

Реакции под действием альфа-частиц на ядрах празеодима, диспрозия, гольмия и эрбия как способ получения медицинских радионуклидов

Кормазева Екатерина Сергеевна

Специальность:

1.3.15 Физика атомных ядер и элементарных частиц, физика высоких энергий

Научный руководитель:

Алиев Рамиз Автандилович, кандидат химических наук по специальности 02.00.14 – радиохимия

Курчатовский комплекс НБИКС-природоподобных технологий

АКТУАЛЬНОСТЬ РАБОТЫ

Тенденции в современной ядерной медицине

HAHO

социо

инфо

когно

био

Тенденции в производстве радионуклидов

Переход от реакторных к ускорительным методам наработки изотопов Исследование новых путей образования уже применяющихся в медицине изотопов

Новые изотопы

Все описанные направления подразумевают надежную экспериментально-теоретическую базу ядерно-физических характеристик ядерных процессов.

Радионуклиды РЗЭ для медицины

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Используются или прошли доклинические испытания													
					¹⁵³ Sm			¹⁶¹ Tb		¹⁶⁶ Ho	¹⁶⁹ Er			¹⁷⁷ Lu
	Рассматриваются как перспективные													
¹³² La ¹³³ La	¹³⁴ Ce ^{137m} Ce	¹⁴³ Pr	<u>140Nd</u>	¹⁴⁹ Pm			¹⁴⁷ Gd ¹⁴⁹ Gd	¹⁴⁹ Tb ¹⁵² Tb	<u>157Dy</u>	¹⁶¹ Ho	¹⁶⁰ Er ¹⁶⁵ Er	<u>¹⁶⁷Tm</u>	¹⁶⁹ Yb ¹⁷⁵ Yb	
$\frac{^{135}\text{La}}{^{140}\text{La}}$	¹³⁹ Ce ¹⁴¹ Ce						¹⁵⁹ Gd	<u>¹⁵⁵Tb</u>						
Диагностика				Терапия					Тераностика					
ОФЭКТ				Оже-электронная терапия				Оже-электронная терапия+ОФЭКТ						

ПЭТ Радиотрейсер Пролонгированный ПЭТ Терапия Оже-электронная терапия In vivo генератор Бета-терапия Альфа-терапия

Оже-электронная терапия+ОФ In vivo генератор+ПЭТ Бета-терапия+ОФЭКТ Диагностическая пара

Курчатовский комплекс НБИКС-природоподобных технологий

¹⁵³ Sm	Почему ¹⁷⁷ Lu?
46,284 h β ⁻	Реакторный метод наработки – больше продукта
¹⁶¹ Tb	Большие периоды полураспада – удобно на
6,89 d	этапе разработки вдали от места производства
β-	Бета-частицы – обладают достаточным
¹⁷⁷ Lu	пробегом, чтобы не было необходимости
6,6443 d	доставлять радионуклид внутрь клетки
β-	

Курчатовский комплекс НБИКС-природоподобных технологий

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель:

Получение сечений реакций $^{nat}Er(\alpha, x)$, $^{165}Ho(\alpha, x)$, $^{nat}Dy(\alpha, x)$, $^{141}Pr(\alpha, x)$. Оценка реакций для наработки ^{165}Er , ^{167}Tm , ^{169}Yb , ^{160}Er , ^{161}Ho , ^{140}Nd

Задачи:

•Создание программ для планирования эксперимента и обработки результатов

•Проведение экспериментов для получения сечений реакций

•Расчет выходов реакций $^{nat}Er(\alpha, x)$, $^{165}Ho(\alpha, x)$, $^{nat}Dy(\alpha, x)$, и $^{141}Pr(\alpha, x)$, рассмотрение процессов как методов наработки ^{165}Er , ^{167}Tm , ^{169}Yb , ^{160}Er , ^{161}Ho , ^{140}Nd для медицины

•Выделение изотопов Yb, Tm и Er из облученного α-частицами оксида эрбия.

Материалы и методы

Эксперименты по исследованию сечений реакций

Создание тонких слоев методом седиментации

Планирование облучения (EnLoStack) и сборка мишени Облучение на циклотроне У-150 (НИЦ Курчатовский институт)

ано

социо

инфо

когно

Гаммаспектрометрические измерения и обработка данных (BeamCur)

Курчатовский комплекс НБИКС-природоподобных технологий

Нанесение тонких слоев

30 мг оксида

]

1,2 мкл коллодий (раствор динитроцеллюлозы)

1000 мкл ацетон (С₃Н₆О, СН₃-С(О)-СН₃)

