Gamow-Teller nuclear resonances and neutrino capture cross-section

<u>G.A. Koroteev</u>, Yu.S. Lutostansky, V.N. Tikhonov, A.N.Fazliakhmetov

Plan

Nuclear resonances and charge-exchange reactions

- The framework of the self-consistent theory of finite Fermi systems
- \succ The cross-section estimation for (v,e) reaction
- Solar neutrino capture rate
- > 127Iodine detector and neutron emission

Motivation

- Neutrino capture strength function could be investigated using charge-exchange reactions.
- (p,n), (3He,t), (d,2He) reactions provide essential information about strength functions and their resonant structure.
- Giant GT-resonance and pygmy-resonances (PR1,PR2...) determine a significant part of the Strength function.
- Nuclear phenomenology could partially explain the increase in cross-sectional assessment.

Nuclear Resonances (general view)

<u>GTR predictions</u>

Yu. V. Gaponov, Yu. S. Lyutostanskii, *JETP Lett.* 15, 120 (1972).

PR calculations

Yu. S. Lutostansky JETP Lett. 106, 7 (2017)

Nuclear Resonances on the example for 76As

Neutrino Capture Cross-Section

 $\sigma_{total}(E_{\nu}) = \sigma_{discr}(E_{\nu}) + \sigma_{res}(E_{\nu})$

$$\sigma_{discr}(E_{\nu}) = \frac{1}{\pi} \sum_{k} G_{F}^{2} \cos^{2} \theta_{C} \, p_{e} E_{e} F(Z, E_{e}) [B(F)_{k} + (\frac{g_{A}}{g_{V}})^{2} B(GT)_{k}] \\ E_{e} - m_{e} c^{2} = E_{\nu} - Q_{EC} - E > 0] \\ \sigma_{res}(E_{\nu}) = \frac{1}{\pi} \int_{\varepsilon_{min}}^{\varepsilon_{max}} G_{F}^{2} \cos^{2} \theta_{C} \, p_{e} E_{e} F(Z, E_{e}) S(E) dE$$

[A. K. Vyborov, L.V. Inzhechik, G. A. Koroteev, Yu. S. Lutostansky, V. N. Tikhonov, A. N. Fazliakhmetov. Bull. Russ. Acad. Sci. Phys. 83 (2019) 483; *Ap* 82 (2019) 397]

Charge-Exchange Reactions Comparison ⁷¹Ga(³He,*t*)⁷¹Ge and ⁷¹Ga(*p*,*n*)⁷¹Ge

Microscopic description - 1

The Gamow–Teller resonance and other charge-exchange excitations of nuclei are described in Migdal TFFS-theory by the system of equations for the effective field:

$$V_{pn} = e_{q} V_{pn}^{\omega} + \sum_{p'n'} \Gamma_{np, n'p'}^{\omega} \rho_{p'n'} \qquad V_{pn}^{h} = \sum_{p'n'} \Gamma_{np, n'p'}^{\omega} \rho_{p'n'}^{h}$$
$$d_{pn}^{1} = \sum_{p'n'} \Gamma_{np, n'p'}^{\xi} \varphi_{p'n'}^{1} \qquad d_{pn}^{2} = \sum_{p'n'} \Gamma_{np, n'p'}^{\xi} \varphi_{p'n'}^{2}$$

where V_{pn} and V_{pn}^{h} are the <u>effective fields</u> of quasi-particles and holes, respectively;

 $V_{pn}^{\ \omega}$ is an <u>external</u> charge-exchange <u>field</u>; $d_{pn}^{\ 1}$ and $d_{pn}^{\ 2}$ are effective vertex functions that describe change of the <u>pairing gap Δ </u> in an external field;

 Γ^{ω} and Γ^{ξ} are the amplitudes of the <u>effective nucleon–nucleon interaction</u> in, the particle–hole and the particle–particle channel;

ho, ho^h , ho^1 and ho^2 are the corresponding transition densities.

