The JUNO neutrino oscillation experiment

Gioacchino Ranucci INFN - Milano

INR Troitsk, 9/10/2015

- Determination of the neutrino mass hierarchy with a large mass liquid scintillation detector located at medium distance – few tens of km – from a set of high power nuclear complexes
- Additional astroparticle program
- Requirement and technical features of the experiment

JUNO Experiment – physics summary

 (Δm^2)

(m.)

The plan: a large LS detector

- − LS large volume: → for statistics
- − High Light(PE) → for energy resolution

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

Location of JUNO

JUNO

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang				Taish	an	
Status	Operational	Planned	Planned	Under constr	uctio	n (Under construct		truct	ion
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GV	V		18.4 GW		W	
Overbur	den ~ 700 m				by	y 20	20: 2	26.6	GW	1
				Previous site ca	andidat	e .				\bigcirc
Kaiping, Jiang Men Guangdon	city, g Province	2.5 h drive	Zhou CNS Shen Zhen	Kong Daya Bay	Huizho	u	L	ufeng PP	R	
			Hong K	ong						
	53 km	Mac	au	Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6
53 kn	n	20	\$	Power (GW) Baseline (km)	2.9 52.75	2.9 52.84	2.9 52.42	2.9 52.51	2.9 52.12	2.9 52.21
n	Taish	an NPP		Cores	TS-C1	TS-C2	TS-C3	TS-C4	DYB	ΗZ
Yangjian	8. tNPP, 2015			Power (GW) Baseline (km)	4.6 52.76	4.6 52.63	4.6 52.32	4.6 52.20	17.4 215	17.4 265

JUNO Collaboration

Nanjing U Nankai U Natl. CT U Natl. Taiwan U Natl. United U **NCEPU** Pekin U **Shandong U Shanghai JTU**

SYSU Tsinghua UCAS USTC Wuhan U Wuyi U **Xiamen U** Xi'an JTU

Observers: HEPHY Vienna PCUC Chile Jyvaskyla U. Finlan **UFB Brazil MSU Russia**

Europe (24)

France (5) **APC** Paris **CPPM** Marseille INFN-Ferrara **IPHC Strasbourg INFN-Milano** LLR Paris Subatech Nantes Finland (1) U Oulu Czech (1) Charles U

Italy (7) **INFN-Frascati INFN-Bicocca INFN-Padova INFN-Perugia INFN-Roma 3** Russia (2) **JINR INR Moscow**

Germany (6) FZ Julich **RWTH** Aachen TUM **U** Hamburg U Mainz U Tuebingen **Belgium** (1) ULB Amenia (1) YPI

America (3) PCUC - Chile

Sichuan U

Asia (28)

BNU

CAGS

CQ U

CIAE

DGUT

ECUST

Guangxi U

HIT

IHEP

Jilin U

Method to infer the Mass Hierarchy

The determination of the mass hierarchy relies on the identification on the positron spectrum of the "imprinting" of the anti- v_e survival probability

The time coincidence between the positron and the γ from the capture rejects the uncorrelated background

The "observable" for the mass hierarchy determination is the positron spectrum It results that $E_{vis}(e^+)=E(v)-0.8$ MeV

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

Method from Petcov and Piai, Physics Letters B 553, 94-106 (2002)

Survival probability

$$P_{ee} = \left| \sum_{i=1}^{3} U_{ei} \exp\left(-i\frac{m_i^2}{2E_i}\right) U_{ei}^* \right|^2$$

= 1 - cos⁴ $\theta_{13} \sin^2 2\theta_{12} \sin^2 (\Delta_{21})$
- cos² $\theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta_{31})$
- sin² $\theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta_{32})$
Or to make the effect of the
mass hierarchy explicit,
exploiting the approximation
 $\Delta m_{32}^2 \approx \Delta m_{31}^2$:

$$P_{ee} = 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ - \sin^{2} 2\theta_{13} \sin^{2} (|\Delta_{31}|) \\ - \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|) \\ + \frac{\sin^{2} \theta_{12}}{H} \pm \frac{\sin^{2} \theta_{12}}{2\theta_{13}} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|) ,$$

