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Our goal is to clarify a certain confusion regarding 
calculations of the β function by performing the path integral 
around instantons—or more generally, classical solutions— in 
theories supporting them. The confusion arises from a specific 
relationship between the number of zero modes and the 
asymptotically free contribution to the β function. To provide 
more details, we present a brief introduction. 

Introduction

Landau and his collaborators provided a general explanation for 
why all field theories known at that time were infrared-free. 

• L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, “An asymptotic expression for the 
electron green function in quantum electrodynamics,” Dokl.Akad.Nauk SSSR 95 (1954) 773. 



the SU(2) gauge field as
Aa

µ = Aa
µ + aaµ , (1)

where Aa
µ is the background field and aaµ is the quantum fluctuation, and fix the gauge of aµ

by adding to Lagrangian the gauge fixing term of the form,
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1

2g20
(Dab

µ abµ)2, (2)

together with the ghost fields ca term,
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2g20
c̄a(DµD

µ)abcb , (3)

where the covariant derivative Dab
µ is defined as

Dab
µ = δab∂µ + facbAc

µ , (4)

then the Lagrangian up to quadratic order in quantum fluctuations—we drop linear terms—

takes the form
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]
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Computing the effective action we see that there are different contributions coming from

gauge fields and ghosts running in loops
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where M is the UV cutoff scale and µ is an arbitrary renormalization scale. The magnetic

(a) (b) (c)

Figure 2: Contributions to the one-loop effective action: Figures 2a and 2b represent the

“electric” interaction of quantum gauge and ghost fields, Figure 2c presents magnetic spin
interaction of the quantum gauge fields.

spin interaction, represented by the linear term in Fµν in Equation (5) (see Figure 2c),
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We discuss di↵erences in the instanton-based calculations of � functions in theories

such as Yang-Mills and CP(N �1) on one hand, and ��
4 theory with Symanzik’s

sign-reversed prescription for the coupling constant � on the other hand. Although the

aforementioned theories are asymptotically free, in the first two theories, instantons are

topological, whereas the Fubini-Lipatov instanton of the third theory is topologically
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Screening of the charge, leading to the zero charge 
problem, looked generic.

The first counterexample in frameworks of 1+1 d 
theory was provided by Alexei Anselm in 1959.

A. Anselm “Field model with a nonvanishing renormalized charge”
ZhETF 36 (1959 ) 363
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The nonlinear additions to the Lagrangian of a constant electromagnetic field, caused by the 
vacuum polarization of a charged vector field, are calculated in the special case in which 
the gyromagnetic ratio of the vector boson is equal to 2. The result is exact for an arbri-
trarily strong electromagnetic field, but does not take into account radiative corrections, 
which can play an important part in the unrenormalized electrodynamics of a vector boson. 
The anomalous character of the charge renormalization is pointed out. 

1. INTRODUCTION 

IN recent times there have been frequent discus-
sions in the literature on the properties of the 
charged vector boson, which is a possible carrier 
of the weak interactions. At present all that is 
known is that if such a boson exists its mass must 
be larger than 1. 5 Be V. The theory of the electro-
magnetic interactions of such a particle encounters 
serious difficulties in connection with renormali-
zation. Without touching on this difficult problem, 
we shall consider a problem, in our opinion not a 
trivial one, in which the nonrenormalizable char-
acter of the electrodynamics of the vector boson 
makes no difference. We are concerned with the 
calculation of the nonlinear corrections to the 
Lagrange function of a constant electromagnetic 
field interacting with the vacuum of charged vec-
tor bosons with gyromagnetic ratio 2. As is well 
known, the analogous problem for the case of 
polarization of the vacuum of spinor and scalar 
particles has been solved by a number of 
authors. [1- 3] 

It must be pointed out at once that the physical 
aspect of the statement of this problem in the 
electrodynamics of the vector boson is not as in-
disputable as in ordinary electrodynamics. The 
nonlinear corrections to the Lagrange function 
describe nonlinear effects of the type of scatter-
ing of light by light, i.e., a set of processes which 
correspond to the series of diagrams shown in 
the figure. 

