
Как искать новую физику и что делать со старой

Федор Леонидович Безруков

Семинар посвещенный 70-летию
Леонида Борисовича Безрукова

University
of Connecticut



Standard Model – perturbative field theory up to MP
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Describes
▶ all laboratory experiments –
electromagnetism, nuclear
processes, etc.

▶ all processes in the evolution
of the Universe after the Big
Bang Nucleosynthesis
(T < 1 MeV, t > 1 sec)

Experimental
problems:

▶ Laboratory
? Neutrino
oscillations ..
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▶ Cosmology
? Baryon asymmetry
of the Universe

? Dark Matter ..

? Inflation ..

? Dark Energy
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Possible solutions

New physics above EW scale

▶ SUSY (Hierarchy problem,
Dark Matter, neutrino masses,
GUT)

▶ Extra Dimensions (low scale
gravity, hierarchy)

▶ …

No new physics above EW scale

▶ Standard Model up to Planck
scale

Do we have experimental indications of the scales where new physics
should appear?
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Most things do not really point to a definite scale
above EW

▶ Neutrino masses ans oscillations (absent in SM)
▶ Right handed neutrino between 1 eV and 1015 GeV

▶ Dark Matter (absent in SM)
▶ Models exist form 10−5 eV (axions) up to 1020 GeV (Wimpzillas,
Q-balls)

▶ Baryogenesys (absent in SM)
▶ Leptogenesys scenarios exist from M ∼ 10 MeV up to 1015 GeV

It’s physics
The question can be answered only by experiment!
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LHC – Started again
Searching for “high” scale (about TeV)

▶ Great way to see if there are something around TeV
▶ If something is found – celebrate, and forget most of what I am
talking about today

If nothing is found?
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Standard Model – can it be unchanged up to Planck
scale?

▶ Higgs self coupling λ constant
changes with energy due to
radiative corrections.

Strong coupling

Zero

MPlanck

Scale Μ

Mh=mmin

Mh=mmax

signHΛL Λ

▶ Behaviour is determined by the masses of the Higgs boson and
other heavy particles (top quark)

▶ If Higgs is heavy MH > 170 GeV – the model enters strong
coupling at some low energy scale – new physics required. Maiani,
Parisi, Petronzio’77; Lindner’85; Hambye, Riesselmann’96
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Lower Higgs masses: RG corrections push Higgs
coupling to negative values

▶ For Higgs masses MH < Mcritical
coupling constant is negative
above some scale µ0.
Krasnikov’78; Hung’79; Politzer,
Wolfram’79; Altarelli, Isidori’94;
Casas, Espinosa, Quiros’94; Ellis,
Espinosa, Giudice, Hoecker, Riotto’09

▶ The Higgs potential may become
negative!

▶ Or world is not in the lowest
energy state!

▶ Problems at some scale
µ0 > 1010 GeV?

Coupling λ evolution:
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LHC major result: SM is perturbative up to Planck
scale, and probably has metastable SM vacuum
Experimental values for yt
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We live close to the metastability boundary – but on which side?!

Future measurements of top Yukawa and Higgs mass are essential!

FB, Kalmykov, Kniehl, Shaposhnikov’12; FB, Shaposhnikov’14
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Measuring top quark Yukawa and Higgs boson mass

▶ Hard to relate the “pole” (the same for
“Mont-Carlo”) mass to the MS top quark
Yukawa

▶ NLO event generators
▶ Electroweak corrections – important at
the current precision goals!

