СПЕКТРЫ ДЕЙТРОННОЙ КОМПОНЕНТЫ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ В ОКРЕСТНОСТИ ЗЕМЛИ

Докладчик Колдобский С. А., НИЯУ МИФИ

Научный руководитель проф., д.ф.-м.н. Воронов С. А.

Москва - ИЯИ - 14 января 2016 г.

РЕЗУЛЬТАТЫ, ВЫНОСИМЫЕ НА ЗАЩИТУ

 новый метод идентификации дейтронов на интенсивном фоне других частиц посредством многопараметрического корреляционного анализа данных эксперимента ПАМЕЛА;

 новые результаты измерений дифференциального энергетического спектра дейтронов и энергетической зависимости отношения потока дейтронов к потоку протонов в диапазоне энергий от 70 до 650 МэВ/нуклон в ГКЛ и под внутренним радиационным поясом Земли;

ИЗМЕРЕНИЯ СПЕКТРА ДЕЙТРОНОВ В ГАЛАКТИЧЕСКИХ КОСМИЧЕСКИХ ЛУЧАХ

- Дейтроны стабильные изотопы водорода, состоящие из одного протона и одного нейтрона.
- Дейтроны галактических космических лучей (ГКЛ) имеют вторичную природу, они образуются в результате взаимодействия частиц первичных ГКЛ с веществом межзвездной среды.
- Измерение спектра дает возможность лучше понять процессы, происходящие при распространении космических лучей (КЛ) через Галактику.
- К запуску эксперимента ПАМЕЛА было проведено некоторое количество измерений спектра дейтронов, однако результаты различных экспериментальных групп не согласовывались друг с другом.

Основные реакции рождения дейтронов ГКЛ

> $p^{++1}H \rightarrow D+\pi^{+}$ $p^{++4}He \rightarrow D+^{3}He+(\pi)$ $a+^{1}H \rightarrow D+^{3}He+(\pi)$ $p^{++4}He \rightarrow D+2 p^{+}+n+(\pi)$

Результаты последних экспериментов по измерению спектра дейтронов в ГКЛ

ИЗМЕРЕНИЯ СПЕКТРА ДЕЙТРОНОВ АЛЬБЕДО

- Дейтроны альбедо рождаются при взаимодействии галактических космических лучей с атомами верхних слоев атмосферы.
- Существуют теоретические расчеты по генерации дейтронов альбедо (Derome L., Buenerd M. // Physics Letters B, No. B521, 2001)
- Измерения спектра дейтронов альбедо были проведены в экспериментах NINA, NINA-2, а также AMS-01 (в перекрывающейся области измерений)

Ожидаемый спектр дейтронов альбедо

ЭКСПЕРИМЕНТ ПАМЕЛА

- Экспериментальный комплекс ПАМЕЛА
 размещена на борту ИСЗ
 Ресурс ДКІ, который был запущен на околоземную орбиту I5 июня 2006 года.
- В состав экспериментального комплекса входит несколько детекторных систем, позволяющих определять различные характеристики пролетевших частиц космического излучения.

СЛОЖНОСТЬ ИДЕНТИФИКАЦИИ ДЕЙТРОНОВ

При идентификации дейтронов в эксперименте ПАМЕЛА основную сложность представляют собой большой фон протонов, имитирующих дейтронные события, затрудняющий их идентификацию и последующее восстановление их спектра.

Для получения спектра дейтронов было необходимо разработать метод подавления протонов.

«БАЗОВЫЙ» ОТБОР СОБЫТИЙ

Работа по выбору критериев «базового» отбора носила итерационный характер и была неразрывно связана с разработкой метода подавления протонного фона и идентификации дейтронов.

Эта работа позволила выработать ряд критериев, позволяющих использовать при дальнейшем анализе события со следующими корректно измеренными характеристиками частиц, прошедших через детекторную систему:

- скоростью, измеряемой ВПС;
- жесткостью, измеряемой трекером;
- ионизационными потерями частиц в детекторах ВПС и трекера.

МЕТОДИКА ИДЕНТИФИКАЦИИ

При подавлении протонов исключались события, имеющие энерговыделение ниже порогового, после чего для оставшихся событий строились распределения по величине, обратной скорости частицы β, для узких интервалов по жесткости

МЕТОДИКА ИДЕНТИФИКАЦИИ

Для подсчета количества зарегистрированных дейтронов использовалась два метода:

R<I.4 ГВ ⇒ полное подавление протонов, пики протонов и дейтронов полностью разделяются, количество дейтронных событий подсчитывается непосредственно как количество событий под соответствующим пиком на гистограмме.

