Разработка бестриггерной потоковой системы сбора данных переднего адронного калориметра эксперимента СВМ

Представление на соискание ученой степени кандидата физико-математических наук по специальности 01.04.01 - "Приборы и методы экспериментальной физики".

Финогеев Д. А.

Научный руководитель - кфмн, Губер Ф. Ф.

Содержание доклада

≻ Введение

- Эксперимент CBM (Compressed Baryonic Matter experiment) на строящимся ускорительном комплексе FAIR (Facility for Antiproton & Ion Research)
- Передний адронный калориметр PSD (Projectile Spectator Detector) на эксперименте CBM
- Считывающая электроника PSD
- Особенности системы сбора данных эксперимента СВМ
- Разработка системы сбора данных калориметра PSD
- Интеграция считывающей электроники калориметра в общую систему сбора данных СВМ и ее

тестирование на экспериментальной установке mCBM

- ▶ Положения выносимые на защиту
- > Список докладов и публикаций по результатам диссертации

Ускорительный комплекс FAIR

Ускорительный комплекс FAIR (Facility for Antiproton & Ion Research) сооружается в институте GSI (Helmholtz Centre for Heavy Ion Research), Германия, г. Дармштадт:

- Первичные пучки (SIS100):
- Тяжелые ионы (до ²³⁸U⁹²⁺) 11 GeV/u, 10¹⁰/s
- Протоны 30 GeV, 3x10¹³/s
- > Вторичный пучки:
- Радиоактивные ядра 1.5 2 GeV/u
- Антипротоны 1.5 15 GeV

Комплекс FAIR включает 4 эксперимента

- Атомная физика, физика плазмы АРРА
- Сжатая Барионная материя СВМ
- Структура атомного ядра, астрофизика и реакции — NUSTAR
- Аннигиляция антипротонов **PANDA**
- FAIR международный проект: более 50 стран участниц, включая РФ
- ИЯИ РАН участвует в эксперименте CBM разработка и создание переднего адронного калориметра PSD
- Планируемый запуск FAIR 2026г.

Эксперимент CBM на ускорителе FAIR

Основная цель эксперимента CBM (Compressed Barionic Matter) — исследование сверхплотного состояния ядерной материи с использованием редких диагностических процессов

Научная программа будет сфокусирована на исследовании:

- коротко-живущих лёгких векторных мезонов, распадающихся на лептонные пары (например, р-мезон);
- странных барионов, содержащих более чем один странный кварк;
- мезонов, содержащих очарованные кварки;
- коллективных потоков всех наблюдаемых частиц и их флуктуаций.
- Пучки тяжелых ионов: Au + Au at 4 to 11 AGeV Интенсивность пучка: 10⁹ ions/sec; и скоростью реакции 10 MHz
- Интенсивность пучка при запуске, и в первых экспериментах 5x10⁷ ions/sec; скорость реакции - 5 MHz

Основные требования эксперимента

- Идентификация заряженных адронов и лептонов
- Измерение с хорошей точностью импульсов вторичных частиц
- Определение вершины взаимодействия (σ ~ 50μm)
- Определение плоскости реакции и центральности

Требования к электронике и системе сбора данных

- Радиационно-стойкая детектирующая электроника
- Бестриггерная, высокоскоростная система сбора данных
- Реконструкция и отбор событий «налету»

4

Установка тСВМ в ГСИ, Германия

План установки mCBM

Установка mCBM располагается в экспериментальной зоне ускорителя SIS18 в ГСИ и предназначена для тестирования всех детекторных систем и системы сбора данных эксперимента CBM в условиях близких к эксплуатационным условиям на CBM

- mCBM включает прототипы всех детекторов эксперимента CBM
- Система сбора данных mCBM является прототипом системы CBM
- Модуль PSD был установлен на mCBM в 2019

Фото установки mCBM

Передний адронный калориметр эксперимента СВМ

Основная задача переднего адронного калориметра (PSD - Projectile Spectator Detector) состоит в определении центральности и плоскости реакции в столкновениях тяжелых ионов