▶ Build a lepton collider (ILC, FCC)
▶ Improve analysis on a hadron collider?
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▶ Higgs mass measurement may also
change a bit…
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So, what are the consequences if the Standard Model
electroweak vacuum is metastable?
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What to do if we are metastable?

pdecay ∝ e−Sbounce ∼ e−
8π8
3λ(h)

Even if the vacuum is metastable, it
lives much longer than the
Universe

1020tU1080tU10320tU

170 171 172 173 174 175 176 177
122

123

124

125

126

127

128

129

mt, GeV
m

h
,G

eV

▶ No danger today (and, with a bit more analysis, neither there are
problems at early hot stages)

▶ And at higher energies, at inflation?
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Metastable vacuum during inflation is dangerous
▶ Let us suppose Higgs is not at all
connected to inflationary physics

▶ All fileds have vacuum fluctuation
▶ Typical momentum k ∼ Hinf is of the
order of Hubble scale

Hinf ∼ 8.6× 1013GeV
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▶ If typical momentum is greater than the potential barrier – SM
vacuum would decay

Hinf > V1/4
max

Most probably, fluctuations at inflation lead to SM vacuum
decay…

▶ Observation of any tensor-to-scalar ratio r by CMB polarization
missions would mean great danger for metastable SM vacuum!
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Two most important measurements to test for SM
validity up to the highest scales

▶ Precise value of the top quark Yukawa yt
▶ Best – lepton collider at E ≳ 2mt (ILC, FCC)

▶ (Ok, a bit more than two measurements – Higgs boson mass, αs)
▶ Scale of inflation

▶ Primordial gravity waves – or B-modes of CMB (QUIJOTE, QUBIC,
GroundBIRD, BICEP3, ...)
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All other SM experimental problems can be solved by
changes at low scales

Definintly need new particles

▶ Neutrino oscillations
▶ Dark Matter
▶ Baryon asymmetry of the Universe

all can be solved at low energies
Three sterile neutrinos –

νMSM
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New physics only at low scales
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Role of sterile neutrinos
N1 M1 ∼ 1− 50keV: (Warm) Dark Matter,

N2,3 M2,3 ∼ several GeV:
Gives masses for active neutrinos, Baryogenesys

Asaka, Shaposhnikov’05; Asaka, Blanchet, Shaposhnikov’05
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N1 has been seen! (probably)
Line in the X-ray signal can mean 7 keV DM

Signal in Perseus cluster

Data by Chandra and
XMM-Newton,
Bulbul et.al’13, Boyarsky
et.al’13

Required parameters of sterile neutrino N1
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FIG. 4: Constraints on sterile neutrino DM within νMSM [4]. The
blue point would corresponds to the best-fit value from M31 if the
line comes from DM decay. Thick errorbars are ±1σ limits on the
flux. Thin errorbars correspond to the uncertainty in the DM distri-
bution in the center of M31.

to detect the candidate line in the “strong line” regime [35]. In
particular, Astro-H should be able to resolve the Milky Way
halo’s DM decay signal and therefore all its observations can
be used. Failure to detect such a line will rule out the DM
origin of the Andromeda/Perseus signal presented here.
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Dataset Exposure χ2/d.o.f. Line position Flux ∆χ2

[ksec] [keV] 10−6 cts/sec/cm2

M31 ON-CENTER 978.9 97.8/74 3.53± 0.025 4.9+1.6
−1.3 13.0

M31 OFF-CENTER 1472.8 107.8/75 3.53± 0.03 < 1.8 (2σ) . . .
PERSEUS CLUSTER (MOS) 528.5 72.7/68 3.50+0.044

−0.036 7.0+2.6
−2.6 9.1

PERSEUS CLUSTER (PN) 215.5 62.6/62 3.46± 0.04 9.2+3.1
−3.1 8.0

PERSEUS (MOS) 1507.4 191.5/142 3.518+0.019
−0.022 8.6+2.2

−2.3 (Perseus) 25.9
+ M31 ON-CENTER 4.6+1.4

−1.4 (M31) (3 dof)
BLANK-SKY 15700.2 33.1/33 3.53± 0.03 < 0.7 (2σ) . . .