R>1.4 ГВ ⇒ значительный протонный фон, распределения перекрываются. Для определения количества дейтронов и протонов используется аппроксимация экспериментальных распределений по величине, обратной скорости, суммой двух распределений Гаусса.

МЕТОДИКА ИДЕНТИФИКАЦИИ

Эффективность работы методики по подавлению протонов была проверена при анализе данных моделирования методом Монте-Карло прохождения частиц через детекторную установку.

Доля протонов, остающихся в наборе данных после отработки методики по подавлению протонного фона

Доля дейтронов, ошибочно исключаемых методикой как «протоны»

восстановление спектра

Для вычисления дифференциального энергетического спектра использовалась следующая формула:

$$\frac{dJ}{dE} = \frac{N(E, \Delta E) \times (1 + \Delta_{d}) \times (1 - \Delta_{He}) \times (1 - \Delta_{p})}{\Delta E \times \Gamma_{eff}(E) \times \varepsilon(E) \times t_{live}}$$

где $N(E,\Delta E)$ — число частиц энергии E, зарегистрированных в энергетическом интервале ΔE , $\Gamma_{eff}(E)$ — эффективный геометрический фактор, учитывающий уменьшение количества зарегистрированных частиц вследствие их взаимодействия в веществе детектора, Δ_d — доля дейтронов, исключенных при использовании отбора по энергетическим потерям в трекере и ВПС, Δ_{He} — доля дейтронов, рожденных в результате взаимодействия частиц КЛ с веществом детектора, Δ_p - доля протонов, остающихся в выборке дейтронов после отбора по энергетическим потерям в трекере и ВПС (при прямом подсчете спектра) $\epsilon(E)$ — суммарная эффективность отбора частиц энергии E и t_{live} — «живое» время регистрации частиц в данной геомагнитной области. Суммарная эффективность отбора вычислялась по следующей формуле:

$$\varepsilon(E) = \varepsilon_{TRK}(E) \times \varepsilon_{TOF}(E) \times \varepsilon_{AC}(E)$$

где *ЕТОF, ЕТRK,* *****ЕAC* - эффективности отбора по данным ВПС, трекера и АС, соответственно.

ЭФФЕКТ ЗАНИЖЕНИЯ ЭКСПЕРИМЕНТАЛЬНО ИЗМЕРЕННОЙ ЖЕСТКОСТИ

На основе анализа данных моделирования методом Монте-Карло исследовался эффект систематического уменьшения измеренной внутри трекера жесткости частицы по сравнению с заданной при моделировании. Уменьшение происходило вследствие энергетических потерь заряженной частицы при прохождении аппаратуры эксперимента.

После идентификации дейтронов и оценке указанного выше эффекта было возможно однозначно восстановить кинетическую энергию по восстановленной жесткости.

ВЛИЯНИЕ ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯ

Для оценки количества дейтронов, рожденных при взаимодействии других частиц с веществом детекторов, а также для оценки возможной убыли дейтронов из-за ядерных взаимодействий с ним же, были проанализированы данные моделирования.

На левом рисунке приведен «эффективный» геометрический фактор, учитывающий, помимо убыли различных частиц за счет взаимодействий внутри спектрометра, также различные конструктивные элементы и электронику детекторов. На правом рисунке приведена доля рожденных в крышке спектрометра дейтронов в в зависимости от их энергии.

РАСЧЕТ ЭФФЕКТИВНОСТИ

Для расчета эффективности совместно использовались полетные данные и данные моделирования методом Монте-Карло прохождения частиц через детекторную установку.

Использовался метод кросскалибровки, когда эффективность одного детектора определяются с помощью анализа сигналов с других детекторов.

ОТБОР СОБЫТИЙ ПО ГЕОМАГНИТНЫМ КООРДИНАТАМ

Для отбора галактических космических лучей использовалось условие, основанное на приближении Штермера. В соответствии с ним для проникновения в геомагнитные зоны, имеющие различные значения Lкоординаты Мак-Илвайна частицы космических лучей должны иметь вертикальную жесткость $R_{nop} = 14.9/L^2$, при этом использовались события, для которых L>6.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ СПЕКТРА ДЕЙТРОНОВ ГКЛ

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ СПЕКТРА ДЕЙТРОНОВ ВОЗВРАТНОГО АЛЬБЕДО

Кинетическая энергия, МэВ/нуклон

Кинетическая энергия, МэВ/нуклон

РЕЗУЛЬТАТЫ РАБОТЫ

- Разработан новый метод идентификации дейтронов, использующий многопараметрический корреляционный анализ с детекторных систем эксперимента ПАМЕЛА
- Получены новые, наиболее точные к настоящему моменту времени, результаты измерения спектра дейтронов в интервале энергией 70 - 650 МэВ/ нуклон в ГКЛ и возвратном альбедо Земли.

