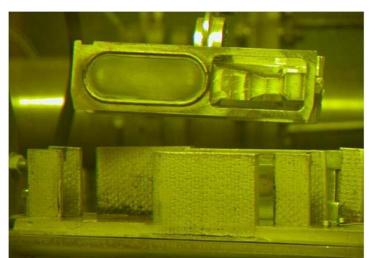
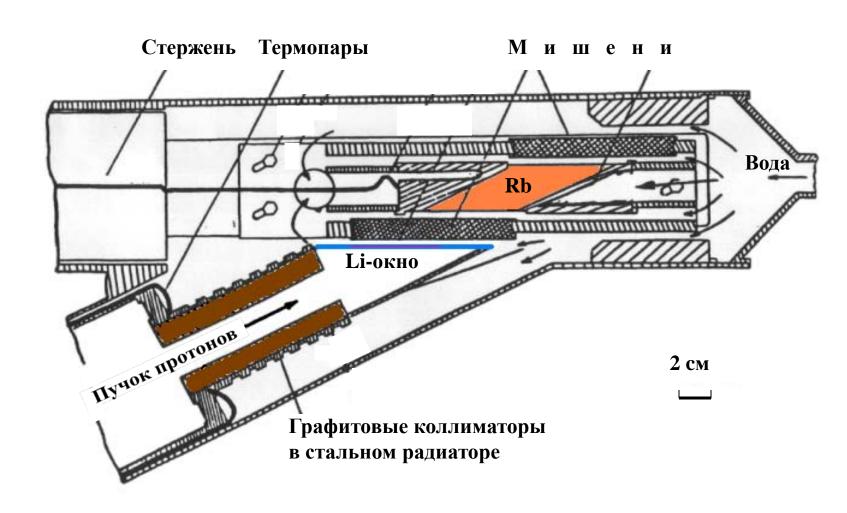


Б.Л. Жуйков

Производство радиоактивных изотопов на линейном ускорителе ИЯИ РАН


Выездное заседание Научного Совета РАН по проблеме ускорителей заряженных частиц, посвященное 100-му сеансу сильноточного линейного ускорителя протонов ИЯИ РАН 8 февраля 2012 г.

Установка по облучению мишеней и получению радионуклидов на отводе пучка 160 МэВ линейного ускорителя ИЯИ РАН (сооружена в 1992 г.)



Мишенное устройство на установке по облучению мишеней ИЯИ РАН

Параметры пучка на установке по производству радиоизотопов

- Энергия пучка протонов на установке: 158 МэВ (Опции: 143, 127, 113, 100, 94 МэВ)
- Максимальный средний ток пучка: 140 мкА
- Импульсные параметры пучка:
 - Импульсный ток 14 мА
 - Частота 50 Гц
 - Длина импульса 200 мкс

Действующие установки для производства радиоизотопов на интенсивном пучке протонов средних энергий

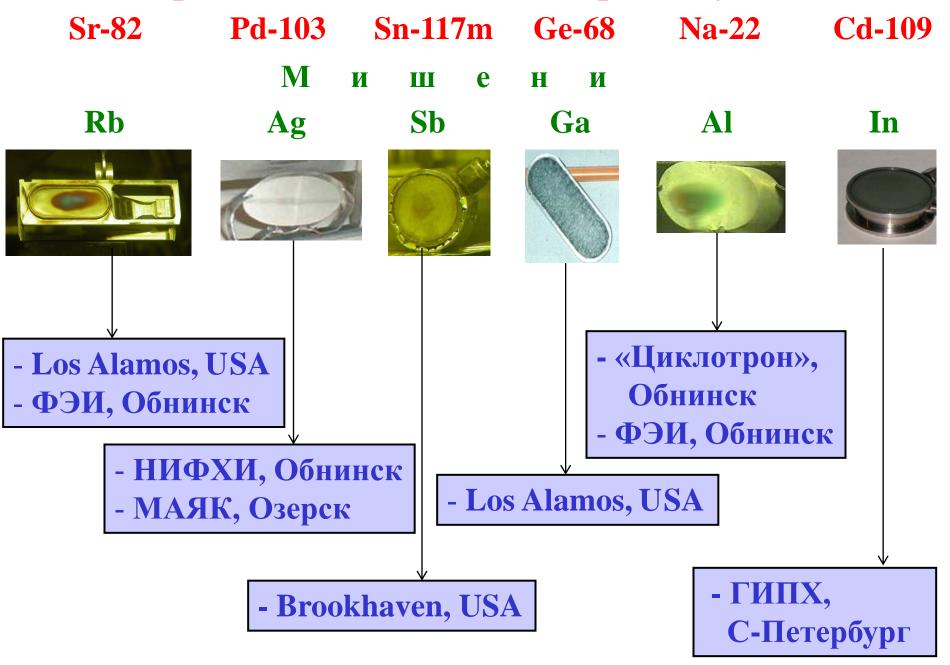
- Институт ядерных исследований РАН (Троицк) 160 МэВ, 120 мкА
- Los Alamos National Laboratory (NM, USA) 100 МэВ, 200 мкА
- Brookhaven National Laboratory (NY, USA) 200 МэВ, 90 мкА
- TRIUMF (Vancouver, Canada) 110 M3B, 50 mKA
- iThemba Laboratory (Cape Town, South Africa) 66 МэВ, 180 мкА
- ARRONAX (Nantes, France)
 70 МэВ, 750 мкА ЗАПУСКАЕТСЯ

