Осцилляции позитрония в зеркальную материю

Токарева Анна

ΜΓУ

January 12, 2012

<ロ> <四> <四> <日> <日> <日</p>

æ

МГУ

Токарева Анна

æ

МГУ

Проблема темной материи

• Кривые вращения галактик

Токарева Анна

Проблема темной материи

• Распределение массы в скоплениях галактик

Токарева Анна

ΜГУ

МГУ

Проблема темной материи

Космология:

Токарева Анна

Стандартная модель + копия

$$\mathbf{L} = \mathbf{L}_{\mathbf{SM}} + \mathbf{L}' + \mathbf{L}_{\mathsf{int}}$$

Токарева Анна

2

Lint - взаимодействия между нашими полями и зеркальными:

Токарева Анна

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

L_{int} - взаимодействия между нашими полями и зеркальными:

гравитация (обязательно!)

Токарева Анна

МГУ

L_{int} - взаимодействия между нашими полями и зеркальными:

гравитация (обязательно!)

Возможные перенормируемые взаимодействия:

Токарева Анна

МГУ

<ロ> <同> <同> < 回> < 回>

э

MEV

Зеркальный мир - идея

L_{int} - взаимодействия между нашими полями и зеркальными:

гравитация (обязательно!)

Возможные перенормируемые взаимодействия:

■
$$L_{int} = rac{\epsilon}{2} F^{\mu
u} F'_{\mu
u}$$
, $F_{\mu
u}$ - тензор напряженности

электромагнитного поля

Y VY

Токарева Анна

э

MEV

Зеркальный мир - идея

L_{int} - взаимодействия между нашими полями и зеркальными:

гравитация (обязательно!)

Возможные перенормируемые взаимодействия:

•
$$L_{int} = rac{\epsilon}{2} F^{\mu
u} F'_{\mu
u}, \ F_{\mu
u}$$
 - тензор напряженности

электромагнитного поля

L_{int} = η(H[†]H)(H'[†]H'), H - поле Хиггса

<ロ> <同> <同> < 回> < 回>

и все!

Почему зеркальный?

Зеркальная симметрия в слабых взаимодействиях нарушена:

$P(world) \neq world$

Как восстановить? (обобщить?)

<ロ> <四> <四> <日> <日> <日</p>

э

МГУ

Токарева Анна

Почему зеркальный?

Зеркальная симметрия в слабых взаимодействиях нарушена:

$\mathsf{P}(\mathsf{world}) eq \mathsf{world}$

Как восстановить? (обобщить?)

А - преобразование, переводящее частицу в зеркальную.

Тогда A(P(world)) = world!

э

Почему зеркальный?

Зеркальная симметрия в слабых взаимодействиях нарушена:

$\mathsf{P}(\mathsf{world}) eq \mathsf{world}$

Как восстановить? (обобщить?)

А - преобразование, переводящее частицу в зеркальную.

Тогда A(P(world)) = world!

イロト イポト イヨト イヨト

MEV

И.Кобзарев, Л.Окунь, И.Померанчук, 1966 г.

Токарева Анна

МГУ

Как сделать из зеркальных частиц темную материю?

Токарева Анна

МГУ

Токарева Анна

Космология

Другие начальные условия после инфляции - там холоднее → все этапы космологической эволюции зеркальной плазмы происходят раньше

<ロ> <同> <同> < 回> < 回>

э

MEV

Токарева Анна

Другие начальные условия после инфляции - там холоднее → все этапы космологической эволюции зеркальной плазмы

происходят раньше

∎ Первичный нуклеосинтез $\rightarrow \frac{\mathsf{T}'}{\mathsf{T}} = \mathsf{x} < \mathbf{0.5}.$

э

Другие начальные условия после инфляции - там холоднее → все этапы космологической эволюции зеркальной плазмы происходят раньше

 Первичный нуклеосинтез — <u>T</u> = x < 0.5. Влияние лишних степеней свободы на темп расширения

Другие начальные условия после инфляции - там холоднее → все этапы космологической эволюции зеркальной плазмы происходят раньше

- Первичный нуклеосинтез → ^{T'}/_T = x < 0.5. Влияние лишних степеней свободы на темп расширения
- Задолго до рекомбинации в обычном веществе темная материя должна стать зеркально-электрически нейтральной → x < 0.3.

