director, followed by Leonid Kravchuk in 2014. Since 2020 the director of INR RAS is Maxim Libanov.

From the very beginning, major efforts were focused on the construction and operation of large- and medium-scale research facilities. The hub of INR RAS was built 20 km outside of Moscow, in a town called Troitsk. In 1971 an accelerator division was created, with a long-term goal of creating a megatron facility that would house a 600 MeV linear accelerator for protons and H- ions. The first beam was eventually accelerated to 20 MeV in 1988 and the facility was fully operational by 1993. Now known as the Moscow Meson Facility, it has the most powerful linear proton accelerator in the Euro-Asian region, providing fundamental and applied research in nuclear and neutron physics, condensed matter, development of technologies for the production of a wide range of radioisotopes, operation of a radiation therapy complex and many other applications.

A town called Neutrino

Over 1000 miles south from the Troitsk laboratory, an underground tunnel in the Caucasus mountains is the base of another INR RAS facility, the Baksan Neutrino Observatory (BNO). The facility was established in 1967 and the Baksan Underground Scintillation Telescope (BUST) started taking data in 1978. A town sensibly called “Neytrino” (Russian for neutrino) was constructed in parallel with the facility, and was where scientists and their families could live 1700 m above sea level next to the observatory. In 1987 BUST was one of the four neutrino detectors that first directly observed neutrinos from supernova SN1987A.

The observatory did not finish there, and the next step

THE AUTHORS
Anna Veresnikova
scientific secretary INR RAS
and
Grigory Rubtsov
deputy director
INR RAS
there is no doubt that INR RAS has left its mark on the world’s best for years. The improvement of this result became possible only in 2019 with the large-scale KATRIN experiment in Germany that was created in collaboration with INR RAS: the “GZK cut-off” experiment started in 1993–1998 and detected cosmic neutrinos for more than a decade. It has now been replaced with the Gigaton Volume Detector (Baikal-GVD), and plans were concluded in 2019 for the first phase of the telescope to be completed by 2023. Baikal-GVD has an effective volume of 1 km3 and is designed to register and study ultra-high-energy neutrino fluxes from astrophysical sources.

Left a mark

Scientists from INR RAS take an active part in the work of a number of large international experiments at CERN, JINR, and in Germany, Japan, Italy, USA, China, France, Spain and other countries. The institute also conducts educational activities, having its own graduate school and teaching departments in nearby institutes such as the Moscow Institute for Physics and Technology.

There is no doubt that INR RAS has left its mark on high-energy physics. While the institute’s most recognized work will be in neutrino physics, the Moscow Meson Facility has also contributed to other areas of the field. An experiment was created for direct measurement of the mass of the electron antineutrino via the beta decay of tritium. The “Troitsk nu-mass” experiment started in 1985 and in 2019 with the large-scale KATRIN experiment in Germany that was created in collaboration with INR RAS. In fact, the Troitsk nu-mass experiment was considered as a prototype for KATRIN.

Experimental data have been obtained on nuclear reactions involving protons and neutrons of medium energies along with data on photonic reactions, including the study of the spin structure of a proton using an active polarized target. New effects in collisions of relativistic nuclei have been observed and a new scientific direction has been taken, “nuclear photonics.” Two effects in astrophysics have been named after scientists from INR RAS: “Mikheyev–Smirnov–Wolfenstein effect” concerning neutrino oscillations in matter, named after Stanislav Mikheyev, Alexei Smirnov (INR RAS) and Lincoln Wolfenstein (US). Theoretical studies at INR RAS are also widely known, including the development of perturbation theory methods, study of the ground state (vacuum) in gauge theories, methods for studying the dynamics of strong interactions of hadrons outside the framework of perturbation theory, the first ever brane-world models and the development of principles and the search for mechanisms for the formation of the baryon asymmetry of the universe.

Global reach

The past 50 years have seen consistent growth at INR RAS, and with world-leading future projects on the horizon, the institute shows no signs of slowing down.