Радионуклиды, производимые в ИЯИ РАН, и возможности их производств за одно облучение (при токе 120 мкА)

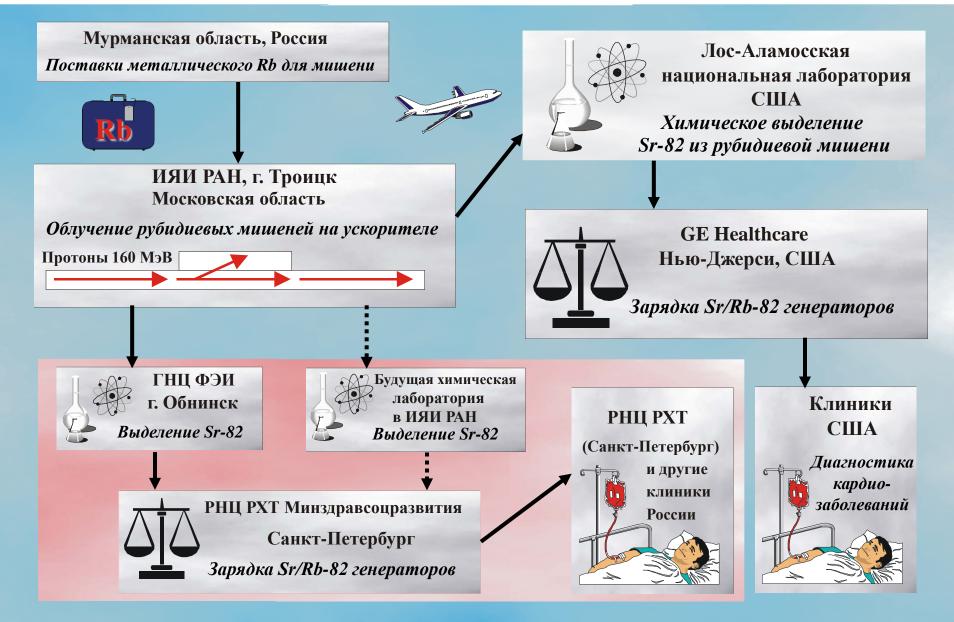
Радио- нуклид	Период полу- распада	Мишень	Диапазон энергии, <i>МэВ</i>	Период облучения, <i>час</i>	Произвед. активность, <i>Сі</i> (на момент доставки)
Sr-82 Na-22 Cd-109 Pd-103 Ge-68 Sn-117m Se-72 Cu-67 Cu-64 Ac-225 Ra-223	25.5 дн. 2.6 лет 453 дн. 17 дн. 288 дн. 14 дн. 8.5 дн. 62 час. 12.7 час. 10 дн. 11.4 дн.	Rb Mg, Al In Ag Ga, GaNi Sb, TiSb GaAs Zn-68 Zn Th Th	100-40 150-35 150-80 150-50 50-15 150-40 60-45 150-70 150-40 150-40	250 250 250 250 250 250 250 100 15 250 250	5 2 2 20 0.5 2 2 7 10 3 6

Регулярно производится

Разработана технология, пробные образцы поставлены заказчику Разработаны методы получения, технология – в стадии разработки

