
2014-04-03 INR/101

Less is more. Why Oberon beats mainstream in complex applications

Institute for Nuclear Research, Russian Academy of Sciences

Fyodor Tkachov

1. IT,

2.

()

3.

2014-04-03 INR/101

s
y
n
t
a
x

v
o
l
u
m

e

(
N

o
f

l
e
x
e
m

s
)

Pascal

Algol-60

Ada

C Modula-2

Oberon
Oberon-2

(XDS)

Oberon-07

(Astrobe)

ANSI C

Turbo Pascal 2

TP5

C++

ISO C++

Java
Java-2

C-99

Delphi-1

Delphi-7

Ada 95
C#

Component Pascal�

(BlackBox; GPCP.NET)

excessive complexity �

VS the rational core (Oberon)

Original graph in Russian (c) S.Z.Sverdlov Piter Press, 2007

 Law:

Software

gets slower

faster than

hardware

gets faster.

2014-04-03 INR/101

Choosing C++

was a gross failure of HEP community

as a scientific community.

Alchemy came before rational Chemistry.

Astrology came before rational Astronomy.

IT is no exception.

We are currently at a parascientific stage of IT.

C++ is best proof of natural origin of human intellect.

The choice of C++ is best proof of irrational forces within

scientific community: combinatorial intellect rules.

2014-04-03 INR/101

Two causes of the excessive IT-complexity bubble:

1. Combinatorial nature of normal human intellect.

primatologist W.Koeler 1919; zoopsychologists; cognitive sciences

see a banana; scan the scene; identify familiar objects;

find banana-getting combination of actions;

if none, get angry and run around, this brings new

objects into the scope of attention, with luck ... etc.

Combinatory intellect (99.9% of all human activity)

abstraction:

magic wand

cf. the belief that

adding features

to PL

2014-04-03 INR/101

2. Economic + social rent

Well-known concept of asymmetry of information

(e.g. George Akerlof, Nobel Prize for Economics, 2001

.

in the absence of proper education system:

(see social psychology)

 N27 (858) 08 2013

2014-04-03 INR/101

2. Economic + social rent

2014-04-03 INR/101

 ()

 :

load, store, add, jump ... ~

 (~1970)

 :

 =

()

 (: 1978)

 IF

 WHILE

+

 +

1/3

2014-04-03 INR/101

Why imperative

J

imperative

hardware!

functional

markovian

synthetic

farther from hardware # closer to human

2014-04-03 INR/101

...

: + /

divide et impera

/ ()

 :

 : -- - -

 + (???)

.dll, .so

Element = POINTER TO RECORD

next: Element;

data: REAL

END;

2/3 ()

2014-04-03 INR/101

)

)

 ()

 ()

:

3/3

 >>

 ()

 I/O!

NB

2014-04-03 INR/101

dialects

 (classical | ETH) Oberon (1986)

 Oberon-2 (1992; XDS)

 Component Pascal (1997; BlackBox, .NET)

 Oberon-07 (2007; Astrobe)

Why technologies

history

1970 Pascal

1980 Pascal-80=Modula-2

1986 Pascal-86=Oberon

Oberon ~ Pascal 2K

To get the most from Oberon the language:

a development environment + a set of skills

(see below)

but tools + techniques

 proper balance is key

Never just tools,

If you are not aware of

your techniques,

then it is chiropractic.

beware of myths and wrong associations

2014-04-03 INR/101

What is Oberon/Component Pascal

 (anything that can be put away into libraries is excluded from language;

 what remains is designed with utmost care)

- Very small (language report ~20; dialects differ +/- a few pages)

- Pure compiled code (floating point optimization as external tool)

- Highly readable, robust (against typos etc.)

- Statically type safe (including dynamic records > no segviols, ever)

- Independently compilable modules (unit of information hiding, dynamic

linking and (un

- Object-oriented (extensible records, very efficient)

- Garbage-collected (without affecting purely procedural programs)

Development environment, typically:

- Text-as-interface:

any text document can serve as a command prompt

+ input from any text

= hugely handy: text docs as flexible menus + storage for parameters ...

popular general purpose: BlackBox Component Builder

2014-04-03 INR/101

A simplistic interface, one becomes fully productive in a week:

92 in the log window means, the compiled code for this module is 92 bytes -

- not kilobytes, just bytes.

2014-04-03 INR/101

One Oberon does what is usually achieved via a combination of

C++ & python

Mathematica & Fortran

etc.

due to

garbage collection

due to clean compiled code

2014-04-03 INR/101

Oberon experience behind the assertions

BEAR algebra engine since 1997

one of the fastest engines, the most flexible

array of cutting edge calculations, A.Czarnecki et al.

hep-ph/0511004 Phys. Rev. Lett. (2006)

 hep-ph/0506055 Phys. Rev. D

hep-ph/0503039 Phys. Rev. D

hep-ph/0403221 Phys. Rev. Lett. (2004)

Component framework implementing

quasi-optimal weights (10K l.o.c. with all libraries)

used to reanalyse Troitsk-nu-mass data

arXiv:1108.5034 -- best direct neutrino mass bound�

�

Continuous algorithm development work

(Optimal Jet Finder etc. hep-ph/0301185; physics/0401012)

�

International educational project

coordinates leading experts from academia, aerospace, publishers ...

authorized revision of bestseller

by Turing Award winner N.Wirth www.inr.ac.ru/~info21/

single-handedly

single-handedly

single-handedly

2014-04-03 INR/101

The deal:

C++ (1K pp)

Fortran

Java

Form

Mathematica

.......

Oberon (20 pp)

General algorithmics

 loop & invariant

Architecture patterns

-- Carrier-Rider

-- separation of interface

from implementation

-- Oberon message bus

...