- PSD состоит из 46 продольно ссегментированных модулей размером 20x20x165 см³ с пучковым отверстием в центре калориметра
- PSD будет расположено на расстоянии 10.5 от мишени
- Общий вес калориметра составляет 23 тонны
- Все модули и электроника калориметра разработаны и изготовлены в ИЯИ РАН
- Отклик модулей калориметра изучен на космических мюонах и тестовых пучках в ЦЕРНе и ГСИ

Схема модуля калориметра

Фото модуля калориметра

Модуль состоит из 60 слоев свинец/сцинтиллятор (Pb (16mm) + Scint (4mm))

- Длина модуля соответствует 5.6 λ_{int}
- Свет с каждых их 6 последовательно расположенных сцинтилляторов собирается с помощью переизлучающих волокон на оптический разъем установленный в торце модуля и регистрируется фотодетекторами МРРС с фоточувствительной областью 3х3 мм²
- 10 МРРС используются в каждом модуле для измерения сигналов с 10 секций модуля
- ▶ Калориметр состоит из 46 модулей и имеет 460 сигнальных каналов
- Размер модуля составляет 20х20х165 см³; вес модуля 500 kg.

Фотодетектор

- MPPC Hamamatsu S14160-3010P
- Чувствительная область 3 x 3 mm²
- Количество пикселей 90 000
- Усиление 1 x 10⁵,
- Стабильность усиления при вариации температуры ~1% /1°С
- Время восстановления 10 ns
- PDE -18%

Изучение отклика сборки модулей калориметра PSD

• Энергетическое разрешение (слева) и линейность отклика сборки из 9 модуле калориметра PSD

Сборка из 9 модуле калориметра PSD на тестовых пучках T9/T10/NA61/SHINE в CERN

Энергетическое разрешение модуля до (черный) и после (красный) облучения фотодетекторов \$12572-3010 дозой ожидаемой на эксперименте CBM

Электроника калориметра PSD

На плате с фотодетекторами смонтированы:

- Температурный датчик для компенсации усиления
- Светодиод для калибровки

Электроника чувствительная к радиационному фону будет установлена в зоне без радиационного фона. Сигналы будут передаваться по коаксиальным кабелям длиной до 60м.

Плата ADC для оцифровки сигналов

- 2 х ПЛИС; 64 канала
- Управление периферийной электроникой по I2C

Плата для обеспечения напряжения смещения для фотодетекторов

Генератор импульсов для светодиодов

Плата ADC для детектора ECAL@PANDA

Плата ADC была разработана для детектора ECAL@PANDA

- АЦП* LTM9011;
 - 125Msps / 80Msps (used now); разрешение 14 бит; Диапазон: 1VP-Р или <u>2VP-Р</u> (используется);
- Две ПЛИС** Kintex 7
 - Каждая ПЛИС обрабатывает 32 канала, имеет выделенный интерфейс SFP+ для обмена данными
- Скорость данных
 - Протокол GBT*** позволяет передавать данные со скоростью 3.2 (4.8) Gb/s
 - Размер события для 32 каналов составляет 16.5 байт
 - Максимальная скорость счета составляет 2MHz
- Детектор PSD будет подключен к 8 платам ADC (16 GBT соединений)
- Одной из первых задач данной диссертации являлась разработка и тестирование логической структуры ПЛИС этой платы ADC для бестриггерного сбора данных PSD и ее интеграцию в эксперимент CBM

* АЦП – Аналого-Цифровой Преобразователь

- ** ПЛИС Программируемая Логическая Интегральная Схема
- *** GBT Gigabit Tranciever

Тестирование платы ADC по оцифровке сигналов фотодетекторов PSD

- Перед началом работ по интеграции платы ADC в систему сбора данных CBM ее необходимо было протестировать с фотодетекторами MPPC
- Был собран стенд по набору данных платой ADC системой сбора дынных калориметра EMC@PANDA на основе платы TRB. Три ПЛИС платы TRB использовались в качестве «концентратора данных», «UDP конвертера» и «управляющей системы»
- Использовалась плата с МРРС для калориметра NA61
- Плата ADC была предоставлена в институте KVI-KART (г. Гронинген, Нидерланды) и имела парное усиление на канал x1 и x10 с входным фильтром.
- Результаты теста показали стабильную работу платы и возможность оцифровки сигналов фотодетекторов PSD