In ordinary electrodynamics a solid line corre-
sponds to a vacuum electron. The vertex parts of 
such diagrams are proportional to the amplitude 
of the strong field, and the contribution from 

virtual photons gives only small corrections to the 
solution. If we are dealing with a vector particle, 
then we come into the domain of nonrenormal-
izable theory and are not able to estimate in any 
reasonable way the contribution of the virtual 
photons to the processes represented in the figure. 
Although this is a very important point, all we can 
do here is to express the hope that in cases in 
which processes of this kind occur at small ener-
gies of the external field the radiative corrections 
will be small quantities. Moreover, because of 
the assumed large mass of the vector boson the 
processes shown in the figure will begin to be im-
portant much later than the radiative corrections 
to the corresponding solution in the electrody-
namics of electrons. 

Of course, there is always the purely mathe-
matical aspect of the problem. If the problem ad-
mits of exact solution it is interesting to obtain 
this solution and study its special features. 

2. GENERAL THEORY 

We take the equation for the vector field in the 
form proposed earlier [4•5] 

No supplementary condition is imposed on the 
vector field, and in the free case it is a mixture 
of physical quanta with the mass m and spin 1 
and nonphysical quanta with mass m/( 1 + 2a )1/ 2 

(1) 
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In1965, Vanyashin and Terent’ev 
studied electrodynamics
of massive vector field. Found 
antisreening and asymptotic 
freedom behavior.
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The Yang-Mills field is cansidered in the radiation gauge. Its Hamiltonian considered as a. function
of the independent canonical variables is written as an infinite series in the coupling constant.
Therefore, when the diagram technique is used, there appear diagrams that have no counterpart in
quantum electrodynamics. It is shown that the representation of the interaction Hamiltonian in the
form of an N-product, which is superfluous in spinor electrodynamics, becomes inadmissible in
scalar electrodynamics and in the Yang—Mills theory. The general structure of the Green’s func-
tions of the Yang-Mills field is considered. The Green’s function is then computed to second order
in perturbation theory. It is shown that in perturbation theory neither the Yang-Mills field nor the
gravitational ■eld can acquire a mass. Outside the framework of perturbation theory the appearance
of a mass for these fields will in any case require the fulfillment of conditions that are more rigid
than the conditions for the photon to acquire a mass. It is shown haw the number of degrees of free-
dom of a vector field in the radiation gauge increases from two to three as the field acquires a mass.

1. INTRODUCT ION

THE interest in quantum field theories with a non——
Abelian gauge group is conditioned first of all by at-
tempts to quantize the gravitational field, for which the
coordinate transformations play the role of such a
group. The extremely involved character of the equa-
tions of the gravitational field has forced theorists to
turn first to a study of a simpler model—the Yang-
Mills theorym,whichexhibitsa non-Abeliangauge
group, namely the isospln group.

On the other hand the interest in models of the
Yang—Mills type has been enhanced by the experimental
discovery of vector mesons forming isospin and uni-
tary multiplets. It should be remarked here that since
the vector meson masses are different from zero, the
problem is often discussed whether a vector field,
either of the Yang—Mills type, or neutral, can have a
nonvanishing physical mass in the absence of an unre-
normalized massIz’“. A significant part of the present
paper is devoted to a diseussion of this problem.

The investigations of Feynman“ 1,followed by
dewntl“, FaddeevandPopovmandMandelstarnm
have shown that the use of covariant gauges runs into
serious difficulties in theories with a non-Abelian
gauge group. What essentially happens in this case is
that the unitarity condition is violated in computing
closed loops formed by gravltons or Yang-Mills
mesonsm. In order to make endsmeet it becomes
necessary to introduce new diagrams with loops
formed by some fictitious particles, which have vector
nature for the gravitational field and are scalar for the
Yang-Millsfield[""].

In view of these difficulties it becomes particularly
natural to make use of the radiation gauge in theories
with a non—Abeliangaugegroupm (cf. also the pre-
printm ). The known loss in automatism of the compu—
tations, related to the noncovariant nature of the method
seems at the present stage of development not to be too
essential, since at present we do not transcend the

lowest orders of perturbation theory anyway. The gain
consists in the exclusion of unphysical degrees of tree-
dom in this formulation, i.e., of the unphysical fields.