ПУБЛИКАЦИЯ РЕЗУЛЬТАТОВ

Основные результаты диссертационной работы изложены в **8 печатных работах** в периодических научных изданиях, в том числе в **7 изданиях**, включенных **ВАК РФ** в перечень ведущих рецензируемых научных журналов и в **6 статьях**, опубликованных в журналах, индексируемых в **Web of Science и Scopus**:

І. Воронов С. А., Данильченко И. А., Колдобский С. А., Малахов В. В. Методика выделения дейтронов в эксперименте ПАМЕЛА // Труды научной сессии НИЯУ МИФИ-2010, 2010, Том IV, с. 117-120.

2. Воронов С.А., Данильченко И.А., Колдобский С.А. Методика идентификации дейтронов в космическом эксперименте ПАМЕЛА // Приборы и техника эксперимента. 2011. № 6. С. 8-11.

3. Воронов С.А., Данильченко И.А., Колдобский С.А. Методика измерения спектра дейтронов в эксперименте ПАМЕЛА // Ядерная физика и инжиниринг. 2012. Т. 3. № 4. С. 328.

4. Koldobskiy S. A., Adriani O., Barbarino G. C. et al. Galactic deuteron spectrum measured in PAMELA experiment // Journal of Physics: Conference Series. 2013. V. 409. № 1. p. 012040.

5. Колдобский С.А., Формато В., Адриани О. и др. Измерение галактического дейтронного спектра в эксперименте ПАМЕЛА // Известия Российской академии наук. Серия физическая. 2013. Т. 77. № 5. С. 674.

6. Adriani O., Bongi M., …, Koldobskiy S. et al. Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment // The Astrophysical Journal. 2013. V. 770. № 1. p. 2.

7. Adriani O., Bongi M., ..., Koldobskiy S. et al. Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment // Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2014.V. 742. p. 273-275.

8. Колдобский С.А., Адриани О., Базилевская Г.А. и др. Измерения потоков дейтронов альбедо в спутниковом эксперименте ПАМЕЛА // Известия Российской академии наук. Серия физическая. 2015. Т. 79. № 3. С. 327.

СПАСИБО ЗА ВНИМАНИЕ!

GALPROP

Была проведена попытка интерпретации полученных экспериментальных результатов с помощью программного пакета GALPROP, при этом использовались две наиболее распространенные модели - простая диффузионная модель (I) и конвекционная модель с доускорением (II),

Параметры были отсортированы и настроены на совпадение с результатами эксперимента АСЕ по изотопическому составу космических лучей

НАУЧНАЯ НОВИЗНА РАБОТЫ

разработан новый метод разделения изотопов водорода на интенсивном фоне других частиц, совместно использующий данные времяпролетной системы, магнитного спектрометра и калориметра. При этом используется корреляционный многопараметрический анализ, позволяющий с высокой точностью определить изотопный состав и энергетический спектр изотопов водорода КЛ;

с рекордной точностью измерен дифференциальный энергетический спектр дейтронов и отношение потоков дейтронов и протонов в диапазоне кинетических энергий от 70 до 650 МэВ/нуклон в ГКЛ и возвратном альбедо Земли.

В указанном диапазоне энергий полученные результаты являются наиболее точными на сегодняшний день. Кроме того, результаты проведенных ранее экспериментов были получены лишь в части изученного в настоящей работе диапазона энергий.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ РАБОТЫ

Результаты измерений могут быть использованы при оценке радиационной обстановки в околоземном космическом пространстве и для совершенствования моделей генерации и распространения КЛ.

Разработанный метод идентификации дейтронов может быть использован в других экспериментах, где необходимо эффективное выделение полезных событий при наличии превосходящего на порядки фона.

ХАРАКТЕРИСТИКИ АППАРАТУРЫ

Сборка микростриповых детекторов, иначе называемая трекером [83], состоит из шести слоёв (каждый толщиной 300 мкм) тонких двухсторонних микростриповых кремниевых детекторов, которые используются для измерения координат траектории пролетающих через аппаратуру частиц. При этом точность измерений составляет (3.0 ± 0.1) мкм для плоскости, в которой происходит отклонение частицы, и (11.5 ± 0.6) мкм для плоскости, в которой отклонение не происходит. Размер сборки детекторов составляет (13.1 × 16.1 × 44.5) см³.

. Времяпролетная система имеет временное разрешение ~250 пс для однозарядных частиц [87]. Каждая полоса детекторов времяпролетной системы позволяет производить измерения ионизационных потерь энергии, что может использоваться для измерения величины заряда частицы вплоть до Z = 8