・ロト ・回ト ・ヨト ・ヨト

Другие начальные условия после инфляции - там холоднее → все этапы космологической эволюции зеркальной плазмы происходят раньше

- Первичный нуклеосинтез <u>T</u> = x < 0.5. Влияние лишних степеней свободы на темп расширения
- Задолго до рекомбинации в обычном веществе темная материя должна стать зеркально-электрически нейтральной → x < 0.3. Реликтовое излучение, крупномасштабная структура Вселенной

・ロト ・回ト ・ヨト ・ヨト

æ

МГУ

Как сделать из зеркальных частиц темную материю? Астрофизика

Результат нуклеосинтеза:

Обычная материя *He* = 0.25 Зеркальная материяx=0.1
ightarrow He'=0.6

<ロ> <同> <同> < 回> < 回>

Токарева Анна

<ロ> <四> <四> <日> <日> <日</p>

э

MEV

Как сделать из зеркальных частиц темную материю? Астрофизика

Результат нуклеосинтеза:

Эволюция зеркальных звезд происходит в ~ 30 раз быстрее.

Z.Berezhiani et all, 'Evolutionary and structural properties of mirror star MACHOs', astro-ph/0507153

Токарева Анна

Как сделать из зеркальных частиц темную материю? Астрофизика

Результат нуклеосинтеза:

- Обычная материя He = 0.25 3еркальная материя $x = 0.1 \rightarrow$ He' = 0.6
- Эволюция зеркальных звезд происходит в ~ 30 раз быстрее.

Z.Berezhiani et all, 'Evolutionary and structural properties of mirror star MACHOs', astro-ph/0507153

 Частые вспышки зеркальных сверхновых подогревают невидимое вещество в галактиках, в результате чего оно образует сферическое гало, в отличие от обычного вещества, формирующего диск

R. Foot, R.R. Volkas, Spheroidal galactic halos and mirror dark matter, astro-ph/0407522

э

Как сделать из зеркальных частиц темную материю? Астрофизика

◆□> ◆□> ◆臣> ◆臣> = 三 のへで

МГУ

Токарева Анна

МГУ

Как сделать из зеркальных частиц темную материю? Астрофизика

Найденные (?) в гало по микролинзированию невидимые объекты МАСНО с массами 0.2 — 0.9 *M_{Sun}* - зеркальные звезды?

Токарева Анна

Возможная проблема - Bullet Cluster

Токарева Анна

Осцилляции позитрония в зеркальную материю

ΜΓУ

2

Возможная проблема - Bullet Cluster

2

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент		
Зеркальный мир - идея					
L_{int} - взаимодействия между нашими полями и зеркальными:					
гравитация (обязательно!)					
Возмож	кные перенорм	ируемые взаимодейсті	зия:		
$\Box L_{int} = \frac{\epsilon}{2} F$	ד - ד <mark>י <i>µ</i> ר</mark> י ד <mark>ו די די די די</mark> די	гензор напряженности			

электромагнитного поля

$$\sim \sim \sim \sim \sim \sim$$

• $L_{int} = \eta (H^+ H) (H'^+ H'), H$ - поле Хиггса

2

・ロン ・回 と ・ ヨン ・ ヨン …

Возможный эффект - исчезновение позитрония

 $f = 8.7 \cdot 10^4 \mathrm{~MHz}$

æ

МГУ

Токарева Анна

Возможный эффект - исчезновение позитрония

$$P(oPs
ightarrow oPs') = \sin^2(rac{\delta t}{2})e^{-\lambda t}$$

æ

МГУ

Токарева Анна

Токарева Анна

<ロ> <同> <同> < 回> < 回>

2

МГУ

∎ Исчезновение о-Рs: $\epsilon < 1.55 \cdot 10^{-7}$

Токарева Анна

- Исчезновение о-Ps: $\epsilon < 1.55 \cdot 10^{-7}$

э

- Исчезновение о-Ps: $\epsilon < 1.55 \cdot 10^{-7}$
- Асимметричная модель $\epsilon < 3 \cdot 10^{-9} \cdot \sqrt{rac{m'}{m}}$

э

Сигнал DAMA

Токарева Анна

Осцилляции позитрония в зеркальную материю

ΜΓУ

2

2

ΜГУ

Сигнал DAMA

8.9 σ

<ロ> <同> <同> < 回> < 回>

Токарева Анна

æ

МГУ

Сигнал DAMA

8.9 σ

(ロ) (回) (三) (三)

CoGent - подтверждение модуляции на уровне 2.9 σ

Токарева Анна

DAMA, CoGent, CDMS, XENON100

Объяснение - резерфордовское рассеяние зеркальных ядер с зарядом ϵeZ на ядрах мишени (R.Foot, 2011)