At the beginning of Sec. 2, quantum electrodynamics
is quantized in the radiation gauge according to the
schemeconsideredinm; this part of the paperhas
essentially a methodological character. Then we dis-
cuss the problem of using normal ordering (N—products)
in quantum electrodynamics and in the Yang-Mills
theory. The diagram technique and the structure of
Green’s functions is discussed for electrodynamics in
the radiation gauge. It is shown how the number of de—
grees of freedom increases from two to three when a.
vector field with vanishing unrenormaiized mass ac-
quires a mass, in the radiation gauge (the existence of
this possibility waspointedout bySchwingerl“).

The third section is devoted to the quantization of
the Yang-Mills field in the radiation gauge. In distinc-
tion from electrodynamics, it is possible here to write
the Hamiltonian as an explicit function of the canonical
variables only in the form of an infinite series in the
coupling constant. In connection with this circumstance
the Yang—Mills theory leads to the appearance of new
types of diagrams, which have no analog in quantum
electrodynamics.

In Sec. 4 we investigate the general properties of the
Green’s functions for the Yang-Mills field in the radia-
tion gauge and discuss the differences from the photon
Green’s function.

The Yang—Mills Green’s function is computed to
second order in Sec. 5. It is shown that in perturbation
theory the Yang-Mills field cannot acquire a mass. The
same assertion can also be made for the gravitational
field. The problem of appearance of a mass for the
Yang-Mills and gravitational fields outside the frame-
work of perturbation theory is discussed.

2. THE RADIATION GAUGE IN QUANTUM
ELECTRODYNAMICS
The Lagrangian density for Spinor electrodynamics

235

Yulik Khriplovich, 
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1 Introduction

This note is meant to clarify certain confusion regarding calculations of the β function by
performing the path integral around instantons—or more generally, classical solutions—

in theories supporting them. The confusion arises from a specific relationship between the
number of zero modes and the asymptotically free contribution to the β function. To provide
more details, we present a brief introduction.

In the 1950s, Landau and his students [1] provided a general explanation for why all
field theories known at that time were infrared-free (IRF). The sign of the one-loop graphs,

which determine the coupling constant renormalization, is in one-to-one correspondence with
the sign of their imaginary parts. This relationship can be demonstrated using the Källen-

Lehman representation for these graphs. Unitarity implies the positivity of the imaginary
parts, which inevitably results in the first coefficients in the β functions being positive,
indicating IRF. In four-dimensional theory, IRF was established in arbitrary scalar or Yukawa

theories, as well as in Abelian gauge theories with arbitrary matter, bosonic or fermionic.
For asymptotic freedom (AF) to occur, the first coefficient of the β function must be

negative. The first (and only) theory in four dimensions that has been proven to be asymp-
totically free is Yang-Mills (YM) theory, which was observed in the late 1960s to early 1970s.

The reason for this remarkable phenomenon is the absence of an imaginary part in relevant
graphs in unitary gauges, such as the Coulomb gauge, as illustrated in Figure 1.

(a) (b)

Figure 1: The dotted lines stand for the Coulomb interaction, the wiggly lines depict trans-
verse gluons.

Two Feynman graphs for the interaction of (infinitely) heavy quark and antiquark probes
were calculated for SU(2) Yang-Mills in [2]. In Figure 1a, a pair of transverse gluons is

produced, and this graph has an imaginary part which can be seen by cutting the loop.
As in QED, this pair produces screening which leads to IRF. In Figure 1b, A similar cut
of the loop is impossible since it would go through the Coulomb line, which is, in fact, an

instantaneous interaction, leading to the vanishing imaginary part. This graph is responsible
for anti-screening, i.e. AF. The former contribution is 12 times smaller than the latter.