Effects associated with change of the pairing gap in external field are negligible small, so we set $d_{pn}^{1} = d_{pn}^{2} = 0$, what is valid in our case for external fields having zero diagonal elements

Width:
$$\Gamma = -2 \operatorname{Im} \left[\sum (\varepsilon + iI)\right] = \Gamma = \alpha . \varepsilon |\varepsilon| + \beta \varepsilon^3 + \gamma \varepsilon^2 / \varepsilon | + O(\varepsilon^4) ..., \text{ where } \qquad \alpha \approx \varepsilon_{\mathrm{F}}^{-1}$$

 $\Gamma_{\mathrm{i}}(\omega_{\mathrm{i}}) = 0.018 \omega_{\mathrm{i}}^2 \text{ MeV}$

Microscopic description - 2

For the GT effective nuclear field, system of equations in the energetic λ -representation has the form [FFST Migdal A. B.]:

$$V_{\lambda\lambda'} = V_{\lambda\lambda'}^{\omega} + \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\lambda\lambda'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\lambda\lambda'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V_{\nu\nu'} = \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\nu\nu'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\nu\nu'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V^{\omega} = e_{q}\sigma\tau^{+}; \quad A_{\lambda\lambda'}^{(p\bar{n})} = \frac{n_{\lambda}^{n}(1-n_{\lambda'}^{p})}{e_{\lambda}^{n}-e_{\lambda'}^{p}+\omega}; \quad A_{\lambda\lambda'}^{(n\bar{p})} = \frac{n_{\lambda}^{p}(1-n_{\lambda'}^{n})}{e_{\lambda}^{p}-e_{\lambda'}^{n}-\omega}.$$

where n_{λ} and ε_{λ} are, respectively, the occupation numbers and energies of states λ .

Local nucleon–nucleon δ -interaction Γ^{ω} in the Landau-Migdal form used:

$$\Gamma^{\omega} = C_0 (f_0' + g_0' \sigma_1 \sigma_2) \tau_1 \tau_2 \delta(r_1 - r_2)$$

where coupling constants of: $f_0'=1.35$ – isospin-isospin and $g_0'=1.22$ – spin-isospin quasi-particle interaction with L = 0.

Matrix elements M_{GT} : $M_{GT}^2 = \sum_{\lambda_1 \lambda_2} \chi_{\lambda_1 \lambda_2} A_{\lambda_1 \lambda_2} V_{\lambda_1 \lambda_2}^{\varpi}$ where $\chi_{\lambda \nu}$ – mathematical deductions **GT** - values are normalized in FFST: $\sum_i M_i^2 = e_q^2 3(N-Z)$ Yu. S. Lutostansky and V.N.Tikhonov, Physics of Atomic

Nuclei, 2016, Vol. 79, No. 6

Experimental data and Fit

Fitting Parameters

$$S_{i}(E) = M_{i}^{2} \cdot \frac{\Gamma_{i}(1 - \exp(-(E/\Gamma_{i})^{2}))}{(E - w_{i})^{2} + \Gamma_{i}^{2}}$$

- shape form for all the resonances. 3 free parameters: the centroid energies, the widths, and the amplitudes.

$$\frac{d^2\sigma}{dEd\Omega} = N_0 \frac{1 - \exp[(E_t - E_0)/T]}{1 + [(E_t - E_{QF})/W^2]}$$

- QFC background shape J. Jänecke et al. Phys. Rev. C 48, 2828 (1993) Only N_0 and E_{QF} are used as free parameters.

Data for the fit is taken from D. Frekers et al. Phys. Rev. C 91, 034608 (2015)

Charge-Exchange Strength Function of Reaction ⁷¹Ga(p,n)⁷¹Ge

TFFS prediction for GT-resonances spectrum vs. experimental strength function

Normalization and Quenching effect

Alternative version of the basement for

- Black and Green points as in the D. Frekers et al. Phys. Rev. C 91, 034608 (2015)
- Red and Blue points corresponds to the our B(GT) extraction from resonant part of the experimental strength function and their sum with individual states.

 Here we use just the most "conservative" estimation, only from GTR and PR1, PR2 resonances.

Solar neutrino capture rate

Neutrino capture cross-section for 71Ga

Solar neutrino capture rate for 71Ga

Capture rate	D. Frekers et al.	Calculation	Calculation	
[SNU]	Phys. Rev. C 91,	q=1	q=0.5	
	034608 (2015)			
R _{diskr}	115.9	119.5	119.5	
R_{3-S_n}	6.5	14.2	7.0	
R _{total}	122.4	133.7	126.5	

	Total capture rate [SNU]						
Solar	D. Frekers et al. Phys. Rev.	Calculation	Calculation				
component	C 91, 034608 (2015)	q=1	q=0.5				
pp	69.9	72.0	72.0				
pep	3.4	3.5	3.5				
⁷ Be	36.7	38.1	38.1				
⁸ B	10.1	17.7	10.6				
$ \left\{\begin{array}{c} ^{13}N\\ ^{15}O\\ ^{17}F \end{array}\right. $	2.2	2.3	2.3				
R _{total}	122.4	133.7	126.5				