After one has learnt to program with Oberon,

learning another language = learning its defects.

2014-04-03 INR/101

Oberon and open source

The world is much more complex than is imagined by

software tool (libraries etc.) writers.

No library writer can foresee all the uses and applica-

tions.

Access to source for adaptation is essential.

Most open is the code that is most accessible.

Simpler language >> more open the source.

Oberon code is more open than e.g. C++ code.

2014-04-03 INR/101

The Kalashnikov Principle:

Excessive complexity = vulnerability

The ill-recognized problem of software complexity

(cf. C++/Root/Mathematica ... crashes)

For the first time in the history of Humanity

the combinatorial/primatic intellect

has become freed from the restrictions of

the resistance of materials.

Asymmetry of information >> customers pay.

Containing the gratuitous growth of complexity

must be a permanent concern

whenever IT is involved.

2014-04-03 INR/101

Java emerged after Sun licensed and studied Ober-

on compiler in 1991; the influence is obvious.

 Go is a C-syntax clone of Oberon with

minor (unnecessary) extensions.

Only physicists are in the dark.

 student Clemens Szyperski is author of

and software architect at MS Research working on

.NET.

(The books essentially describes the principles that a popular

Oberon implementation the BlackBox Component Builder is built

on.)

Oberon influence in the IT industry:

2014-04-03 INR/101

Oberon microsystems, Inc. +

2014-02-20

Oracle

Clemens

Szyperski

2014-04-03 INR/101

Symposium Wirth-80, ETH, Zurich, 2014-02-20

2014-04-03 INR/101

2005:

2009:

 ()

2014-04-03 INR/101

References

Prof. Jurg group at ETH Zurich: http://nativesystems.inf.ethz.ch/

Oberon Day @ CERN 2004: http://www.inr.ac.ru/~blackbox/Oberon.Day/

FT: http://arxiv.org/abs/hep-ph/0202033 (see testimonies at end)

BlackBox Component Builder: www.oberon.ch, www.zinnamturm.eu

XDS Oberon (optimizing) http://www.excelsior-usa.com/xdsx86.html

 : http://forum.oberoncore.ru/

Informatika-21 (educational) http://www.inr.ac.ru/~info21/

N.Wirth

http://www.inf.ethz.ch/personal/wirth/books/AlgorithmE1/AD2012.pdf

Clemens Szyperski

2nd ed., Addison-Wesley, 2011

Oberon-07 for embedded apps: http://www.astrobe.com/

Gardens Point Component Pascal (.NET etc.): http://gpcp.codeplex.com/

2014-04-03 INR/101

Entire syntax of Component Pascal

(BlackBox Oberon)

Module = MODULE ident ImportList] DeclSeq

[BEGIN StatementSeq]

[CLOSE StatementSeq] END ident

ImportList = IMPORT [ident ident

ident ident

DeclSeq = { CONST {ConstDecl

| TYPE {TypeDecl

VAR {VarDecl

{ProcDecl ForwardDecl

ConstDecl = IdentDef ConstExpr.

TypeDecl = IdentDef

VarDecl = IdentList

ProcDecl = PROCEDURE [Receiver] IdentDef

[FormalPars

(ABSTRACT | EMPTY | EXTENSIBLE)]

DeclSeq [BEGIN StatementSeq]

END ident].

ForwardDecl =

IdentDef [FormalPars].

FormalPars = FPSection FPSection

FPSection = [VAR | IN | OUT] ident ident

Receiver = VAR | IN] ident ident

Type = Qualident

| ARRAY [ConstExpr ConstExpr}]

OF Type

| [ABSTRACT | EXTENSIBLE | LIMITED]

FieldList

FieldList} END

| POINTER TO Type

| PROCEDURE [FormalPars].

FieldList = [IdentList

StatementSeq=

Statement = Expr

ExprList

| IF Expr THEN StatementSeq

{ELSIF Expr THEN StatementSeq}

[ELSE StatementSeq] END

| CASE Expr

[ELSE StatementSeq] END

| WHILE Expr DO StatementSeq END

| REPEAT StatementSeq UNTIL Expr

| FOR ident Expr TO Expr

 [BY ConstExpr] DO StatementSeq END

| LOOP StatementSeq END

| WITH [Guard DO StatementSeq]

StatementSeq] }

[ELSE StatementSeq] END

| EXIT | RETURN [Expr]].

Case = [CaseLabels CaseLabels

StatementSeq].

CaseLabels = ConstExpr ConstExpr].

Guard = Qualident Qualident.

ConstExpr = Expr.

Expr = SimpleExpr [Relation SimpleExpr].

SimpleExpr = AddOp Term}.

Term = Factor {MulOp Factor}.

Factor = Designator | number | character | string \

Expr

Set =

Element = Expr Expr].

Relation =

AddOp =

MulOp =

Designator = Qualident ident ExprList

Qualident ExprList

ExprList = Expr Expr}.

IdentList = IdentDef IdentDef}.

Qualident = [ident ident.

IdentDef = ident

2014-04-03 INR/101

BlackBox compiler to develop the Toolbox, while there is a well-known com-

-

lows: I spent hundreds of hours developing Gr, and BlackBox has not

crashed on me even once.

Gr is not entirely trivial, and potential for programming errors is huge. And

indeed, I have made many programming mistakes. I dereferenced NIL

pointers and I jumped out of array bounds. I unloaded a running code from

memory, while the corresponding display was still on screen. I abused the

environment in many different ways.

It never crashed.

I never had to worry about leaking memory.

If you can say the same about your compiler <name>, then please tell me

this approach is bringing. Full appreciation comes only after the BlackBox

A testimony by W.Skulski, exp. physics, USA

2014-04-03 INR/101