The fact that there are two distinct contributions, one resulting in IRF and the other in
AF, is also evident in covariant gauges, such as the background field calculation. If we split
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Although the aforementioned theories are asymptotically free, in the first two theories,

instantons are topological, whereas the Fubini-Lipatov instanton in the third theory is

topologically trivial. The spectral structure in the background of the Fubini-Lipatov

instanton can be continuously deformed into that in the flat background, establishing a

one-to-one correspondence between the two spectra. However, when considering topo-

logically nontrivial backgrounds for Yang-Mills and CP(N�1) theories, the spectrum

undergoes restructuring. In these cases, a mismatch between the spectra around the

instanton and the trivial vacuum occurs.

1

SU(2) Yang-Mills in the radiation (Coulomb) gauge.

The Green function for non-Abelian gauge field 
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Although the aforementioned theories are asymptotically free, in the first two theories,

instantons are topological, whereas the Fubini-Lipatov instanton in the third theory is

topologically trivial. The spectral structure in the background of the Fubini-Lipatov

instanton can be continuously deformed into that in the flat background, establishing a

one-to-one correspondence between the two spectra. However, when considering topo-

logically nontrivial backgrounds for Yang-Mills and CP(N�1) theories, the spectrum
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trivial. The key distinction lies in the emergence of ‘extra’ levels in the spectrum in

the topologically nontrivial background for Yang-Mills and CP(N�1) theories, which

have no correspondence in a perturbative background. The spectral structure in the

background of the Fubini-Lipatov instanton is in one-to-one correspondence with that

in the trivial vacuum.

1 Introduction

This note is meant to clarify certain confusion regarding how to compute the � function

by performing the path integral around instantons—or more generally, classical solutions—

in theories supporting them. The confusion arises from a specific relationship between the

number of zero modes and the asymptotically free contribution to the beta function. To

provide more details, we present a brief introduction.

In the 1950s, Landau and his students [1] provided a general explanation for why all field

theories known at that time were infrared-free (IRF). The sign of the one-loop graphs, which

determine the coupling constant renormalization, is in one-to-one correspondence with the

sign of their imaginary parts. This relationship can be demonstrated using the K”allen-

Lehman representation for these graphs. Unitarity implies the positivity of the imaginary

parts, which inevitably results in the first coe�cients in the � functions being positive,

indicating IRF. In four-dimensional theory, IRF was established in arbitrary scalar or Yukawa

theories, as well as in Abelian gauge theories with arbitrary matter.

For asymptotic freedom (AF) to occur, the first coe�cient of the � function must be

negative. The first (and only) theory in four dimensions that has been proven to be asymp-

totically free is Yang-Mills (YM) theory, which was observed in the late 1960s to early 1970s.

The reason for this remarkable phenomenon is the absence of an imaginary part in relevant

graphs in ghost-free gauges, such as the Coulomb gauge, as illustrated in Figure 1.

Two Feynman graphs for the interaction of (infinitely) heavy quark and antiquark probes

were calculated for SU(2) Yang-Mills in [2]. In Figure 1a, a pair of transverse gluons is

produced, and this graph has an imaginary part which can be seen by cutting the loop.

As in QED, this pair produces screening which leads to IRF. In Figure 1b, A similar cut

of the loop is impossible since it would go through the Coulomb line, which is, in fact, an

instantaneous interaction, leading to the vanishing imaginary part. This graph is responsible

for anti-screening, i.e. AF. The former contribution is 12 times smaller than the latter.

The fact that there are two distinct contributions, one resulting in IRF and the other in

AF, is also evident in covariant gauges, such as the background field calculation. If we split

the SU(2) gauge field as

A
a
µ = Aa

µ + a
a
µ , (1)

where Aa
µ is the background field and a

a
µ is the quantum fluctuation, and fix the gauge by

2
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Figure 1: The dotted lines stand for the Coulomb interaction, the wiggly lines depict trans-

verse gluons, and quark-antiquark probes are denoted by bold strait lines.

adding to Lagrangian the following gauge fixing term

Lgauge = �
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2g2
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(Dab
µ a

bµ)2, (2)

together with the ghost fields ca term,

Lghost = �
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2g2
0

c̄
a(DµDµ)abcb , (3)

where the covariant derivative Dab
µ is defined as

Dab
µ = �

ab
@µ + f

acbAc
µ , (4)

then the Lagrangian up to quadratic order in quantum fluctuations—we drop linear terms—

takes the form

L2 =
1

2g2
0

a
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µ

h
⌘
µ⌫(D�D�)ab + 2facbFc

µ⌫

i
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a(D�D�)abcb. (5)