Gamow Teller and Analog resonances

<u>Sn – Isotopes</u> Analog Resonance – AR = IAS ENERGIES

<u>Sn – Isotopes</u> Gamow-Teller Resonance – GTR Energies

Charge-Exchange Strength Function of Reaction ¹³²Sn(p,n)¹³²Sb

Extraction of the Landau-Migdal Parameter from the Gamow-Teller Giant Resonance in ¹³²Sn

J. Yasuda et al. (60 authors) Phys. Rev. Lett. v. 121, 132501 (2018).

Experimental data on the reaction 132 Sn(p,n) 132 Sb were compared with theoretical RPA calculations with different values of the parameter g' and than fitting of this parameter

E_{GTR} and E_{AR} TFFS CALCULATIONS

Nucleus	N-Z	E_{AR}, MeV		E_{c}	_{GTR} , <u>MeV</u>	E_{GTR} - E_{AR} , MeV		
in/out	A	<u>calc.</u>	exp.	<u>calc.</u>	exp.	<u>calc.</u>	(1)	exp.
¹¹² Sn / ¹¹² Sb	0.107	6.69	6.16	9.38	8.94 ± 0.25	2.69	2.89	2.78 ± 0.3
¹¹⁴ Sn / ¹¹⁴ Sb	0.123	6.92	7.28	9.60	9.39 ± 0.25	2.68	2.17	$\textbf{2.11}\pm\textbf{0.3}$
¹¹⁶ Sn / ¹¹⁶ Sb	0.138	8.47	8.36	10.36	10.04 ± 0.25	1.89	1.75	1.68 ± 0.3
¹¹⁷ Sn / ¹¹⁷ Sb	0.145	11.38	11.27	12.91	$\textbf{12.87} \pm \textbf{0.25}$	1.53	1.63	1.60 ± 0.3
¹¹⁸ Sn / ¹¹⁸ Sb	0.153	9.23	9.33	10.93	10.61 ± 0.25	1.70	1.52	$\textbf{1.28} \pm \textbf{0.3}$
¹¹⁹ Sn / ¹¹⁹ Sb	0.160	12.48	12.36	13.77	13.71 ± 0.25	1.29	1.41	1.35 ± 0.3
¹²⁰ Sn / ¹²⁰ Sb	0.167	10.20	10.24	11.78	11.45 ± 0.25	1.58	1.36	1.21 ± 0.3
¹²² Sn / ¹²² Sb	0.180	11.17	11.24	12.54	12.25 ± 0.25	1.37	1.22	1.01 ± 0.3
¹²⁴ Sn / ¹²⁴ Sb	0.194	12.05	12.19	13.59	13.25 ± 0.25	1.54	1.14	1.06 ± 0.3
¹³² Sn / ¹³² Sb	0.242	15.21	15.6	16.63	16.3 ± 0.4	1.42	1.02	0.7 ± 0.4
$(\underline{E}_{exp} - \underline{E}_{calc}), \underline{M}$	leV.	0.2	24	0.35		0.39	0.20	
<standard_dev< td=""><td>iations></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></standard_dev<>	iations>							

 $E_{GTR} - E_{AR} = (g'_0 - f'_0)\Delta E + b\frac{1 + bg'_0}{g'_0}\frac{E_{ls}^2}{\Delta E}[1 + c(A)x^2]^{-1}; \quad b = \frac{2}{3}[1 - (2A)^{-1/3}]; \quad c(A) \approx 0.8A^{-1/3} \text{ MeV}$ (1)

<u>Table.</u> Energies (in MeV) of the analog $-E_{AR}$, Gamow-Teller $-E_{GTR}$, and three pigmy resonances $-E_{PR}$ according to the TFFS microscopic calculations and experimental data for tin isotopes from [6], as well as the standard deviations $\langle E_{exp} - E_{calc} \rangle$ of the calculations and experimental data.