Troitsk, October 9, 2015 Gioacchino Ranucci - INFN Sez. di Milar

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E_{\nu}}, \quad (\Delta m_{ij}^2 \equiv m_i^2 - m_j^2)$$

2rViv 1210 01/11

The big suppression is the "solar" oscillation $\rightarrow \Delta m_{21}^2 \sin^2 \theta_{12}$ The ripple is the "atmospheric" oscillation $\rightarrow \Delta m_{31}^2$ from frequency MH encoded in the phase

In engineering term

The problem is

A pattern recognition procedure

Coupled to a statistical inference method

Also solvable with a Fourier type approach

Neutrino & Positron Spectra

no energy resolution Exercise done by Marco Grassi post-doc INFN/IHEP at Beijing Replicating sensitivity study in arXiv 1210.8141 \Box Three neutrino framework (no effective Δ mee Δ muµ) Baseline: 50 km Fiducial Volume: 5 kt □ Thermal Power: 20 GW Exposure Time: 5 years □ more pessimistic than the JUNO values ▶ used to be in sync with paper Visible energy due to inverse beta decay \Box E(vis) ~ E(v) – 0.8 MeV

Spectrum in term of neutrino energy –

□ Assuming 3% / sqrt(E) resolution

□ Assuming negligible constant term in resolution

Spectrum in term of positron visible energy – with energy resolution

Example of χ^2 comparison – NH true

Numerical values as before Scan of penalized (i.e. marginalized over the other minimization parameters) χ^2 vs. Δm^2_{31}

Case NH true- average spectrum

(no fluctuation –**Asimov data set**) Test statistics $\rightarrow \Delta \chi^2 = \chi^2_{min}(NH) - \chi^2_{min}(IH)$

Fit NH minimum: 1.6 10^{-2} (practically 0) FIT IH minimum: 4.0 $\overline{\Delta \chi^2} \sim 4.0$

Comparison between IH/NH best fits The best fit Δm_{31} lis different in the two cases

Fit almost succeeds in accommodating IH spectrum to NH data

The two solutions are fully degenerate but in a limited range of distances

Distribution of the $\Delta\chi^2$ test statistics

So far only the mean value of the test statistics has been evaluated

Full distribution obtained taking into account the statistical fluctuations of the data

A Monte Carlo example

The actual distribution of the test statistics is a Gaussian centered on the absolute value of $\overline{\Delta \chi^2}$: yellow IH, green NH

The degree of overlap of the two Gaussian curves determines the "resolving" power of the experiment

How to quantify the discovery potential in term of number of sigma

Not unique answer

- It depends upon the assumed framework (frequentist or Bayesian)
- > However the actual information is fully encoded in the amount of overlap of the two Gaussian independently from how it is <u>summarized</u> as number of σ
- > General result: sigma of each Gaussian = $2\sqrt{\Delta\chi^2}$ arXiv: 1210.8141v2

Gioacchino Ranucci - INFN Sez. di Milano

Frequentist considerations for the number of σ

The special relation between sigma and mean value of the two distributions implies that the median sensitivity according to the frequentist framework is automatically equal to

 $\sqrt{\Delta \chi^2} \sigma$

This means that if the actual outcome of the experiment is more extreme than the expected mean value one get a positive indication for one of the two hierarchies (IH_ if the outcome is positive or NH if the outcome is negative) with a CL better than $\sqrt{\Delta \chi^2 \sigma}$ i.e. with a probability of making a mistake (type I error according to the statistical terminology) equal to the corresponding one tailed p-value on the Gaussian curve

 $3 \sigma \rightarrow p$ -value (1-0.9973)/2 instead of the more common 1-0.9973

In summary for JUNO

- If the outcome is as typically expected, the MH will be determined rather unambiguously
- Even better if there will be an upward fluctuation
- A downward fluctuation will produce an ambiguous result