Computing the e↵ective action we see that there are di↵erent contributions coming from

gauge fields and ghosts running in loops
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where M is the UV cuto↵ scale and µ is an arbitrary renormalization scale. The magnetic

spin interaction, represented by the linear term in Fµ⌫ in Equation (5) (see Figure 2c),

produces an AF contribution to the coupling constant renormalization. On the other hand,

the “electric” interaction of the gauge field combined with the contribution from the ghosts

(see Figure 2a and 2b), gives rise to an IRF part that is 12 times weaker. Despite the

opposite sign of the ghosts’ contribution compared to the “electric” contribution, it should

be combined with the latter, canceling the e↵ect of longitudinal modes and preserving only

the physical degrees of freedom.

Finally, the same phenomenon exhibits itself in the instanton measure calculation. As is

well-known from the pioneering paper [3] for the SU(2) gauge field, the measure takes the

form

dµinst = const ⇥
Z

d
4
x0 d⇢

⇢5

�
M⇢

�8
✓
8⇡2

g2
0

◆4

exp
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, (7)

where the exponent 8⇡2
/g

2
0 is the action of the classical solution (the instanton), g2

0 is the

“bare” coupling constant at the UV scale M , which is the Pauli-Villars regulator mass,

and ⇢ is the instanton size. All pre-exponential factors in (7) come from the zero modes.

Furthermore, �gl+�gh in the exponent represent the bona fide quantum corrections in the

instanton background, which take into account only non-zero modes

�gl + �gh = �
2

3
logM⇢ . (8)

The zero modes emerge due to the spin term in (5). Combining (7) and (8), we conclude

that at one loop the renormalized coupling is given by

8⇡2

g2
=

8⇡2

g2
0

� 8 logM⇢ +
2

3
logM⇢, (9)

which, corresponds to the AF and coincides with (6), as expected.

Here comes an interesting peculiarity of the last computation. We observe that the anti-

screening contribution, coming from graphs without an imaginary part (Figure 1b), is given

4
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where M is the UV cuto↵ scale and µ is an arbitrary renormalization scale. The magnetic

spin interaction, represented by the linear term in Fµ⌫ in Equation (5) (see Figure 2c),

produces an AF contribution to the coupling constant renormalization. On the other hand,

the “electric” interaction of the gauge field combined with the contribution from the ghosts

(see Figure 2a and 2b), gives rise to an IRF part that is 12 times weaker. Despite the

opposite sign of the ghosts’ contribution compared to the “electric” contribution, it should

be combined with the latter, canceling the e↵ect of longitudinal modes and preserving only

the physical degrees of freedom.

Finally, the same phenomenon exhibits itself in the instanton measure calculation. As is
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Here comes an interesting peculiarity of the last computation. We observe that the anti-

screening contribution, coming from graphs without an imaginary part (Figure 1b), is given
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Taking at face value, this pecularity becomes a source of 
confusion. It is tempting to generalize this to other 
classical solutions.  Although two-dimensional CP(1) 
present a similar situation, there is no reason that it 
works in general. In fact, even three-dimensional YM fails
this test.

    Specific of four-dimensional YM was discovered by 
’t Hooft who showed that non-zero eigenvalues for 
instanton fluctuation modes do not depend on spin. 
We do not know what is deep reason for this spin 
independence.
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contains some number of zero mode integrations.
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one should be careful, for there are several zero modes. Namely, there are five zero modes

corresponding to the broken space-time symmetries. Classically, the Lagrangian (10) is

conformally invariant, which means that the instanton not only breaks translations but also

dilations. Additionally, there are zero modes associated with the breaking of the internal
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This expression illustrates the point we discussed in the Introduction. If we were to as-

sume that the leading logM behavior of (23) could be obtained by neglecting the spatial

dependence of �FL(x), we would arrive at an expression identical to (16). However, there

is an additional contribution to the logM dependence arising from the zero and negative

modes in (22). Therefore, this naive treatment would fail to yield the correct result in (19).