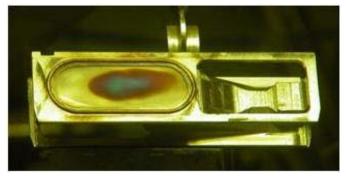

Институты – участники коллаборации с ИЯИ РАН в производстве радиоизотопов

- Лос-Аламосская национальная лаборатория, США
- Брукхэвенская национальная лаборатория, США
- Национальная лаборатория ТРИУМФ, Канада
- Миланский университет/лаборатория LASA, Италия
- Общественная компания ARRONAX, Франция
- Физико-энергетический институт им. А.И.Лейпунского, Обнинск
- Физико-химический институт им. Л.Я.Карпова, Обнинск
- Медицинский радиологический научный центр РАМН, г. Обнинск
- Производственное объединение «Маяк», Озерск
- Завод «Медрадиопрепарат», Москва
- РНЦ Радиологии и хирургических технологий, С-Петербург
- МГУ им. М.В.Ломоносова
- Институт геохимии и аналитической химии РАН, Москва
- Институт атомных реакторов, Димитровград
- РНЦ «Прикладная химия», С-Петербург
- Институт физической химии и электрохимии РАН, Москва


7 Международных проектов в рамках IPP (Initiatives for Proliferation Prevention)

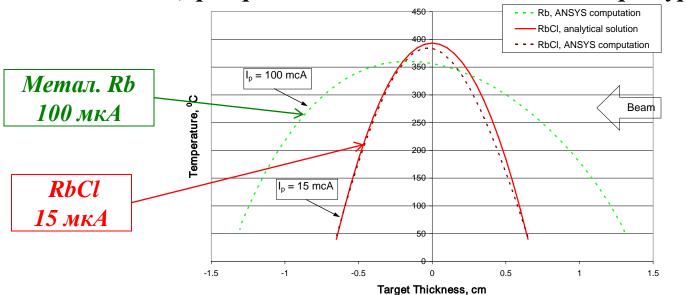
- IPP «Получение стронция-82 для медицинских целей», LANL
- IPP МНТЦ, 116 чел., 6 российских институтов, LANL, BNL
- «Совместное производство палладия-103, стронция-82 и германия-68 для коммерческого распространения и медицинских целей»
- IPP CRDF, 32 чел., 4 российских института, BNL
- «Получение олова-117м в состоянии без носителя для радионуклидной терапии рака»

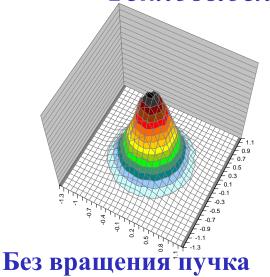
Производимые в ИЯИ РАН радионуклиды

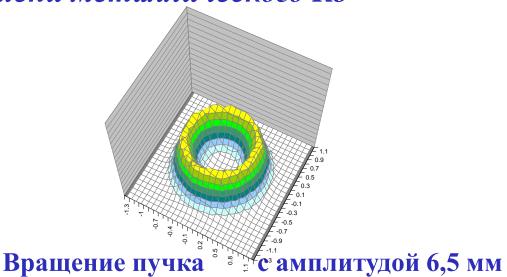

Схема производства, транспортировки и потребления стронция-82

Переработка рубидиевой мишени, облученной в ИЯИ РАН, и выделение стронция-82 в Лос-Аламосе

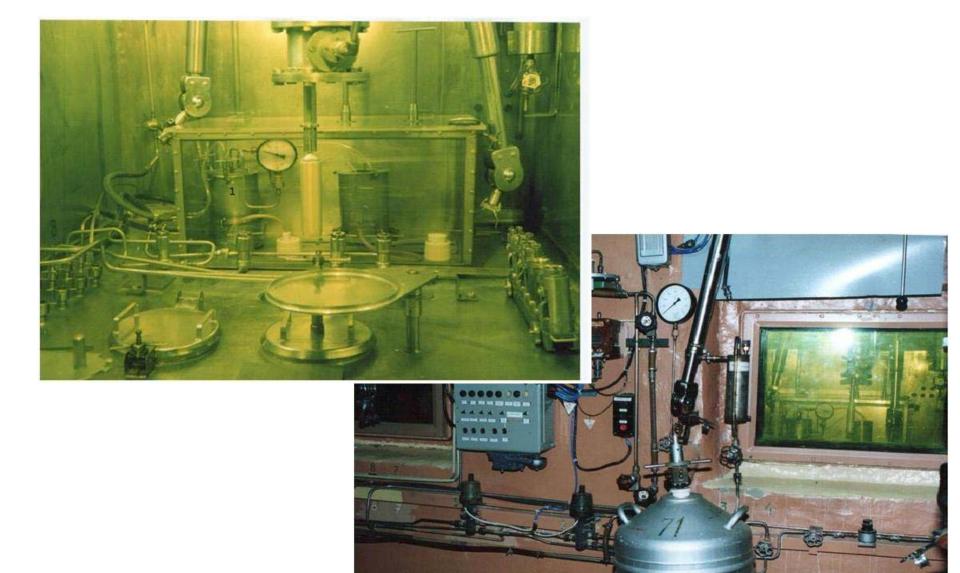
Получение по ядерной реации: 85,87 Rb (p, 4n-6n) 82 Sr ($T_{1/2}$ =25,5 дн.)