Фотография стенда оцифровки сигналов платой ADC прототипом системы сбора данных ECAL@PANDA

Амплитудный спектр от космических мюонов, мВ

Тестирование платы ADC по оцифровке сигналов фотодетекторов PSD на mCBM

Плата с MPPC установлена на пучке mCBM для регистрации фрагментов (Ag+Ag 1.58 AGeV, 4*10⁷ ions/sec)

Формы сигналов с фотодетекторов. Дигитайзер CAEN (1 ГГц) слева и плата ADC (80 МГц) справа.

Амплитудный спектр от фрагментов при парном усилении x1 и x10

- По результатам теста:
 - Была выбрана модификация платы ADC без усиления и без входного фильтра что позволяет добиться необходимого динамического диапазона
 - 2. Было разработано техническое задание:
 - для платы МРРС
 - Монтаж фотодетекторов
 - Светодиод для калибровки
 - Температурный сенсор
 - для интерфейсной платы для:
 - 1. Регулировки нулевого уровня
 - Коррекции напряжения смещения фотодетектора
 - 3. Считывание показания термодатчика фотодетекторов

Система сбора данных эксперимента СВМ

На плата CRI основана система сбора данных эксперимента CBM

- ПЛИС Xilinx Kintex UltraScale XCKU115
- Возможно подключение до 48 оптических соединений
- Пропускная способность PCle gen3 x16 до 100 Гб/с
- Используется для сбора и сортировки данных с детекторов
- Детектор PSD будет использовать одну плату CRI
- Одной из задач диссертации являлась разработка модуля "Detector Specific Part" логической структуры ПЛИС платы CRI для сортировки данных и управлением системой сбора данных калориметра PSD

Интеграция передатчика GBT в плату ADC

Сигналы логического анализатора ПЛИС демонстрирующие потерю синхронизации GBT при переключении тактовых сигналов

- Протокол GBT был выбран для подключения платы ADC к системе сбора данных CBM поскольку это является стандартным для нее решением и требует минимальной модификации для прошивки ПЛИС платы CRI
- GBT позволяет передачу тактовых сигналов системы сбора данных CBM на плату ADC для синхронного набора данных
- Опорный тактовый сигнал для передатчика GBT принимается самим датчиком GBT
- Была разработана система переключения тактовых сигналов со внутреннего генератора на принимаемый тактовый сигнал по GBT
- При начальных параметрах компонента платы PLL Jitter Cleaner (стабилизатор тактовых сигналов) передатчик GBT не устанавливал связь
- В ходе анализа работы системы тактовых сигналов было выяснено что переключение тактовых сигналов приводило к потере синхронизации передатчика GBT через 4мкс в связи с высокой скоростью сдвига фаз компонента PLL превышающую требованиям передатчика ПЛИС.
- Для уменьшения скорости сдвига фаз компонента PLL была значительно увеличена его постоянная времени.
 - уменьшен ток обратной связи компонента PLL2_CP_GAIN
 - уменьшена полоса фильтра обратной связи компонента PLL2_CP_GAIN путем напайки компонентов (R, C) на плате ADC.

Стенд по набору данных платой ADC на основе платы FTM в ИЯИ РАН

Фотография платы ADC подключенной к плате FTM по GBT

Интерфейс программы набора данных (язык C)

- Для сбора данных с платы ADC по GBT в ИЯИ была изготовлена плата FTM разработанная для аналогичной работы по детектору FIT@ALICE.
- Плата FTM является аддоном для платы с ПЛИС КС705 и предоставляет генератор тактовых сигналов и интерфейс SFP+ для передачи данных на персональный компьютер (PC)
- Была разработана логическая структура ПЛИС платы FTM и программный комплекс PC для набора данных с платы ADC.
- Данный стенд позволяет набирать данные от космических мюонов и светодиода на скорости 15 Мб/с
- Плата FTM используется для
 прототипирования логической структуры
 модуля ПЛИС платы CRI