Токарева Анна

DAMA, CoGent, CDMS, XENON100

 Объяснение - резерфордовское рассеяние зеркальных ядер с зарядом *єеZ* на ядрах мишени (R.Foot)

DAMA, CoGent, CDMS, XENON100

 Объяснение - резерфордовское рассеяние зеркальных ядер с зарядом *єеZ* на ядрах мишени (R.Foot)

<ロ> <同> <同> < 回> < 回>

э

МГУ

Токарева Анна

 Объяснение - резерфордовское рассеяние зеркальных ядер с зарядом *єеZ* на ядрах мишени (R.Foot)

<ロ> <同> <同> < 回> < 回>

э

MEV

- $\frac{d\sigma}{dE} \sim \frac{1}{E^2}$
- $\epsilon \sqrt{\eta_{A'}} \approx (7 \pm 3) \cdot 10^{-10}$
- $\frac{m_{A'}}{m_p} \approx 22 \pm 8$

- Объяснение резерфордовское рассеяние зеркальных ядер с зарядом *єеZ* на ядрах мишени (R.Foot)
- $\blacksquare \ \frac{d\sigma}{dE} \sim \frac{1}{E^2}$

•
$$\epsilon \sqrt{\eta_{A'}} \approx (7 \pm 3) \cdot 10^{-10}$$

- $\blacksquare \ \frac{m_{A'}}{m_p} \approx 22 \pm 8$
- Диапазон энергий отскока: DAMA 2-8 keV, CoGent 0.5-2 keV

- Объяснение резерфордовское рассеяние зеркальных ядер с зарядом *єеZ* на ядрах мишени (R.Foot)
- $\frac{d\sigma}{dE} \sim \frac{1}{E^2}$

•
$$\epsilon \sqrt{\eta_{A'}} \approx (7 \pm 3) \cdot 10^{-10}$$

- $\bullet \ \frac{m_{A'}}{m_p} \approx 22 \pm 8$
- Диапазон энергий отскока: DAMA 2-8 keV, CoGent -0.5-2 keV
- XENON100, CDMS не видят сигнала: порог CDMS 10 keV

(日) (同) (三) (三)

<ロ> <同> <同> < 回> < 回>

2

мгу

∎ Исчезновение о-Рs: $\epsilon < 1.55 \cdot 10^{-7}$

Токарева Анна

<ロ> <同> <同> < 回> < 回>

æ

МГУ

- ∎ Исчезновение о-Рs: $\epsilon < 1.55 \cdot 10^{-7}$

Токарева Анна

- Исчезновение о-Ps: $\epsilon < 1.55 \cdot 10^{-7}$
- **DAMA**, COGENT: $\epsilon \sim 10^{-9}$

э

- ∎ Исчезновение о-Рs: $\epsilon < 1.55 \cdot 10^{-7}$
- **DAMA**, COGENT: $\epsilon \sim 10^{-9}$
- возможности нового эксперимента (S.Gninenko, P. Crivelli et al, 2010): $\epsilon \sim 10^{-9}$

э

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

Токарева Анна

(ロ) (四) (三) (三) (三) (0) (0)

МГУ

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

- В рамках проекта AEglS было предложено провести эксперимент (Crivelli, Gninenko et al, 2010) по поиску запрещенных распадов ортопозитрония. Основная цель проекта
 - получение макроскопических количеств антивещества.

э

- В рамках проекта AEglS было предложено провести эксперимент (Crivelli, Gninenko et al, 2010) по поиску запрещенных распадов ортопозитрония. Основная цель проекта
 - получение макроскопических количеств антивещества.
- Начальная стадия получение ортопозитрония. (связанное состояние e+e- со спином 1)

イロト イポト イヨト イヨト

- В рамках проекта AEglS было предложено провести эксперимент (Crivelli, Gninenko et al, 2010) по поиску запрещенных распадов ортопозитрония. Основная цель проекта
 - получение макроскопических количеств антивещества.
- Начальная стадия получение ортопозитрония. (связанное состояние е+е- со спином 1)
- Идея искать возможное исчезновение ортопозитрония из замкнутого объема, окруженного калориметром (регистрируются фотоны от аннигиляции o-Ps) (P.Crivelly, S.Gninenko et all, 2010)

イロト イポト イヨト イヨト

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

・ロン ・回 と ・ ヨン ・ ヨン …

2

МГУ

Токарева Анна

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

・ロン ・回と ・ヨン ・ヨン

2

МГУ

 $p - Ps \rightarrow 2\gamma$ (0, 125Hc), $o - Ps \rightarrow 3\gamma$ (143Hc)