TABLE I: Basic properties of combined observations used in this paper. Second column denotes the sum of exposures of individual observa-
tions. The last column shows change in∆χ2 when 2 extra d.o.f. (position and flux of the line) are added. The energies for Perseus are quoted
in the rest frame of the object.
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FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the
top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line
region.

with such a large exposure requires special analysis (as de-
scribed in [16]). This analysis did not reveal any line-like
residuals in the range 3.45−3.58 keVwith the 2σ upper bound
on the flux being 7× 10−7 cts/cm2/sec. The closest detected
line-like feature (∆χ2 = 4.5) is at 3.67+0.10

−0.05 keV, consistent
with the instrumental Ca Kα line.3

Combined fit of M31 + Perseus. Finally, we have performed
a simultaneous fit of the on-center M31 and Perseus datasets
(MOS), keeping common position of the line (in the rest-
frame) and allowing the line normalizations to be different.
The line improves the fit by ∆χ2 = 25.9 (Table I), which
constitutes a 4.4σ significant detection for 3 d.o.f.

Results and discussion. We identified a spectral feature at
E = 3.518+0.019

−0.022 keV in the combined dataset of M31 and
Perseus that has a statistical significance 4.4σ and does not
coincide with any known line. Next we compare its properties
with the expected behavior of a DM decay line.

3 Previously this line has only been observed in the PN camera [9].

The observed brightness of a decaying DM line should be pro-
portional to the dark matter column density SDM =

∫

ρDMdℓ –
integral along the line of sight of the DM density distribution:

FDM ≈ 2.0× 10−6 cts

cm2 · sec

(

Ωfov

500 arcmin2

)

× (1)
(

SDM

500 M⊙/pc2

)

1029 s

τDM

(

keV

mDM

)

.

M31 and Perseus brightness profiles. Using the line flux
of the center of M31 and the upper limit from the off-center
observations we constrain the spatial profile of the line. The
DM distribution in M31 has been extensively studied (see an
overview in [13]). We take NFW profiles for M31 with con-
centrations c = 11.7 (solid line, [22]) and c = 19 (dash-dotted
line). For each concentration we adjust the normalization so
that it passes through first data point (Fig. 2). The c = 19
profile was chosen to intersect the upper limit, illustrating that
the obtained line fluxes of M31 are fully consistent with the
density profile of M31 (see e.g. [22, 24, 25] for a c = 19− 22
model of M31).
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N1 has been seen! (probably)
Line in the X-ray signal can mean 7 keV DM

Signal in Perseus cluster

Data by Chandra and
XMM-Newton,
Bulbul et.al’13, Boyarsky
et.al’13

Suzaku strongly bounds the allowed
region
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Dataset Exposure χ2/d.o.f. Line position Flux ∆χ2

[ksec] [keV] 10−6 cts/sec/cm2

M31 ON-CENTER 978.9 97.8/74 3.53± 0.025 4.9+1.6
−1.3 13.0

M31 OFF-CENTER 1472.8 107.8/75 3.53± 0.03 < 1.8 (2σ) . . .
PERSEUS CLUSTER (MOS) 528.5 72.7/68 3.50+0.044

−0.036 7.0+2.6
−2.6 9.1

PERSEUS CLUSTER (PN) 215.5 62.6/62 3.46± 0.04 9.2+3.1
−3.1 8.0
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−0.022 8.6+2.2

−2.3 (Perseus) 25.9
+ M31 ON-CENTER 4.6+1.4

−1.4 (M31) (3 dof)
BLANK-SKY 15700.2 33.1/33 3.53± 0.03 < 0.7 (2σ) . . .

TABLE I: Basic properties of combined observations used in this paper. Second column denotes the sum of exposures of individual observa-
tions. The last column shows change in∆χ2 when 2 extra d.o.f. (position and flux of the line) are added. The energies for Perseus are quoted
in the rest frame of the object.
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region.

with such a large exposure requires special analysis (as de-
scribed in [16]). This analysis did not reveal any line-like
residuals in the range 3.45−3.58 keVwith the 2σ upper bound
on the flux being 7× 10−7 cts/cm2/sec. The closest detected
line-like feature (∆χ2 = 4.5) is at 3.67+0.10

−0.05 keV, consistent
with the instrumental Ca Kα line.3

Combined fit of M31 + Perseus. Finally, we have performed
a simultaneous fit of the on-center M31 and Perseus datasets
(MOS), keeping common position of the line (in the rest-
frame) and allowing the line normalizations to be different.
The line improves the fit by ∆χ2 = 25.9 (Table I), which
constitutes a 4.4σ significant detection for 3 d.o.f.