With these characteristics JUNO declare a 4 σ sensitivity with the above meaning (spectrum with about 100000 events)

Baseline: 52 km Fiducial Volume: 20 kt Thermal Power: 36 GW **Exposure Time: 6 years** Proton content 12% in mass, en. res. 3%

Alternative way to define the sensitivity: Bayesian approach

Given the same overlapped Gaussian curves a Bayesian methodology leads to less σ This is only an apparent effect of the way adopted to communicate the same fact, i.e. how much the two Gaussians are overlapped, it is not a real decrease of sensitivity, which is determined by the intrinsic overlap independently of the metric adopted as its measure

However, this has created huge misunderstandings, as well as a lot of papers on the arXiv For a specific outcome $\Delta\chi^2$ of the test statistics define the two a-posteriori probabilities

```
For IH
PIH=GIH(\Delta \chi^2)/(GIH(\Delta \chi^2)+GNH(\Delta \chi^2))
```

```
For NH
```

PNH=GNH($\Delta \chi^2$)/(GIH($\Delta \chi^2$)+GNH($\Delta \chi^2$)) Important result in **arXiv: 1210.8141v2** they are invariant Define

$$Paverage(IH) = \int_{0}^{\infty} PIH(\Delta \chi^{2})GIH(\Delta \chi^{2})d\Delta \chi^{2}$$

And similarly for Paverage (NH) (practically equal)

The two Paverage are converted in two tailed Gaussian p-values and in the corresponding number of $\sigma \rightarrow$ for the same JUNO parameters this exercise leads to 2.1

🐻itsk, October 9, 2015

Caveat: Multiple Cores

Reduction in sensitivity might arise from actual spatial distribution of nuclear reactor cores

Eg. two cores with 51% (49%) of tot. power, placed at 50 km (50.5km) distance from detector

Baseline difference results in destructive interference in the most sensitive region of the spectrum Important effect since JUNO will detect neutrinos from 10 cores

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

Multiple Cores: χ^2

Sensitivity loss is measured through the new χ^2 minimum

 $\Delta\chi^2$ between IH and NH in this numerical exercise is reduced from 4.0 to 2.6

In the JUNO set-up the spread of the cores is 500 m \rightarrow $\Delta\chi^2$ reduction of about 5

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

The other effects

Adverse effect

Non linearity of the energy scale

This clearly impacts the ability to distinguish the true from false Hierarchy since distorts the experimental spectrum, therefore a very careful calibration is required better than 1% arXiv:1307.7419v3, as well as the long term stability of the detector (Borexino experience very promising, this is what we accomplished in the bulk of the FV, anyhow this is a challenge due to the large dimensions)

Favorable element for analysis

Improved knowledge of Δm_{31} by other experiments specifically T2K and NovA ~1%

Exploited by adding a pull in the χ^2 definition thus increasing $\Delta \chi^2$

• In conclusion arXiv:1303.6733v1 demonstrates that JUNO can reach the value $\overline{\Delta \chi^2}$ in the range 15-20 **crucially dependent upon the resolution (this assumes 3%) which is by far the challenge of the experiment**

Sensitivity on MH

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

Precision Measurements

Probing the unitarity of U_{PMNS} to ~1%

Vast physics reach beyond Reactor Neutrinos

- Supernova burst neutrinos
- Diffuse supernova neutrinos
- Solar neutrinos
- Atmospheric neutrinos
- Geo-neutrinos
- Sterile neutrinos
- Nucleon decay
- Indirect dark matter search

Other exotic searches

Geo-neutrinos

Geo-neutrinos

Current results

KamLAND: 30 ± 7 TNU (*PRD 88 (2013) 033001*) Borexino: 38.8±12.2 TNU (*PLB 722 (2013) 295*) Statistics dominant

- Desire to reach an error of 3 TNU
- JUNO: 40 TNU, \times 20 statistics
 - Huge reactor neutrino backgrounds
 - Need accurate reactor spectra