Consequently, we need to exercise more diligence when computing determinants around the

instanton background. In the next section, we discretize the spectrum by putting the theory

on a sphere2. This will enable us to accurately perform the necessary computations.

3 Mapping on a sphere

We find it beneficial to temporarily keep the number of dimensions d general. Our theory

can be obtained from the following (Euclidean) Lagrangian on Rd

L =
1

2
(@�a)

2 �
g0

�(5 + 2↵)
(�2

a)
2+↵(d)

, ↵(d) =
4 � d

d � 2
, g0 > 0. (24)

2 This approach is similar to what is done in [3] for Yang-Mills theory and in [10] for the CP(1) sigma
model. Mathematically, it means that we appropriately choose the measure with respect to which eigenfunc-
tions are orthogonal.
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This expression illustrates the point we discussed in the Introduction. If we were to assume

that the leading logM behavior of (??) could be obtained by neglecting the spatial de-
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modes in (??). Therefore, this naive treatment would fail to yield the correct result in (??).
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This expression illustrates the point we discussed in the Introduction. If we were to as-

sume that the leading logM behavior of (23) could be obtained by neglecting the spatial

dependence of �FL(x), we would arrive at an expression identical to (16). However, there

is an additional contribution to the logM dependence arising from the zero and negative

modes in (22). Therefore, this naive treatment would fail to yield the correct result in (19).

Consequently, we need to exercise more diligence when computing determinants around the

instanton background. In the next section, we discretize the spectrum by putting the theory

on a sphere2. This will enable us to accurately perform the necessary computations.

2 This approach is similar to what is done in [3] for Yang-Mills theory and in [10] for the CP(1) sigma
model. Mathematically, it means that we appropriately choose the measure with respect to which eigenfunc-
tions are orthogonal.
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This expression illustrates the point we discussed in the Introduction. If we were to as-

sume that the leading logM behavior of (23) could be obtained by neglecting the spatial

dependence of �FL(x), we would arrive at an expression identical to (16). However, there

is an additional contribution to the logM dependence arising from the zero and negative

modes in (22). Therefore, this naive treatment would fail to yield the correct result in (19).

Consequently, we need to exercise more diligence when computing determinants around the

instanton background. In the next section, we discretize the spectrum by putting the theory

on a sphere2. This will enable us to accurately perform the necessary computations.

2 This approach is similar to what is done in [3] for Yang-Mills theory and in [10] for the CP(1) sigma
model. Mathematically, it means that we appropriately choose the measure with respect to which eigenfunc-
tions are orthogonal.
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This expression illustrates the point we discussed in the Introduction. If we were to as-

sume that the leading logM behavior of (23) could be obtained by neglecting the spatial

dependence of �FL(x), we would arrive at an expression identical to (16). However, there

is an additional contribution to the logM dependence arising from the zero and negative

modes in (22). Therefore, this naive treatment would fail to yield the correct result in (19).

Consequently, we need to exercise more diligence when computing determinants around the

instanton background. In the next section, we discretize the spectrum by putting the theory

on a sphere2. This will enable us to accurately perform the necessary computations.

2 This approach is similar to what is done in [3] for Yang-Mills theory and in [10] for the CP(1) sigma
model. Mathematically, it means that we appropriately choose the measure with respect to which eigenfunc-
tions are orthogonal.
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This expression illustrates the point we discussed in the Introduction. If we were to

assume that the leading logM behavior of (23) could be obtained by neglecting the spatial

dependence of �FL(x), we would arrive at an expression identical to (16). However, there

is an additional contribution to the logM dependence arising from the zero and negative

modes in (22). Therefore, this naive treatment would fail to yield the correct result in (19).

Consequently, we need to exercise more diligence when computing determinants around the

instanton background. In the next section, we discretize the spectrum by putting the theory

on a sphere2. This will enable us to accurately perform the necessary computations.