Results and discussion. We identified a spectral feature at
E = 3.518+0.019

−0.022 keV in the combined dataset of M31 and
Perseus that has a statistical significance 4.4σ and does not
coincide with any known line. Next we compare its properties
with the expected behavior of a DM decay line.

3 Previously this line has only been observed in the PN camera [9].

The observed brightness of a decaying DM line should be pro-
portional to the dark matter column density SDM =

∫

ρDMdℓ –
integral along the line of sight of the DM density distribution:

FDM ≈ 2.0× 10−6 cts

cm2 · sec

(

Ωfov

500 arcmin2

)

× (1)
(

SDM
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M31 and Perseus brightness profiles. Using the line flux
of the center of M31 and the upper limit from the off-center
observations we constrain the spatial profile of the line. The
DM distribution in M31 has been extensively studied (see an
overview in [13]). We take NFW profiles for M31 with con-
centrations c = 11.7 (solid line, [22]) and c = 19 (dash-dotted
line). For each concentration we adjust the normalization so
that it passes through first data point (Fig. 2). The c = 19
profile was chosen to intersect the upper limit, illustrating that
the obtained line fluxes of M31 are fully consistent with the
density profile of M31 (see e.g. [22, 24, 25] for a c = 19− 22
model of M31).
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Testing that the 3.5 keV line is DM
Verify, that

▶ all DM dominated objects emit
the line

▶ and all do this in proper
amount

▶ the feature is really a narrow
line

25

1 10 100
7

7.02

7.04

7.06

7.08

7.1

7.12

7.14

7.16

m
s (k

eV
) Full Sample (MOS)

Coma + Centaurus + 
Ophiuchus (MOS)

Perseus (Core-Cut) (MOS)

Other Clusters (MOS)

Full Sample (PN)

Coma + Centaurus +
Ophiuchus (PN)

Perseus (Core-Cut) (PN)

Other Clusters (PN)

Perseus (ACIS-I)
Perseus (ACIS-S)
Virgo (ACIS-I)

10    sin2 ��ѡ�-11

B08

H14

Figure 14. Sterile neutrino mass and mixing angle measurements
and upper limits obtained from the di↵erent samples used in this
study. The comparison of our stacking method with the limits
placed by the single well-exposed Bullet Cluster at 3.57 keV Bo-
yarsky et al. (2008) and Horiuchi et al. (2014) are also shown and
marked with “B08” and “H14” in the figure, respectively. The
error bars and upper limits are in the 90% confidence level.

neutrinos would be produced by oscillations with active
neutrinos at an abundance determined by the mass and
mixing angle (e.g. Dodelson & Widrow 1994; Kusenko
2009). Accounting for the increase in mixing angle that
would be inferred for a dark matter fraction in sterile
neutrinos less than unity, we find that this fraction is
⇠13%-19% based on the methods in Abazajian (2006)
and Asaka et al. (2007) – and cannot exceed 26% based
on the absolute lower bound distorted wave production
estimate in Asaka et al. (2007).
This implies that either (1) sterile neutrinos are a sub-

dominant component of dark matter, (2) sterile neutrinos
are predominantly produced by some other mechanism,
or (3) the emission line originates from some other radia-
tively decaying light dark matter candidate such as mod-
uli dark matter (Kusenko et al. 2013). The Shi-Fuller
mechanism is one of the possible production mechanisms
for the sterile neutrino dark matter interpretation of this
detection. The implications of the detection for struc-
ture formation in cosmological small scales are discussed
in detail in (Abazajian 2014).
They may also be produced by means that do not