5 v

8%

15%

30%

10 y

6%

11%

21%

Source	Events/year	Combin	ambined abone fit of goo a				
Geoneutrinos	408 ± 60	Combined snape fit of geo			geo-v		
U chain	311 ± 55		Best fit	1 v	3 v		
Th chain	92 ± 37			_ ,			
Reactors	16100 ± 900	U+Th	0.96	17%	10%		
Fast neutrons	3.65 ± 3.65	fix ratio					
⁹ Li - ⁸ He	657 ± 130	U (free)	1.03	32%	19%		
$^{13}C(\alpha, n)^{10}O$	18.2 ± 9.1			0.004	0-04		
Accidental coincidences	401 ± 4	Th (free)	0.80	66%	37%		

and reactor-v

Supernova neutrinos

Less than 20 events observed so far

Assumptions:

- ⇒ Distance: 10 kpc (our Galaxy center)
- ⇒ Energy: 3×10⁵³ erg
- \Rightarrow L_v the same for all types
- $\Rightarrow \text{ Tem. \& energy } T(\underline{v}_e) = 3.5 \text{ MeV}, \langle E(\underline{v}_e) \rangle = 11 \text{ MeV}$ $T(v_e) = 5 \text{ MeV}, \quad \langle E(v_e) \rangle = 16 \text{ MeV}$ $T(v_x) = 8 \text{ MeV}, \quad \langle E(v_x) \rangle = 25 \text{ MeV}$

Many types of events:

- $\Rightarrow \quad \overline{v}_e + p \rightarrow n + e^+, \sim 3000 \text{ correlated events}$
- \Rightarrow $\overline{v}_e + {}^{12}C \rightarrow {}^{12}B^* + e^+$, ~ 10-100 correlated events
- \Rightarrow $v_e + {}^{12}C \rightarrow {}^{12}N^* + e^-, \sim 10\text{-}100 \text{ correlated events}$
- $\Rightarrow v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*, \sim 600 \text{ correlated events}$
- $\Rightarrow v_{x} + p \rightarrow v_{x} + p, \text{ single events}$
- \Rightarrow $\nu_e + e^- \rightarrow \nu_e + e^-$, single events

Troitsk, $\overrightarrow{Octob} v_x + e^-$, single events 2015 these correlated events

detectors can not see

Water Cerenkov

Energy spectra & fluxes of all types of neutrinos

Diffuse Supernova Neutrino

_

- **DSNB:** Past core-collapse events
 - ⇒ Cosmic star-formation rate
 - ➡ Core-collapse neutrino spectrum
 - ⇒ Rate of failed SNe

Item		Rate (no PSD)	PSD efficiency	Rate (PSD)
Signal	$\langle E_{\bar{\nu}_e} \rangle = 12 \text{MeV}$	12.2	$\varepsilon_{\nu} = 50 \%$	6.1
	$\langle E_{\bar{\nu}_e} \rangle = 15 \text{MeV}$	25.4		12.7
	$\langle E_{\bar{\nu}_e} \rangle = 18 \text{MeV}$	42.4		21.2
	$\langle E_{\bar{\nu}_e} \rangle = 21 \text{MeV}$	61.2		30.8
Background	reactor $\bar{\nu}_e$	1.6	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. CC	1.5	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. NC	716	$\varepsilon_{\rm NC} = 1.1 \%$	7.5
	fast neutrons	12	$arepsilon_{ m FN}=1.3\%$	0.15
	Σ			9.2

10 Years' sensitivity

Syst. uncertainty BG		5	5%	20%		
$\langle E_{\bar{\nu}_e} \rangle$		rate only	spectral fit	rate only	spectral fit	
	$12 \mathrm{MeV}$	1.7σ	1.9σ	1.5σ	1.7σ	
	$15 \mathrm{MeV}$	3.3σ	3.5σ	3.0σ	3.2σ	
	$18 \mathrm{MeV}$	5.1σ	5.4σ	4.6σ	4.7σ	
	$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ	