Разработанная логическая структура ПЛИС платы ADC

Схема логической структуры ПЛИС платы ADC по формированию событий от аналоговых сигналов фотодетекторов

Прошивка ПЛИС для платы ADC обеспечивает:

- Формирование событий в бестриггерном режиме при загрузке детектора не менее 1 МГц
- Временную синхронизацию с остальными детекторами СВМ
- Передачу данных по протоколу GBT
- Управление электроникой системы сбора данных PSD

Функциональные возможности прошивки ПЛИС включают:

- Регистрация сигналов по превышению порога независимо в каждом канале
- Обработка сигналов с применением фильтра FIR (Finite Impulse Response) для разделения наложений сигналов и определения событий независимо от базовой линии (в разработке)
- Внутренний триггер формируемый от срабатывания выбранных каналов или с фиксированной частотой
- Отправка формы сигнала для отладки
- Контроль набора данных: нулевой уровень канала, уровень шума базовой линии, скорость набора данных, информирование об ошибках

Разработанная логическая структура ПЛИС была протестирована на стенде в ИЯИ и на тестовых пучках установки mCBM

Электроника для сбора данных модуля PSD на mCBM

- Электроника считывания сигналов с модуля mPSD была интегрирована в mCBM и включала все ключевые узлы:
- Плату МРРС
- Плату ADC с интерфейсной платой
- Подключение по коаксиальным кабелям длинной 60м

ADC64 FPGA board + interface board installed in DAQ container and connected with 60m coaxial cable to PSD module @mCBM

Интеграция детектора PSD в систему сбора данных mCBM

- Для согласования плат ADC и CRI необходим модуль "Detector Specific Part" логической структуры ПЛИС для платы CRI обеспечивающий:
 - Синхронизацию тактового сигнала
 - Временную синхронизацию платы ADC с системой сбора данных mCBM
 - Прием и сортировку данных PSD
 - Управление платой ADC и периферией

Логическая структура модуля ПЛИС для платы CRI

Основные элементы логической структуры ПЛИС платы CRI

- FLIM (First Level Input Module) модуль передачи данных по PCIe в систему реконструкции и анализа событий
- TFC (Timing and Fast Control) endpoint модуль временной синхронизации платы CRI
- AGWB (Address Generator for Wishbone) модуль управления
- Detector specific part индивидуальный модуль каждого детектора

Основные элементы разработанного модуля "Detector Specific Part" для ПЛИС платы CRI:

- Генератор временных меток
- Модуль управления
- Распаковщик пакетов GBT
- Сортировщик данных
- Интерфейс для передачи данных в FLIM

Схема логической структуры ПЛИС платы CRI

Схема модуля логической структуры ПЛИС для платы CRI детектора PSD

Основные результаты теста по интеграции mPSD в mCBM

- В ходе физических сеансов на установке mCBM были протестированы все ключевые элементы системы сбора данных калориметра PSD
- Была показана временная синхронизация детектора mPSD с системой mCBM
- Была продемонстрирована корректная и стабильная работа системы при загрузках до 1 МГц

Положения выносимые на защиту

- 1. Результаты тестирования платы ADC по оцифровки аналоговых сигналов фотодетекторов MPPC используемых для регистрации сцинтилляционных сигналов калориметра.
- 2. Интеграция передатчика GBT в плату ADC для синхронизации тактовых сигналов, временной синхронизации и передачи данных с детектора PSD в систему сбора данных эксперимента CBM.
- 3. Разработанная логическая структура ПЛИС электроники PSD которая позволяет:
 - Регистрировать события с калориметра в бестриггерном режиме при загрузке не менее 1 МГц.
 - Сортировать и передавать данные с переднего адронного калориметра в общую систему сбора данных эксперимента CBM по протоколу GBT.
 - Управлять электроникой системы сбора данных калориметра PSD.
- 4. Разработанный модуль "Detector Specific Part" логической структуры ПЛИС платы "CRI" (Common Readout Interface), которая является основным элемент системы сбора данных детектора CBM. Данный модуль позволяет:
 - Принимать и сортировать данные со всех плат ADC детектора PSD.
 - Выполнять временную синхронизацию плат ADC детектора PSD в эксперименте CBM .
 - Обеспечивать управление системой сбора данных детектора PSD по протоколу GBT.
- 5. Результаты тестирования разработанной системы сбора данных PSD на пучковых сеансах установки mCBM в ходе которых данные модуля PSD набирались в общей системе сбора данных установки синхронно с другими детекторами.