involve oscillations, such as inflaton or Higgs decay
(Kusenko 2006; Shaposhnikov & Tkachev 2006; Petraki
& Kusenko 2008; Kusenko 2009), although there may
still be su�cient mixing to provide an observable radia-
tive decay signal. This detection is consistent with 100%
of dark matter composed of sterile neutrinos produced by
these mechanisms, as well as by the split seesaw mecha-
nism (Kusenko, Takahashi, & Yanagida 2010). Even in
this case, some sterile neutrinos would be produced by
non-resonant oscillations. However, based again on the
calculations in Abazajian (2006) and Asaka et al. (2007),
only ⇠1% -3% of the sterile neutrino abundance (with an
upper limit of 7%) would be accounted for in this way
for a sterile neutrino with mass of 7.1 keV and a mixing
angle corresponding to sin2(2✓) ⇠ 7 ⇥ 10�11.
Our result must be verified using a variety of X-ray

instruments, X-ray emitting dark matter dominated ob-
jects, methods of data reduction, background subtrac-
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Figure 15. 1 Ms Astro-H Soft X-ray Spectrometer (SXS) simu-
lations of the Perseus Cluster. The line width corresponds to line
of sight velocity dispersion of 1300 km s�1. The figure shows that
the decaying dark matter line broadened by the virial velocities of
dark matter particles will easily be distinguished from the plasma
emission lines which are broadened by turbulence in su�ciently
deep observations of the Perseus Cluster.

tion, and statistical techniques to investigate the inter-
pretation of this line. The future high-resolution Astro-H
observations will be able to measure the broadening of
the line, which will allow us to measure its velocity dis-
persion. To detect a dark matter decay line, which is
much weaker than the plasma lines will require a sig-
nificantly long exposure. We performed 1 Ms Astro-H
SXS simulations of the Perseus Cluster assuming that
the width (15 eV) of the dark matter decay line is de-
termined by the virial velocities of dark matter particles
of 1300 km s�1. Figure 15 shows that the broader dark
matter line will be easily distinguished from the plasma
emission lines, which are only broadened by the turbu-
lence in the X-ray emitting gas.

6. CAVEATS

As intriguing as the dark matter interpretation of our
new line is, we should emphasize the significant system-
atic uncertainties a↵ecting the line energy and flux in
addition to the quoted statistical errors. The line is very
weak, with an equivalent width in the full-sample spec-
tra of only ⇠ 1 eV. Given the CCD energy resolution
of ⇠ 100 eV, this means that our line is a ⇠ 1% bump
above the continuum. This is why an accurate continuum
model in the immediate vicinity of the line is extremely
important; we could not leave even moderately signifi-
cant residuals unmodeled. To achieve this, we could not
rely on any standard plasma emission models and instead
had to let all the tabulated lines free (including their
fluxes, energies and widths, within reasonable bounds),
as described in Section 3.
This approach results in a very large number of pa-

rameters to fit simultaneously, among which are the line
energies and widths that notoriously cause problems for
the statistic minimization algorithms. It was di�cult
to make XSPEC find absolute minima; the convergence
of all of the reported fits had to be verified by manu-
ally varying key parameters and refitting using di↵erent
minimization algorithms. Nevertheless, it is not incon-

Near future: ASTRO-H
▶ Good energy resolution
▶ Excellent sensitivity
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Sterile neutrino is not the only candidate for light WDM

There are
▶ axion like particles
▶ split dark matter

How to test which is right?
Start searching and testing for other predictions
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νMSM with DM means hierarchical active neutrino
masses
Active neutrino masses

▶ X-rays require very small N1 mixing angle θ1, so
m1 < 10−5eV

Neutrinoless double beta decay

▶ Additional contributions are
negligible

▶ N1 – X-ray constraints
▶ N2,3 – mass > 100MeV

▶ Mass spectrum strongly
hierarchical – X-ray constraints
m0νββ < 50× 10−3 eV

..
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Fig. 2. Value of the effective Majorana mass |mββ | as a function of the lightest neutrino mass
in the normal (NS, with mmin = m1) and inverted (IS, with mmin = m3) neutrino mass spectra
before and after the Daya Bay14 measurement of ϑ13 in Eq. (13). The current upper bound on
|mββ | (see Eqs. (70), (72) and (74)) and the cosmological bound (see Ref.55) on

∑
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in the quasi-degenerate region are indicated.