Year

Proton decay into $K^+\overline{\nu}$

SUSY-favored decay mode

- → kaon visible in liquid scintillator!
- \rightarrow fast coincidence signature ($\tau_{\rm K}$ = 13 ns)
- \rightarrow signal efficiency: ~65% (atm. v bg)
- → remaining background: <0.1 ev/yr

Limit if no event is observed in 10yrs (0.5 Mt[.]yrs):

 $\tau_p > 2x10^{34} \text{ yrs (90%C.L.)}$

Physics at JUNO

- 1. Introduction
- 2. Neutrino Mass Hierarchy
- **3.** Precision Measurements of mixing parameters
- 4. Supernova burst neutrinos
- 5. Diffuse supernova neutrinos
- 6. Solar neutrinos
- 7. Atmospheric neutrinos
- 8. Geo-neutrinos
- 9. Sterile neutrinos
- **10. Nucleon decay**
- **11. Indirect dark matter search**
- 12. Other exotic searches
- **13.** Appendix

Yellow book

http://arxiv.org/pdf/1507.05613.pdf

The plan: a large LS detector

- − LS large volume: → for statistics
- − High Light(PE) → for energy resolution

CDR http://arxiv.org/abs/1508.07166

Gioacchino Ranucci - INFN Sez. di Milano

Challenges

- Large detector: >10 kt LS
- Energy resolution: < $3\%/\sqrt{E} \rightarrow \sim 1400 \text{ p.e./MeV}$

	Borexino	JUNO
LS mass	~0.3 kt	20 kt
Energy Resolution	<mark>5%/</mark> √E	<mark>3%/</mark> √E
Light yield	500 p.e./MeV	~1400 p.e./MeV

More photons, how and how many ?

Highly transparent LS:

⇒ Target attenuation length: → 30m/34m (absorption-reemission helps a lot as shown by Borexino)

 $\times 2.3$

High light yield LS:

⇒ Borexino: 1.5g/l PPO → 5g/l PPO about 30% more in the Light Yield

- Photocathode coverage :
 - $\Rightarrow \quad \text{Borexino: } 33\% \rightarrow \sim 80\%$

High QE "PMT":

⇒ 20" SBA PMT QE: 25% → 35% (Hamamatsu option)
 or New PMT QE: 25% → 40% (China option)

Alltogether these improvemente should ensure the desired LY and resolution - R&D ongoing to validate the various solutions

More Photoelectrons-- PMT

A PMT R&D collaboration

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

Main partner : North Vision

A new PMT factory in China

 HZC bought Photonics PMT division four years ago. They have successfully produced first PMTs

- Production Equipment for PMT;
- Patents and Technique documents;
- Technique Trainings;
- Technique Support for R&D;
- User authentication & product certification

HZC PMT plan

PMT Prototype R&D Plan for the DayaBay II

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

Final selection procedure of the PMT for JUNO

Tender among the three mentioned Companies North Vision (China) HZC (China) Hamamatsu (Japan)

Selection Committee appointed in October

Final decision by December

More Photoelectrons-- LS

Longer attenuation length

- Improve raw materials (using Dodecane instead of MO for LAB production)
- \Rightarrow Improve the production process
- ➡ Purification

Higher light yield

- ⇒ Lower temperature
- ➡ fluor concentration optimization

Linear Alky Benzene	Atte. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ coloum	18.6 m
Al ₂ O ₃ coloum	22.3 m

0,6

0.7

Jiangmen neutrino experiment LS production-purification flow chart(primary)

<u>Central Detector</u>

Some basic numbers:

- ⇒ 20 kt liquid scintillator as the target
- ⇒ Signal event rate: 40/day
- ⇒ Backgrounds with 700 m overburden:
 - ✓ Accidentals(~10%), ⁹Li/⁸He(<1%), fast neutros(<1%)

• A huge detector in a water pool:

- Default option: acrylic tank(D~35m) + SS structure
- Backup option: SS tank(D~38m) + acrylic structure + balloon