Общее число Rb-мишеней, отправленных на переработку – более 100


Сравнение мишеней RbCl и металлического Rb

Распределение температуры в мишени (при сравнимой максимальной температуре)



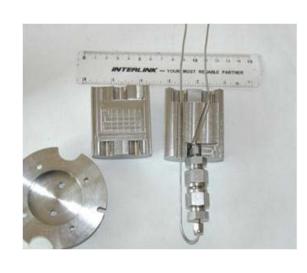
Тепловыделение в мишени металлического Rb

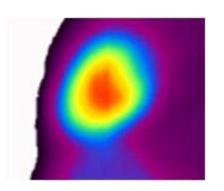
Установка по выделению ⁸²Sr прямой сорбцией из жидкого рубидия, расположенная в горячих камерах ГНЦ ФЭИ (Обнинск)

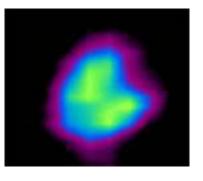
Медицинский генератор стронций/рубидий-82 для диагностики кардиозаболеваний с помощью ПЭТ

 ^{82}Sr (25, 5 дн.) \rightarrow ^{82}Rb (1,3 мин.)

Принцип работы стронций/рубидиевого-82 генератора


Испытания генератора на позитронно-эмиссионном томографе в РНЦ РХТ, С-Петербург

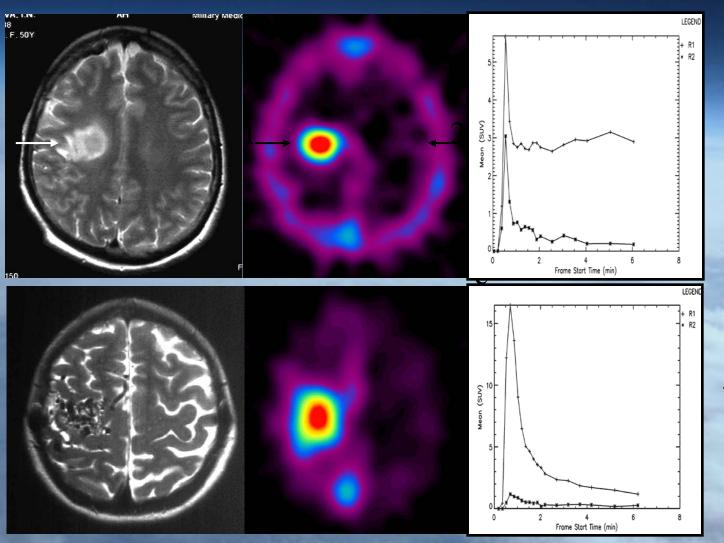



Генератор, разработанный в ИЯИ РАН

Сердце кролика: здоровое с инфарктом миокарда

CardioGen-82® - Sr/Rb-82 генератор США (10/30 кг, 100-120 мКи, 28 ней использования)

Отозван в июле 2011 – восстановлен в февр. 2012


Российский Sr/Rb-82 генератор ГР-01 в вольфрамовом контейнере (21/38 кг, 50-160 мКи, 60 дней использования)