Figure 2 shows the value of the effective Majorana mass |mββ| as a function of
the lightest neutrino mass56,57 in the normal and inverted neutrino mass spectra
before and after the Daya Bay14 measurement of ϑ13 in Eq. (13). We used the values
of the neutrino oscillation parameters obtained in the global analysis presented in
Ref.58:

∆m2
12 = 7.59+(0.20,0.40,0.60)

−(0.18,0.35,0.50) × 10−5 eV2, sin2 ϑ12 = 0.312+(0.017,0.038,0.058)
−(0.015,0.032,0.042), (51)

and in the NS

∆m2
13 = 2.50+(0.09,0.18,0.26)

−(0.16,0.25,0.36) × 10−3 eV2, sin2 ϑ13 = 0.013+(0.007,0.015,0.022)
−(0.005,0.009,0.012), (52)

whereas in the IS

−∆m2
13 = 2.40+(0.08,0.18,0.27)

−(0.09,0.17,0.27) × 10−3 eV2, sin2 ϑ13 = 0.016+(0.008,0.015,0.023)
−(0.006,0.011,0.015). (53)

The three levels of uncertainties correspond to (1σ, 2σ, 3σ). In the “After Daya Bay”
plot in Fig 2 we replaced the value of ϑ13 in Eqs. (52) and (53) with that measured
by the Daya Bay Collaboration in Eq. (13). The uncertainties for |mββ| have been
calculated using the standard method of propagation of uncorrelated errors, taking
into account the asymmetric uncertainties in Eqs. (51)–(53).

In the following we discuss the predictions for the effective Majorana mass in
three cases with characteristic neutrino mass spectra:

(1) Hierarchy of neutrino massesd:

m1 # m2 # m3. (54)

dQuarks and charged leptons have this type of mass spectrum.
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Laboratory tests for νMSM and DM

Indirect
▶ Search for 0νββ

▶ GERDA

Direct
▶ Search for creation of N1 in kinematics of beta decay
(most probably only for extensions of νMSM)

▶ Troitsk
▶ KATRIN
▶ PTOLEMY
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Search for N2,3 is possible
▶ Leptogenesys by N2,3

∆M/M ∼ 10−3

▶ Experimental searches
▶ N2,3 production in hadron
decays (LHCb):

▶ Missing energy in K
decays

▶ Peaks in Dalitz plot
▶ N2,3 decays into SM

▶ Beam target: SHiP
▶ High luminosity lepton

collider at Z peak

Note: Other related models (e.g.
scalars for DM generation, light
inflaton) also show up in such
experiments
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SHiP – Beam Target experiment

▶ Protons – target – shield – empty space – detector
▶ N – created in the target

▶ N – decays in the empty detector
▶ decay products detected
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Neutrino oscillations require new physics

But knowing their parameters does not help much at the moment to fix
its properties

▶ E.g. in type I see-saw (or in νMSM) all the interesting new physics
effects – sterile N masses, sterile-active mixings, CP for
leptogenesys – are independent on active ν parameters.
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Using neutrino oscillations to measure something

▶ Using PINGU, ORCA to check
the composition of the Earth

▶ Measuring active neutrino
mass hierarchy+0νββ –
constraints νMSM? Preliminary
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Conclusions
The scale of new physics is unknown!

▶ Can be solved only by experiment:
▶ High scale – LHC “energy frontier”
▶ Ultra high scale – interplay between

▶ top quark Yukawa (lepton collier)
▶ inflationary scale (CMB properties, B-modes)

▶ Low scale
▶ Rare physics – rare decays (LHCb), dedicated beam dump
experiments (SHiP)

▶ Astrophysics – X-rays

Use SM for something useful

▶ Neutrino oscillations for Earth study
▶ Neutrinos for – supernova explosions, reactor monitoring…
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Happy Birthday, dear Dad!
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