2 This approach is similar to what is done in [3] for Yang-Mills theory and in [10] for the CP(1) sigma
model. Mathematically, it means that we appropriately choose the measure with respect to which eigenfunc-
tions are orthogonal.
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Mapping on a sphere to discretize levels.
 Let take 

The divergent part of (38), which we are interested in, can be computed using the Euler-

Maclaurin summation formula, giving
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`0�1X
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, (41)

we see that, indeed, `0 dependence of the e↵ective action disappears and we obtain
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90
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4 + b2M
2
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(42)

We conclude that, as before, the renormalized coupling is given by (18). Therefore, the

beta function is the same as in (19). Other terms can be absorbed into renormalization of

operators involving the curvature and cosmological constant.

Computing the path integral around the instanton configuration in this case is not tech-

nically di↵erent from computing the e↵ective action for a constant profile. The only com-

plication, compared to Rd, arises from the presence of other operators contributing to the

logM dependence, as we can see from (42). Evaluating the e↵ective action on the instanton

background (29), modulo polynomial terms, we have

�4[�
s
FL] =

16⇡2

g2
0

�
N + 8

3
logM +

N

90
logM (43)

It is evident that the coe�cient in front of logM does not correspond to the coupling

renormalization. To circumvent this minor issue, we observe that the problematic term in

(42) is not field dependent. Therefore, normalizing the determinant to that of the trivial

background would resolve the problem. Physically, this procedure corresponds to calculating

the relative free energy, similar to what was done in [3]. Simple computation reveals

�4[�
s
FL] � �4[0] =

16⇡2

g2
0

�
N + 8

3
logM, (44)

which can now be used to find the beta function.

4 Discussion and conclusion

To analyze the result let us take a closer look at the structure of our computation. The fluc-

tuations around the Fubini-Lipatov instanton for N = 1 are encapsulated in the following
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Discussion

pre-exponential factor

PFL =

Z
dX M

6


det0 (MI + M

2)

det0 MI

detM0

det (M0 + M2)

�1/2
, (45)

where M0 and MI are the corresponding di↵erential operators around the trivial profile

and the Fubini-Lipatov instanton, respectively. It is important to note that this expression

is only schematic, for it neglects the presence of several regulator fields. Nevertheless, it

serves to illustrate what is going on.

As we can see, there are two sources of the UV cuto↵ (M ) dependence of the pre-

exponential factor. The first contribution, M
6, arises from the zero (and the negative)

modes, while the second contribution comes from the ratio of products involving only the

positive modes. 
det0 (MI + M

2)

det (M0 + M2)

�1/2
. (46)

As a result the relevant part of (45) is given by

RFL = M
6


det0 (MI + M

2)

det (M0 + M2)

�1/2
. (47)

The ratio of determinants should be understood as the ratio of products with a common

cuto↵. Namely,

det0 (MI + M
2)

det (M0 + M2)
=

Q⇤
`=2

�
�

I
` + M

2
�⌫`/2

Q⇤
`=0 (�

0
` + M2)⌫`/2

. (48)

The mismatch in the number of modes in the numerator and denominator (products starting

from ` = 2 and ` = 0 correspondingly) is precisely compensated by the M6 factor. Indeed,

with one ` = 0 mode and five ` = 1 modes we have

1Y

`=0

�
�

0
` + M

2
�⌫`/2 = (�0

0 + M
2)1/2(�0

1 + M
2)5/2 ⇡ M

6
. (49)

Hence, with logM precision we get

RFL =

Q⇤
`=0

�
�

I
` + M

2
�⌫`/2

Q⇤
`=0 (�

0
` + M2)⌫`/2

. (50)

The above consideration demonstrates that the spectral flow, when moving from a trivial

background to the instantonic one, supports the continuity of levels. No new levels appear;

instead, a few low levels from the trivial background shift downwards to become zero or

negative modes. However, this is not always the case for all theories. In the case of YM theory
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instead, a few low levels from the trivial background shift downwards to become zero or

negative modes. However, this is not always the case for all theories. In the case of YM theory
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First, when extracting the UV cutoff dependence, it is 
only wise to examine any mismatches in modes between 
different configurations. 

Second, caution should be exercised when evaluating 
determinants around coordinate-dependent profiles,
as they may not always reduce to computations around 
constant backgrounds. 

Also we’d like to acknowledge the initiative of Tony  
Gherghetta in putting the problem.

Conclusion