Токарева Анна

Факторы реальной установки

 \blacksquare В вакууме для $\epsilon = 10^{-9}$ имеем $\delta = 1090~s^{-1}$

$$Br = \lambda \int_0^\infty P(oPs \to oPs')dt = rac{\delta^2}{2\lambda^2} = 1.2 \cdot 10^{-8}$$

<ロ> <四> <四> <日> <日> <日</p>

æ

МГУ

Токарева Анна

Факторы реальной установки

 \blacksquare В вакууме для $\epsilon = 10^{-9}$ имеем $\delta = 1090~s^{-1}$

$$Br = \lambda \int_0^\infty P(oPs \to oPs')dt = rac{\delta^2}{2\lambda^2} = 1.2 \cdot 10^{-8}$$

- Столкновения с молекулами воздуха
- Внешние поля: электрические и магнитные
- Столкновения со стенками калориметра

MEV

Формула: газ + внешнее поле

$$Br = rac{\delta^2}{2} rac{\lambda + w/2}{\lambda} rac{1}{(\lambda + w/2)^2 + (\Delta - w_{Re})^2}$$

•
$$\delta = 2 < Ops \mid L_{int} \mid Ops' > = 4\pi\epsilon f \sim 10^{3} s^{-1}$$

■
$$\lambda = 7,04 \cdot 10^{6} {
m s}^{-1}$$
 - обратное время жизни о-Рs

- w частота столкновений с газом
- Δ = E' Е разность энергий (энергия внешнего поля, разность масс для несимметричного случая)

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

2

МГУ

•
$$w_{Re} = \eta w, \ \eta = \sqrt{\frac{4\pi}{3mT\sigma}}, \ \eta \sim 3$$
для $\mathrm{T} \sim 300~\mathrm{K}$

Токарева Анна

Учет столкновений со стенками - идея

До столкновения:

$$\rho = \left(\begin{array}{cc} \rho_1 & y \\ y* & \rho_2 \end{array}\right)$$

После столкновения:

$$\rho = \int d^3x \left(\begin{array}{cc} \psi \psi^* & \psi^* \psi' \\ \psi \psi'^* & \psi' \psi'^* \end{array} \right) = \left(\begin{array}{cc} \rho_1 & \mathbf{0} \\ \mathbf{0} & \rho_2 \end{array} \right)$$

Токарева Анна

Осцилляции позитрония в зеркальную материю

2

Иллюстрация

Токарева Анна

МГУ

2

<ロ> <同> <同> < 回> < 回>

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

Зависимость вероятности исчезновения от давления

Токарева Анна

Осцилляции позитрония в зеркальную материю,

2

<ロ> <四> <四> <日> <日> <日</p>

Зеркальная материя	Космология	Ограничения на ϵ	Новый эксперимент

Зависимость вероятности исчезновения от температуры

Токарева Анна

2

Электрическое поле

Токарева Анна

2

Магнитное поле

2

<ロ> <四> <四> <日> <日> <日</p>

зеркальная материя	Космология	Ограничения на с	повый эксперимент
	Выводь	1	
	••		

Осцилляции o – Ps – o – Ps' - самый чувствительный путь поиска зеркальной материи в лаборатории и получения ограничений на величину смешивания фотона с зеркальным партнером.

・ロト ・回ト ・ヨト ・ヨト

2

МГУ

- Осцилляции о Ps о Ps' самый чувствительный путь поиска зеркальной материи в лаборатории и получения ограничений на величину смешивания фотона с зеркальным партнером.
- Получена аналитическая формула для вероятности исчезновения ортопозитрония в будущем эксперименте без учета столкновений со стенками.

э

- Осцилляции о Ps о Ps' самый чувствительный путь поиска зеркальной материи в лаборатории и получения ограничений на величину смешивания фотона с зеркальным партнером.
- Получена аналитическая формула для вероятности исчезновения ортопозитрония в будущем эксперименте без учета столкновений со стенками.
- Рассмотрено влияние внешних полей.

э

- Осцилляции о Ps о Ps' самый чувствительный путь поиска зеркальной материи в лаборатории и получения ограничений на величину смешивания фотона с зеркальным партнером.
- Получена аналитическая формула для вероятности исчезновения ортопозитрония в будущем эксперименте без учета столкновений со стенками.
- Рассмотрено влияние внешних полей.
- Численный расчет вероятности для реального эксперимента в замкнутом объеме с заданным распределением по скоростям (С. Демидов)

3

・ロト ・回ト ・ヨト ・ヨト

・ロト ・四ト ・ヨト ・ヨト

2

мгу

Спасибо за внимание!

Токарева А<u>нна</u>