Результаты диссертации докалывались на четырех международных конференциях:

1. The Readout system of the CBM Projectile Spectator Detector at FAIR

The International Conference "Instrumentation for Colliding Beam Physics" (INSTR-20) will be cohosted by the Budker Institute of Nuclear Physics (BINP) and Novosibirsk State University (NSU), Novosibirsk, Russia, 24 - 28 February, 2020. D. Finogeev (poster) F Guber, N Karpushkin https://indico.inp.nsk.su/event/20/contributions/819/

2. mPSD readout system at mCBM experiment

5th International Conference on Particle Physics and Astrophysics D. Finogeev (poster) F Guber, N Karpushkin, A Makhnev, S Morozov The Readout system of the CBM Projectile Spectator Detector at FAIR https://indico.particle.mephi.ru/event/35/contributions/2219/

3. Firmware development for trigger-less mPSD readout at mCBM experiment at GSI

International Conference on Technology and Instrumentation in Particle Physics May 24-28, 2021 D. Finogeev (poster) https://indico.cern.ch/event/981823/contributions/4295590/

4. Study of the PSD CBM response on hadron beams

FAIR next generation scientists - 6th Edition Workshop, 20-24 May 2019 Genova, Italy N.Karpushkin (oral), D.Finogeev, M.Golubeva, F.Guber, A.Ivashkin, A.Izvestnyy, S.Morozov. https://indico.gsi.de/event/7684/overview

Результаты диссертации опубликованы в 7 статьях журналов индексируемых WoS, 3 из которых относятся к Q1:

1. The Projectile Spectator Detector for measuring the geometry of heavy ion collisions at the CBM experiment on FAIR

N. Karpushkin , D. Finogeev, M. Golubeva, F. Guber, A. Ivashkin, A. Izvestnyy, V. Ladygin, S. Morozov, A. Kugler, V. Mikhaylov, A. Senger Nucl.Instrum.Meth. A936 (2019) 156-157 DOI: 10.1016/j.nima.2018.10.054

2. The PSD CBM Supermodule Response Study for Hadrons in Momentum Range 2 – 6 GeV/c at CERN Test Beams D. Finogeev (Moscow, INR), M. Golubeva, F. Guber, A. Ivashkin, A. Izvestnyy, N. Karpushkin, S. Morozov, A. Reshetin (Moscow, INR). 2018. 7 pp. Published in KnE Energ.Phys. 3 (2018) 333-339 DOI: 10.18502/ken.v3i1.1763 Conference: C17-10-02.2 Proceedings

3. **Transverse and longitudinal segmented forward hadron calorimeters with SiPMs light readout for future fixed target heavy ion experiments**, F.Gubera, D.Finogeeva, M.Golubevaa, A.Ivashkina, A.Izvestnyya, N.Karpushkinab, S.Morozovac, A.Kuglerd, V.Mikhaylovde, A.Sengerf for NA61/SHINE, CBM and BM@N collaborations Published in NIM A DOI: 10.1016/j.nima.2019.162728

4.**Summary of PSD supermodule response study at CERN test beams**, A.Ivashkin, D. Finogeev, M.Golubeva, F.Guber, A.Izvestnyy, N. Karpushkin, S.Morozov and O.Petukhov CBM Progress Report 2018, GSI-2019-01018, Darmstadt 2019, p.107

5. Study of the hadron calorimeters response for CBM and BM@N experiments at hadron beams N. Karpushkin (Moscow, INR), D. Finogeev (Moscow, INR), M. Golubeva(Moscow, INR), F. Guber (Moscow, INR),