Nucleus initial/final	E	7 _{AR}	$E_{\rm gTR}$		$E_{\rm PRI}$		$E_{_{\mathrm{PR2}}}$		$E_{\rm PR3}$	
	exp. ± 0.03	<u>calc</u> .	exp. ± 0.25	<u>calc</u> ,	exp. ± 0.25	<u>calc</u> .	exp. ± 0.20	<u>calc</u>	exp. ± 0.20	<u>calc.</u>
¹¹² Sn / ¹¹² Sb	6.16	6.69	8.94	9.38	4.08	4.70	2.49	3.00	1.33	1.52
¹¹⁴ Sn / ¹¹⁴ Sb	7.28	6.92	9.39	9.60	4.55	4.97	2.95	2.65	1.88	1.60
¹¹⁶ Sn / ¹¹⁶ Sb	8.36	8.47	10.04	10.36	5.04	5.23	3.18	2.68	1.84	1.75
¹¹⁷ Sn / ¹¹⁷ Sb	11.27	11.38	12.87	12.91	7.64	7.54	5.45	5.21	3.87	3.71
¹¹⁸ Sn / ¹¹⁸ Sb	9.33	9.23	10.61	10.93	5.38	5.54	3.17	3.08	1.47	1.55
¹¹⁹ Sn / ¹¹⁹ Sb	12.36	12.48	13.71	13.77	8.09	8.27	5.49	5.57	3.63	4.07
¹²⁰ Sn / ¹²⁰ Sb	10.24	10.20	11.45	11.78	5.82	6.24	3.18	3.47	1.38	0.98
¹²² Sn / ¹²² Sb	11.24	11.17	12.25	12.54	6.65	6.76	3.37	3.91	1.45	1.55
¹²⁴ Sn / ¹²⁴ Sb	12.19	12.05	13.25	13.59	7.13	7.16	3.44	3.06	1.50	2.17
$\langle \underline{E}_{exp} - \underline{E}_{cak} \rangle$	0	.17	0.	.29	0.3	31	0.3	36	0.33	3

[6]. K. Pham, J. Jänecke, D. A. Roberts, M.N. Harakeh, G.P.A. Berg, S. Chang, J. Liu, et al. Fragmentation and splitting of Gamov-Teller resonances in Sn(³He,*t*)Sb charge-exchange reactions, A = 112-124. Phys. Rev. C 51, 526 (1995).

<u>Sn – Isotopes</u> Analog Resonance – AR = IAS ENERGIES

Energies E(GTR) - E(PR) for Sn isotopes

Difference between the energies of the GTR and pygmy resonances (PR) lying below it for Sn isotopes from the mass number A according to (•) – experimental data [6], (×) connected by the dashed line – TFFS numerical calculations; lines – model formula calculations. Digits 1, 2 and 3 mark groups of excitations belonging to pygmy resonances: PR1 – 1, PR2 – 2 and PR3 – 3.

[6]. K. Pham, J. Jänecke, et al. Phys. Rev. C 51, 526 (1995).

$E_{GTR} - E_{AR}$ MODEL DESCRIPTION - 1

Calculated TFFS (circles – \circ) and experimental (**n**) dependencies of the relative energy $y(x) = \Delta(E_{GTR}-E_{AR})/E_{ls}$ from the dimensionless value $x=\Delta E/E_{ls}$. Blue circles (•) connected by line – calculated values for Sn isotopes. Red line – calculations with $E_{ls}(N) = 20N^{-13} + 1.25$ (MeV).

$$y = \frac{E_{GTR} - E_{AR}}{E_b} = (g'_0 - f'_0) x + b \frac{1 + b g'_0}{g'_0 x} [1 + c(A) x^2]^{-1}; \quad x = \Delta E / E_b; \quad b = \frac{2}{3} [1 - (2A)^{-1/3}]; \quad c(A) \approx 0.8A^{-1/3}$$

+ Exp. Data. circles – \circ : calc. for Nucl. on Exp. Line of beta-stability up to ²⁵⁸Fm. Red line: calculated values for nuclei on the line of beta-stability with $E_{ls}(N) = 20N^{-1/3} + 1.25$ (MeV), $Z_{\beta}(A)=A/(2+0,0150A^{2/3})$, and with $f_0^{\prime}=1.35$, $g_0^{\prime}=1.22$ up to $A_{max}=270$. Green line: the same with $f_0^{\prime\prime}=1.345$, $g_0^{\prime\prime}=1.22$ up to $A_{max}=280$.