Issues:

- ⇒ Engineering: mechanics, safety, lifetime, ...
- ⇒ Physics: cleanness, light collection, ...
- → Assembly & installation
- Design & prototyping underway
 Acrylic option definitively selected in July

Veto Detectors

Detector

Cosmic muon flux

- ⇔ Overburden : ~700 m
- ⇒ Muon rate : 0.0031 Hz/m²
- ⇒ Average energy : 214 GeV

Water Cherenkov Detector

- ⇒ At least 2 m water shielding
- ⇔ ~1500 20"PMTs
- ⇒ 20~30 kton pure water
- Similar technology as Daya Bay (99.8% efficiency)

Top muon tracker

- ⇒ Muon track for cosmogenic bkg rejection
- Decommissioned OPERA@Gran Sasso plastic scintillator Water Cherenkov

Muon multiplicity at JUNO

Multiplicity	1	2	3	4	5	6
Fraction	89.6%	7.7%	1.8%	0.6%	0.3%	0.07%

OPERA Target Tracker for the Top Tracker

- 56 x-y walls ($6.7m \times 6.7m$ each)
- 14 TT stations, 4 walls each.
- each station is composed of 2 layers of 2 TT walls separated by 4 m distance.
- Distance of lowest and upper wall: 4 m
- Distance of lowest plane from water pool: 1 m.
- Different configurations (Middle, Rectangle, Around)
- Covered area is about $630m^2$.

•4XY Rectangle(Rtg) •(2×7 modules)

•4XY Around("O") •(2×4+2×3 modules)

Dismounting schedule

- Dismounting schedule:
 - mid-2015: first OPERA super module (31 TT walls, 248 modules)
 - beginning 2016: second OPERA super module (31 TT walls, 248 modules)
 - storage of all TT modules in Gran Sasso in containers up to the moment all dismounting is finished
 - send all TT containers (10) to Kaiping ~Spring 2016 if storage buildings already available
- Mounting in JUNO: ~2019

Electronics, trigger, DAQ...

- FADC at 1GHz sampling rate for pattern recognition, more information for event reconstruction, better event quality, ...
- Complicated trigger schemes should be available
- Supernova is an additional burden
- A challenge to DAQ since FADC is used
- Possible a new software scheme for neutrino experiments
- Design under finalization

The JUNO Central Detector Large-PMT Electronics

Main requirements

- → all PMT FE electronics will be underwater
- → 20 years lifetime
- ➔ no access possible after installation

Under water (baseline option)

- → ~ 16000 PMTs (Central Detector) + ~ 2000 PMTs (Water Cherenkov)
- → PMT High Voltage
- → FE electronics : signal amplification, ADC, digital processing and data reduction, trigger and digital data transmission

Above water (baseline option)

→ DAQ back-end electronics, global trigger electronics, low voltage, clock & control and online DAQ farms

Gioacchino Ranucci

JUNO PMT Under Water Electronics

High Voltage

- → baseline option : custom Cockcroft-Walton multiplier : convert AC low voltage to DC high voltage
- → commercial system as backup option

Front End Card

→ two ASICs R&D going on in Europe and China

Analog to Digital Unit

➔ two ASICs developments ongoing, keeping the commercial ADCs option as a backup

Global Control Unit

PD Interest

- → the heart of the electronics : it gets the digitized waveform from the ADC, digital process the signal,
- and generates a trigger signal

Link Control Unit (Multiplexer)

 collects the signal from several GCU and transmits the digital data above water

Gioacchino Ranucci

Calibration

Fundamental

- Precision of the energy scale, resolution, stability, uniformity all essential ingredients to ensure the success of the measure
- Which type ? Movable arms? Entire volume or only vertical?
- Sub-marine type ?
- Need ideas and R&D
- A working group recently established

<u>Open Tasks</u>

Calibration:

- \Rightarrow guided source insertion, LED, laser, CCD, ...
- 3" PMT & electronics, cable, box,...
- LS filling
- Slow control
 - ⇒ PMT, water, environmental monitoring & control
- DAQ: crates, server, router, software, ...
- Offline farm, data storage/data center, software,

Experimental Hall

600 m vertical shaft 1300-m long tunnel(40% slope) 50-m diameter, 80-m high cavern

Management Structure

Project Management Team

- Project manager: Y.F. Wang
- Deputy manager: J. Cao, G. Ranucci
- Chief engineer: H.L. Zhuang, XXX
- Chief technical support : XXX, XXX
- Safety officer: XXX, XXXX
- L2 System manager (11):
 - ⇔ Civil : X.N. Li
 - \Rightarrow CD : Y.K. Heng , Y. Hsiung
 - ⇒ VETO : M. Dracos , C.G. Yang
 - ⇒ LS : L. Zhou , G. Rannucci
 - ➡ MCP-PMT: S.L. Liu
 - ⇒ PMT(testing, potting, shielding, …): W. Wang, Z.H. Qin, Smirnov, XXXX
 - ⇒ Electronics & Trigger & HV : X.S. Jiang , A. Stahl, D. Naumov
 - ⇒ Calibration: J.L. Liu, S. Kettell
 - ⇒ Integration: H.L. Zhuang, XXX
 - ⇒ DAQ & Slow control : K.J. Zhu, A. Cabrera/S. Ducini
 - \Rightarrow Offline & computing: W.D. Li , XXXX

Technical Board

- Managers
- Chief engineers/tech. support
- safety officer
- One of L2
- Z. Wang, W.G. Li, W. McKeown, P. Lombardi, L. Oberauer, Z. Krumstein

Task Sharing in progress

China:

⇒Civil, CD, VETO, LS, PMT, electronics, DAQ, calibration, …

France:

⇒ VETO: TTS scintillator & electronics, shipping

Italy

⇒LS: distillation, gas striping,

- TTS: DAQ
- ⇒ Electronics

◆ Germany
 ⇒ electronics: FADC
 ⇒ LS: QCQA,

◆ Russia
 ⇒ PMT HV
 ⇒ TTS testing
 ⇒ TTS structure

ID		任务名称	Duration	Start	Finish	
						115 116 117 118 119 1
						Q4 Q1 Q2 Q3 Q4
1		JUNO	1832 days?	Mon 12/12/31	Thu 20/1/2	
2	1111	Underground lab construction	782 days	Thu 15/1/1	Wed 17/12/27	Dunderground lab construction
3		Civil Completion	0 days	Wed 17/12/27	Wed 17/12/27	Civil Completion
4		Water pool cleanning	43 days	Thu 17/12/28	Fri 18/2/23	Water pool cleanning
5		Central detector	1831 days?	Tue 13/1/1	Thu 20/1/2	
6		Detector design and test	934 days	Tue 13/1/1	Sun 16/7/31	Detector design and test
7	1111	Scheme comparation	325 days	Tue 13/1/1	Mon 14/3/31	comparation
8		Default scheme determined	349 days	Tue 14/4/1	Fri 15/7/31	Default scheme determined
9		Detector engineering design	260 days	Mon 15/8/3	Sun 16/7/31	Detector engineering design
10		Detector structure(Inner)	872 days	Tue 15/8/4	Fri 18/11/30	Detector struct
11	1111	Key technology R&D	348 days	Tue 15/8/4	Wed 16/11/30	Key technology R&D
12		Detector production bid	64 days	Thu 16/12/1	Tue 17/2/28	Detector production bid
13		Detector component production	283 days	Fri 17/3/3	Sat 18/3/31	Detector component produc
14	1111	Installation preparation	65 days	Mon 18/1/1	Sat 18/3/31	Installation preparation
15	1112	Detector installation	175 days	Mon 18/4/2	Fri 18/11/30	Detector instal
16		Detector structure(outer)	872 days	Tue 15/8/4	Fri 18/11/30	Detector struc
17	1111	Key technology R&D	348 days	Tue 15/8/4	Wed 16/11/30	Key technology R&D
18	1111	Detector production bid	64 days	Thu 16/12/1	Tue 17/2/28	Detector production bid
19	1111	Detector component production	283 days	Fri 17/3/3	Sat 18/3/31	Detector component produc
20		Installation preparation	65 days	Mon 18/1/1	Sat 18/3/31	Installation preparation
21		Detector installation	175 days	Mon 18/4/2	Fri 18/11/30	Detector instal
22		PMT Installation	1307 days	Tue 14/4/1	Fri 19/3/29	♥ PMT Instal
23	1111	PMT distribution design	349 days	Tue 14/4/1	Fri 15/7/31	PMT distribution design
24		PMT Assembly scheme	260 days	Mon 15/8/3	Sun 16/7/31	PMT Assembly scheme
25	1111	PMT assembly R&D and test	261 days	Wed 16/8/3	Mon 17/7/31	PMT assembly R&D and test
26	1111	PMT assembly component bid and production	349 days	Wed 17/8/2	Fri 18/11/30	PMT assembly co
27		PMT installation	64 days	Mon 18/12/3	Thu 19/2/28	PMT install
28		PMT & electronics joint test	21 days	Fri 19/3/1	Fri 19/3/29	T SPMT & elec
29		Filling System	1201 days?	Tue 15/6/2	Thu 20/1/2	
30	1111	Filling system conceptual design	304 days	Tue 15/6/2	Fri 16/7/29	Filling system conceptual design
31	1111	Filling system R&D and test	240 days	Mon 16/8/1	Thu 17/6/29	Filling system R&D and test
32		Filling system engineering design	196 days	Fri 17/6/30	Wed 18/3/28	Filling system engineerit
33		Filling system bid	66 days?	Thu 18/3/29	Thu 18/6/28	Filling system bid