A. Ivashkin (Moscow, INR) Published in: J.Phys.Conf.Ser. 1667 (2020) 1, 012020

6. Development of readout chain for CBM Projectile Spectator Detector at FAIR

D Finogeev, F Guber, N Karpushkin, A Makhnev, S Morozov and D Serebryakov Journal of Physics: Conference Series 1690 (2020) 012059 doi:10.1088/1742-6596/1690/1/012059

7. The readout system of the CBM Projectile Spectator Detector at FAIR

CBM Collaboration (D. Finogeev (Moscow, INR & Moscow Phys. Eng. Inst.) et al.). 2020. 8 pp. Published in JINST 15 (2020) no.09, C09015 DOI: 10.1088/1748-0221/15/09/C09015

Спасибо за внимание

Дополнительные слайды

Energy spectra in mPSD sections

Charge channel 3

10.88

Mean Std Dev

Run 1588 O+Ni 2.0AGeV 0.7MHz interaction rate Taken 15.07.2021 Experiment & Simulation

PSD electronics architecture

- Full PSD readout chain was developed and tested at mCBM 06/2021
- Radiation-hard front-end
 - Boards with MPPCs mounted on modules
- Radiation-sensitive readout rack
 - Readout modules
 - MPPC bias voltage supply
 - Calibration pulse generator
 - LV distribution board
- Interconnection with 50 m signal cables

ADC interface board

- Application: Signal digitization, HV adjustment, R2D conversion for temperature
- Crate-mounted Eurocard-6U module
- Interface module (developed at INR)
 - Differential ADC interface
 - High voltage adjustment
 - Input and output zero level adjustment
 - Temperature sensor interface

Board with 10 MPPCs, a temperature sensor and a calibration LED for each module

All PSD FEE is controlled and monitored via single point : GBT link

Pulse-time-stable logic pulse generator with remote control allow to fire LED for PSD calibration with external trigger or asynchronously

PSD FEE service components

• Most crucial (MPPCs, GBT control) was tested with beam at mCBM 2021

Remotely controlled MPPC bias voltage supply for MPPC biasing has been developed. Perchannel current monitoring overcurrent and short-circuit detection

Signal cable verification

- Distance between radiation-hard "Detector side" and radiation-sensitive "Readout rack" is up to 55m
- 10 channel X 46 modules X 50m = 23 km signal cable
- PK50-3-310нг(C)-HF cables and DRAKA CB50 cables were tested
- Both cable show acceptable attenuation and skew, transmission of the signals without amplifiers is proven to be possible
- For 60 m cable attenuation is 1.5
- 60m cables used during beam tests at mCBM 2021

MPPC dynamic range measurements

- MPPC type S14160-010P
- MPPC response is linear in 500 MIP range
- For 60 m cable attenuation is 1.5
- Gain 2x allow to distinguish 1 MIP/pedestal (was used for tests with beam at mCBM 06/2021)
- MPPC HV operation range is 42 44 V
- 500 MIP pulse signal for 60m cable0 is:
 - 600mV MPPC HV 42 V
 - 1015mV MPPC HV 44 V
- ADC range is 2V
- To keep 500 MIP range ADC interface gain should be 2X for 44 V
- Possibility to distinguish 1 MIP is required for PSD calibration

Cosmic 1MIP peak (60m cable, gain 2X)

PSD full readout chain was tested at beam tests with common mCBM DAQ in June 2021

- ✓ FEE + 60m signal cable + ADC boards assembly
- ✓ GBT connection stability
- ✓ ADC signal digitizer firmware
- ✓ CRI data processing firmware
- ✓ ADC control + slow readout (python macro)
- ✓ Event time synchronization
- □ Issue was observed: ADC baseline drift during high rate because
 - ✓ Firmware exponential filter compensation was implemented for charge correction
 - □ Solution 2: Working on signal FIR processing FPGA with self-channel triggering without threshold-crossing procedure
- □ One FPGA on board was used during the tests
- □ 80 MHz ADC clock used, 120 MHz clock is not ready