РЕЗУЛЬТАТЫ ПЭТ С 82 RB-ХЛОРИДОМ У ПАЦИЕНТОВ С ОБЪЕМНЫМИ ОБРАЗОВАНИЯМИ ГОЛОВНОГО МОЗГА

(получено в РНЦ Радиологии и хирургических технологий, С-Петербург

Мультиформная глиобластома правой теменной доли

Артерио-венозна мальформация правой теменной доли

Одиннадцатое заседание

Комиссии по модернизации и технологическому развитию экономики России (Обнинск, 29 апреля 2010 года)

Дмитрий Анатольевич Медведев — Президент Российской Федерации:

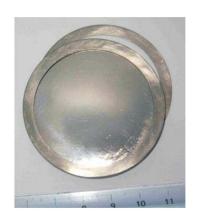
"По ядерным медицинским технологиям – вещь очевидная, они нашей стране очень нужны... Наша задача – научиться применять здесь наиболее передовые технологии; одним из наиболее перспективных методов, которые сегодня доказали свою эффективность, являются радионуклидные методы, радионуклидная диагностика и терапия.... У нас существует солидная научно-техническая база для производства радиофармпрепаратов, есть и позитивный опыт применения самых передовых технологий диагностики и лечения. К сожалению, это в основном импортные технологии."

Татьяна Алексеевна Голикова — Министерство здравоохранения и социального развития России:

"…Генератор стронций/рубидий-82 применяется при диагностике пациентов с подозрением на заболевание коронарной артерии. Кроме этого, он может применяться при изучении функций головного мозга, желудочно-кишечного тракта, печени и почек. В настоящее время генератор рубидий-82 не производится ни в Европе, ни в Азии. Он является отечественной разработкой Института ядерных исследований РАН. Плановый выпуск генераторов — до 500 штук в год в расчёте до 2015 года. Из них для покрытия потребностей России нужно 300 штук, соответственно, остальные 200 могут быть направлены на экспорт."

Получение ^{117m}Sn (без носителя) из сурьмы

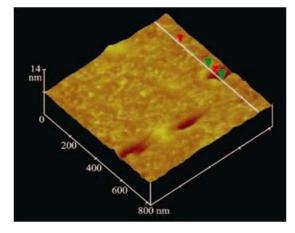
^{121,123}Sb (p; 2p xn) ^{117m}Sn


 $T_{1/2}$ =14.0 d, γ -излучение 159 кэВ, идеальное для диагностики Моноэнергитичные Оже-электроны 127 and 152 кэВ Пробег в воде: 0.22 и 0.29 мм

ПРИМЕНЕНИЕ: диагностика и терапия костных онкологических заболеваний, разрушение атеросклеротических бляшек

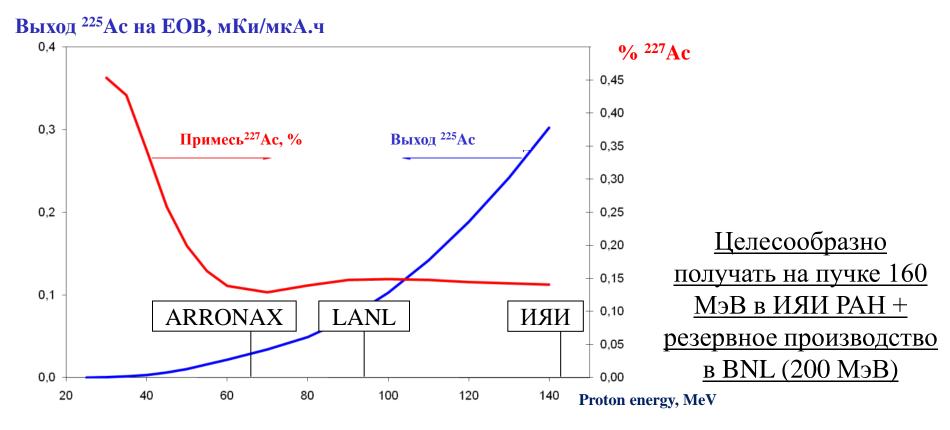
Мишень металлической Sb в графитовой никелированной оболочке

Мишень из интерметаллического соединения TiSb


С участием Брукхэвенской национальной лаборатории, США Химического факультета МГУ, ГНЦ Физико-энергетический институт

α-Активные актиний-225 и радий-223 для терапии онкологических заболеваний

Институт ядерных исследований РАН Химический факультет МГУ Институт физической химии и электрохимии РАН Филиал НИФХИ им. Л.Я.Карпова Институт биологии гена РАН 232 Th (p; xp, yn) $\rightarrow \dots \rightarrow ^{225}$ Ac (10 дн.) $\rightarrow ^{213}$ Bi (46 мин.) $\rightarrow ^{223}$ Ra (11.4 дн.) $\rightarrow ^{211}$ Pb (36 мин.)