JUNO Test Run on Jan.2, 2020

Troitsk, October 9, 2015

Gioacchino Ranucci - INFN Sez. di Milano

			Start	end	condition
1	Underground lab construct	tion	2015.1.1	2017.12.27	
2	Water pool cleaning and C	D construction preparation	2017.12.28	2018.2.23	1
3	CD & water poll equipmen	t installation	2018.4.2	2018.11.30	2
4	PMT base(& to be sealed e	electronics) design finalized	2015.1.1	2016.9.30	
5	PMT base production and	aging test	2016.10.1	2017.6.30	4
6	PMT bidding		2015.7.1	2015.12.31	
7	PMT mass production		2016.1.1	2018.8.31	6
8	PMT testing		2017.4.4	2018.11.30	
9	PMT potting and testing		2017.7.1	2018.11.30	5
10	CD & VETO PMT installation	n	2018.12.3	2019.2.28	
11	Readout electronics design	n finalized	2017.1.2	2017.5.31	
12	Readout electronics mass	production	2017.6.1	2018.3.30	11
13	Readout electronics testin	ig and aging	2018.4.1	2018.11.29	12
14	Readout electronics install	ation	2018.9.28	2019.2.28	
15	CD & water pool cleaning		2019.4.1	2019.4.30	
16	Water pool cover is placed		2019.5.1	2019.5.2	15
17	TTS supporting structure in	nstallation	2018.12.3	2018.12.21	16
18	TTS installation		2019.5.1	2019.7.30	17
19	AD & VETO water filling		2019.5.3	2019.7.2	18
20	LS filling		2019.7.3	2019.10.2	19
Tr ∂i<u>1</u>sk	, Testerun 2015	Gioacchino Ranucci - INFN Sez. di Milar	2019.11.5	2020.1.2	20

Conclusion

The vast potential physics reach of JUNO - MH determination and beyond - makes the experiment very attractive and one of he pillars of the next round of large liquid scintillator detectors worldwide

The perspectives for an Europen participation of significant impact are very promising, solidly grounded on previous expertise and well positioned in a larger Collaboration framework

New groups are eagerly needed and very welcomed