- Data sorter will be excluded as excess element
- Single GBT link per FLIM interface
- Max FLIM interface load 64+16 bit @40MHz through async FIFO
- 8 ADC boards, 16 GBT links in total for PSD
- 8 FLIM interfaced / 8 GBT links per SLR
- PSD GBT spare solution is use wide bus mode:
 - 120bit @40MHz = 4,8Gb/s per FLIM interface
 - 38,4 Gb/s per SLR
 - 76,8 Gb/s per CRI
- No start/stop is required (always ready)
- No huge buffering data
- Input throughput = output throughput

FLIM throughput: PCIe 6-7GB/s 50 Gb/s per SLR 100 Gb/s per CRI

ADC baseline drift while high load

ADC baseline drift during high rate because of capacitance in FEE input filter

- Firmware exponential filter compensation was prepared for beam tests.
- Correction allowed to measure signal charge with base line drift during the beam test.
- Because of tuned threshold ~ 0.8 MIP (1,4mV) compensation accuracy was not enough to avoid continuous triggering during base line drift.
- Data processing will be based on FIR filter

Continuously signals triggering

11 DSP modules was implemented in ADC firmware design to check FPGA resources availability for FIR signal processing

- A(i)*c1+A(i-1)*c2+...+A(i-10)*c11
- 11 x DSP: A(14 bit) * B (14bit) + C(28 bit) = P(29bit) @80MHz
- DSPi: adc(i) * const(i) + dsp_out(i-1)(27 downto 0)

++			4		4				
Site Type		Used	E	ixed		Available	I	Util%	i
Slice LUTs*		57343	1	0	1	101400	I	56.55	ī
LUT as Logic		55254	I.	0	I.	101400	T	54.49	ī
LUT as Memory		2089	I.	0	I.	35000	T	5.97	ī
LUT as Distributed RAM		34	L	0	I.		T		I
LUT as Shift Register		2055	L	0	L		T		I
Slice Registers		146164	L	0	I.	202800	T	72.07	I
Register as Flip Flop		146164	1	0	I.	202800	T	72.07	I
Register as Latch		0	1	0	I.	202800	T	0.00	I
F7 Muxes		995	1	0	L	50700	T	1.96	I
F8 Muxes		6	I.	0	I.	25350	I.	0.02	I
+	+		+		+-		-+-		+
+	+	+		+		+-			t
Site Type	Used	d Fixed		Available			Util%		
+	352	1 0		+ 		600	5	58.67	
DSP48E1 only	352	1		l .		I.			l
+		+		+		+	_		+

ADC FPGA utilization

beam tests mCBM@2021 design + FIR emulation

Задачи диссертации

- Для работы калориметра PSD в эксперименте CBM необходимо разработать уникальную систему сбора данных, которая позволит:
 - Производить набор данных без общего триггера при загрузке калориметра до 1 МГц.
 - Обеспечить хорошее разделение наложения сигналов.
 - Произвести ее интеграцию в систему сбора данных эксперимента СВМ.
- Разработанную систему сбора данных необходимо протестировать в условиях близких эксперимента CBM.

Актуальность задачи

- Основная цель эксперимента CBM (Compressed Barionic Matter) Исследование фазовой диаграммы квантовой хромодинамики при высоких плотностях барионов и относительно невысоких температурах с использованием редких диагностических процессов.
- Для исследования свойств сжатой ядерной материи в эксперименте CBM необходимо измерение геометрии столкновения тяжелых ядер при взаимодействии пучка ионов с фиксированной мишенью. При этом основными параметрами, характеризующими геометрию столкновений, являются центральность и угол плоскости реакции.
- Передний адронный калориметр фрагментов-спектаторов PSD позволит определение центральности и плоскости реакции.
- Для работы калориметра необходимо разработать систему сбора данных в эксперименте СВМ

Цель диссертации

Основной целью данной диссертационной работы является разработка бестриггерной потоковой системы сбора данных переднего адронного калориметра эксперимента СВМ при высоких загрузках на ускорительном комплексе FAIR, который сооружается в GSI, г. Дармштадт, Германия.