Пробег α -частиц ~ 0,1 мм

- Рак простаты, молочной железы, мозга, костей, желудка, поджелудочной железы, яичников
- Меланома
- Мезотелиома
- Лейкемия

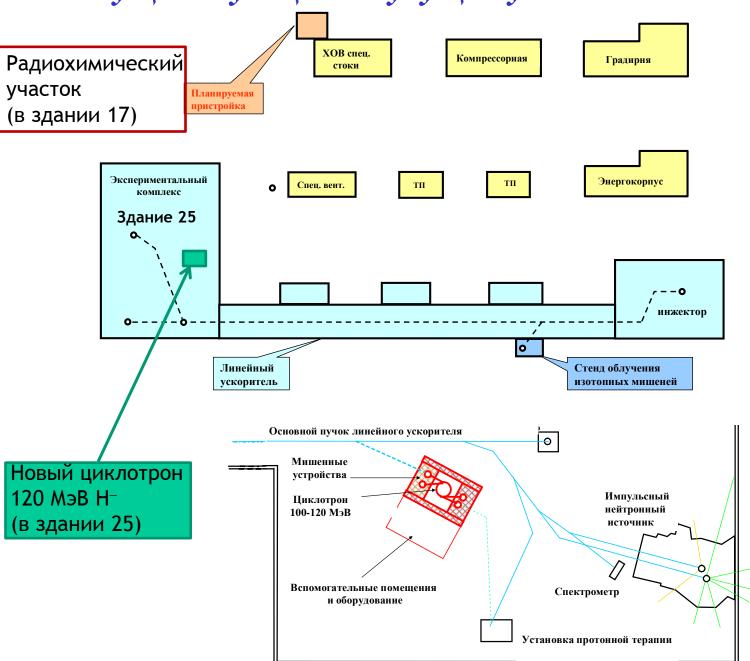
Радионуклиды встраивают в искуственные модульные нанотранспортеры (платформы) полипептидной структуры, обеспечивающие адресную транспортировку радионуклида к клетке или клеточному комполненту, например ядру

Получение ²²⁵Ac из природного ²³²Th, облученного протонами

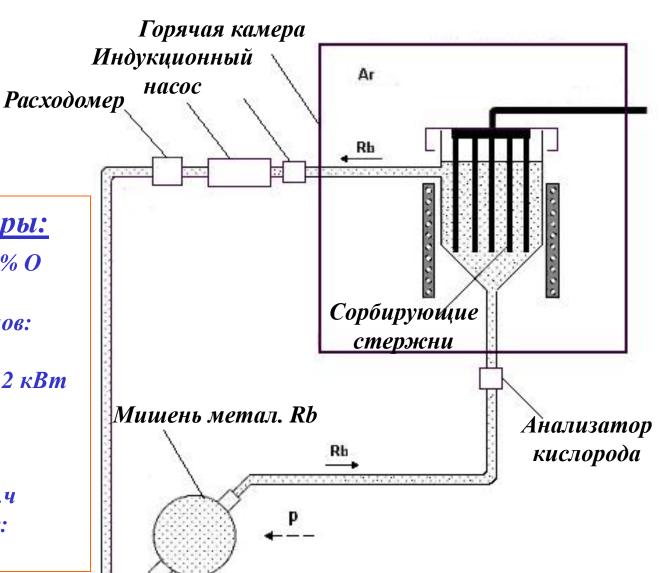
Возможное производство на протонах 160 MeV (на момент доставки):

2 Ки в неделю ²²⁵Ас (после распада 10 дн.) (мировое производство на настоящий момент 0.15 Сі в месяц)

4 Ки в неделю 223 Ra (после распада 16 дн.)