28

Relative Ratio of Calculated Cross Sections of Neutrino Capturing Reaction ⁷¹Ga(v,e)⁷¹Ge

- $3 \sigma(tot)/\sigma(tot without GTR, PR1 and PR2);$
- $4 \sigma(tot)/\sigma(tot without GTR, PR1, PR2 and PR3)$

Ä

76Ge example

Experimental data (76Ge + 74Ge)

PHYSICAL REVIEW C 86, 014304 (2012)

^aComposed of a ⁷⁶As 1⁺ state and the ⁷⁴As 2⁻ g.s. (next line)

29.04.2021

Experimental data and Fitting (76Ge+74Ge)

J. Thies, D. Frekkers et al. Phys. Rev. C. 86. 10.1103/PhysRevC.86.014304

$$(0.0^{\circ} - 0.5^{\circ})$$

Theoretical Strength function for 76Ge and 74Ge

Theoretical Strength function for 76Ge + 74Ge (low energy part)

Large lodine Detector and Neutron emission

127Xe

$$\nu_e + {}^{127} \mathrm{I} \to e^- + {}^{127} \mathrm{Xe}$$

Scheme of charge-exchange excitations of the 127Xe nucleus in the 127I(*p*; *n*)127Xe reaction with the decay of highlying excitations in the stable 126Xe isotope accompanied by the emission of a neutron. The giant Gamow-Teller resonance (GTR), analog resonance(AR), and lower lying Gamow-Teller pygmy resonances (PR) are indicated; *Sn* is the neutron separation energy in the 127Xe nucleus.

36

Theoretical vs. Experimental Strength Function

M. Palarczyk, J. Rapaport, C. Hautala, *et al.*, Measurement of Gamow-Teller strength for 127I as a solar neutrino detector, Phys. Rev. C **59**, 500 (1999)

Solar neutrino spectrum and capture rate

Neutron emission role and GT resonances influence

							× /	
Rate of neutrino capture without neutron emission from the ¹²⁷ Xe nucleus								
	${}^{8}\mathrm{B}$	hep	^{13}N	$^{15}\mathrm{O}$	17 F	⁷ Be	Total	
R-total	33.232	0.204	0.168	0.514	0.013	3.031	37.904	
R without GTR	9.818	0.047	0.165	0.483	0.012	3.012	14.223	
R without GTR and PR1	6.018	0.019	0.164	0.468	0.012	3.002	10.345	
Rate of neutrino capture with neutron emission from the ¹²⁷ Xe nucleus								
R-total	27.889	0.117	0.168	0.514	0.013	3.031	32.474	
R without GTR	8.324	0.030	0.165	0.483	0.012	3.012	12.713	
R without GTR and PR1	6.011	0.019	0.164	0.468	0.012	3.002	10.337	

127 vs 37Cl detectors

S(E) experimental data for 127I

TABLE II. Comparison of sensitivities to ⁷Be and ⁸B solar neutrinos between ¹²⁷I and ³⁷Cl detectors. The total cross sections are in units of 10^{-45} cm².

	$^{127}\mathrm{I}$	³⁷ Cl
⁷ Be	1.22 ± 0.40	0.24 ± 0.02
${}^{8}\mathbf{B}$	$(4.3\pm0.6)\times10^3$	$(1.11\pm0.08)\times10^{3}$
Ratio ⁸ B/ ⁷ Be	3525 ± 1260	4625 ± 510

Uncertainties at low energies

D. Frekers and M. Alanssari

Eur. Phys. J. A (2018) 54: 177

- Difficulties in B(GT) extraction for all charge-exchange reactions
- Uncertainties of Fermi function!

...

Fermi functions

1 - E. Fermi, "An attempt of a theory of beta radiation. 1.", Z. Phys.88, 161-177(1934).

2 - L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, and X. Mougeot, "High precision analytical description of the allowed β spectrum shape", Rev. Mod.Phys.90, 015008 (2018)

3 - H. Behrens and J. J[°]anecke,Numerical Tables for Beta-Decay and Electron Capture, Landolt-Boernstein - Group I Elementary Particles,Nuclei and Atoms (Springer, 1969).

4 - B. S. Dzhelepov and L. N. Zyrianova, Influence of atomic electric fields on beta decay(Moscow: Akad. Nauk SSSR, 1956).

5 - Y. P. Suslov, Izv. Akad. Nauk SSSR, Ser. Fiz.32, 213 (1968).

INR

Conclusions

- GT resonances plays significant role in neutrino capture process and could be investigated using charge-exchange reactions
- TFFS is good for accurate description resonant part of strength function
- Quenching effect is still not closed issue
- New detector based on 127I could be sensitive to the high-energy part of the solar neutrino spectrum

ullet

Thank you for your attention!