Разрабатываемые установки по получению изотопов на пучках протонов средних энергий высокой интенсивности

- ARRONAX/IBA (Nantes, France)
 H⁻ Cyclotron 70 MeV, 2x375 μA
- Институт ядерных исследований НАН Украины (Киев) H+ циклотрон, 70 МэВ, 100 мкА (производство ⁸²Sr из мишени RbCl)
- Positron Corporation (Illinois, USA)
 H⁻ Cyclotron 70 MeV, 2x375 μA: ⁸²Sr production
- С-Петербургский институт ядерной физики Н- циклотрон - 80 МэВ 100-200 мкА, сепаратор изотопов: 82Sr из Y-мишени
- Proton Engineering Frontier Project (Gyoungju, South Korea) LINAC 100 MeV, $>300~\mu A$
- Legnaro National Laboratory, INFN (Padova, Italy)
 Cyclotron 70 MeV, 2x400 μA
- National Institute for Radioelements, IRE and IBA (Belgium) Cyclotron 350 MeV, 1000 μA (Ta-target to produce neutrons for ^{99}Mo)
- TRIUMF (Vancouver, Canada) Existing H⁻ cyclotron - 500 MeV. Isotope separator facility: ⁹⁹Mo from ⁹⁸Mo-targets
- Институт ядерных исследований РАН (Троицк, Россия) Н- циклотрон - 120 МэВ, 1000 мкА: производство ⁸²Sr, ^{117m}Sn, ²²⁵Ac, ²²³Ra и др.


Модернизация линейного ускорителя, необходимая для увеличения производства изотопов

- 1. Повышение среднего тока переход на частоту 100 Гц
- 2. Создание системы вращения пучка
- 3. Повышение надежности
- 4. Повышение экономичности (переход на энергию протонов 100 МэВ в отдельных случаях)
- 5. Работа одновременно на двух пучках

Существующие и будущие установки в ИЯИ РАН

Схема будущего выделения изотопов из жидкометаллических мишеней в режиме «он-лайн»

Основные параметры:

Материал мишени: Rb+3% O

Ток пучка: > 300 мкА

Диапазон энергии протонов:

80-40 МэВ

Выделяемая мощность: 12 кВт

Объем Rb: ~1.5 л

Скорость Rb: ~5 л/мин

Диаметр мишени: ~8 ст

Выход 82Sr: 0.45 мКи/мкА.ч

Производительность 82Sr:

3 Ku/д. на EOB

Возможности производства медицинских изотопов в ИЯИ РАН

РАДИО-		ПЕРИОД ПОЛУ- РАСПАДА	ГОДОВОЕ ПРОИЗВОДСТВО, кюри		количество
нуклид	ПРИМЕНЕНИЕ		Линейный ускоритель	Новый циклотрон	ПАЦИЕНТОВ (в 1 год)
⁸² Sr	ПЭТ-диагностика (кардиология)	25 дн.	30	400	500 000
^{117m} Sn	Терапия, γ-диагностика (костные онкологические, сердечно сосудистые заболевания)	14 дн.	10	30	1 000
⁶⁷ Cu	Терапия (онкология)	62 ч	20	100	1 000
⁶⁴ Cu	Терапия, ПЭТ-диагностика (онкология)	12.7 ч	150	700	1 000
⁷² Se	ПЭТ-диагностика (онкология)	8.5 дн.	15	60	80 000
¹⁰³ Pd	Терапия (рак простаты, печени, молочной железы, ревматоидные артриты)	17 дн.	200	800	10 000
²²⁵ Ac	Терапия (онкология)	10 дн.	8	100	100 000
²²³ Ra	Терапия (онкология)	11.4 дн.	20	500	300 000

ПРОЕКТ РОСНАНО

Создание на базе установок ИЯИ РАН производства медицинских радионуклидов и радиофармпрепаратов с использованием свойств наноматериалов

Научно-технический совет государственной корпорации РОСНАНО
13 апреля 2010 г. единогласно одобрил данный инвестиционный Проект и рекомендовал финансировать производство радионуклидов для ядерной медицины

Но финансирование не обеспечено

Проблемы в организации изотопного производства

- 1. Необходимость основополагающего государственного финансирования
- 2. Распределение фондов для НИР ОКР: ведомственные барьеры
- 3. Требуется достаточно независимый и квалифицированный международный комитет для рекомендаций по распределению средств по реализации изотопных проектов
- 4. Слабая и монополизированная система по доставке радионуклидной продукции
- 5. Жесткие бюрократические барьеры (не нужные для безопасности)
- 6. Резко растущие гос. расценки на электричество, тепло, аренду, захоронение отходов и т.д.
- 7. Стремление государства к монополизации изотопного бизнеса
- 8. Недостаток квалифицированных кадров