Фольга Al ~30 мкм

2

Курчатовский комплекс НБИКС-природоподобных технологий

Защитный слой Al

Курчатовский комплекс НБИКС-природоподобных технологий

Гамма-спектрометрия

Гамма-спектрометрические измерения

гамма-спектрометр с детектором из сверхчистого германия ORTEC GEM 35P4, с энергетическим разрешением 850 эВ для линии 122 кэВ и 1,8 кэВ для линии 1332 кэВ

Калибровка

Точечные источники ⁶⁰Со, ¹⁵²Еи, ²⁴Na

Обработка спектров

SpectraLine (LSRM)

Идентификация продуктов реакции

База данных МАГАТЭ + NuclideMaster (LSRM)

Расчет выходов реакций

Программа RYC

Обработка данных: мониторинг пучка

Экспериментальное изучение сечений ядерных реакций

Сечения реакций ^{nat}Er(α,x)

	1	2	3
Стартовая энергия, МэВ	60.0 ± 0.5	42.0 ± 0.5	60.0 ± 0.5
Ток, мА	0,12	0,5	0,4
Количество мишеней в стопке	10	10	8 (10)
Время облучения, мин	33	9	15
Мониторные реакции	²⁷ Al(α,x) ²⁴ Na ²⁷ Al(α,x) ²² Na	$\begin{array}{c} {}^{27}\text{Al}(\alpha,x){}^{24}\text{Na}\\ {}^{27}\text{Al}(\alpha,x){}^{22}\text{Na}\\ {}^{nat}\text{Ti}(\alpha,x){}^{51}\text{Cr}\\ {}^{nat}\text{Cu}(\alpha,x){}^{65}\text{Zn}\\ {}^{nat}\text{Cu}(\alpha,x){}^{66}\text{Ga}\\ {}^{nat}\text{Cu}(\alpha,x){}^{67}\text{Ga} \end{array}$	²⁷ Al(α,x) ²⁴ Na ²⁷ Al(α,x) ²² Na

Толщина мишеней 5-11мг/см²

¹⁶⁴ Yb	¹⁶⁵ Yb	¹⁶⁶ Yb	¹⁶⁷ Yb	¹⁶⁸ Yb	¹⁶⁹ Yb	¹⁷⁰ Yb	¹⁷¹ Yb	¹⁷² Yb
75.8 min	9.9 min	56.7 h	17.5 min	0.123%	3.018 d	2.982%	14.086%	21.686%
ес	ec β^+	ec	ec β^+		ec			
¹⁶³ Tm	¹⁶⁴ Tm	¹⁶⁵ Tm	¹⁶⁶ Tm	¹⁶⁷ Tm	¹⁶⁸ Tm	¹⁶⁹ Tm	¹⁷⁰ Tm	¹⁷¹ Tm
1.81 h	1.95 min	30.06 h	7.7 h	9.25 d	93.1 d	100%	128.6 d	1.92 y
ec β^+	ec β^+	ec β^+	ec β^+	ec	ec β^+		β ⁻ , ec	β-
¹⁶² Er	163Er	¹⁶⁴ Er	¹⁶⁵ Er	¹⁶⁶ Er	¹⁶⁷ Er	¹⁶⁸ Er	¹⁶⁹ Er	¹⁷⁰ Er
0.139%	75 min	1.601%	10.36 h	33.503%	22.869%	26.978%	9.392 d	14.91%
	ec β^+		ec				β-	

Сечения реакций ¹⁶⁵Но(α,х)

Стартовая энергия, МэВ	60.0 ± 0.5
Ток, мА	0,12
Количество мишеней в стопке	11
Время облучения, мин	20
Мониторные реакции	$^{27}Al(\alpha,x)^{24}Na$ $^{27}Al(\alpha,x)^{22}Na$ $^{nat}Ti(\alpha,x)^{51}Cr$ $^{nat}Cu(\alpha,x)^{65}Zn$ $^{nat}Cu(\alpha,x)^{66}Ga$ $^{nat}Cu(\alpha,x)^{67}Ga$

Толщина мишеней 6-13 мг/см²

¹⁶³ Tm	¹⁶⁴ Tm	¹⁶⁵ Tm	¹⁶⁶ Tm	¹⁶⁷ Tm	¹⁶⁸ Tm	¹⁶⁹ Tm
1.81 h	1.95 min	30.06 h	7.7 h	9.25 d	93.1 d	100%
ec β+	ec β+	ec β+	ec β+	ec	ec β+	
¹⁶² Er	¹⁶³ Er	¹⁶⁴ Er	165 Er	166 Er	¹⁶⁷ Er	168Er
0.139%	75 min	1.601%	10.36 h	33.503%	22.869%	26.978%
	ec β+		ec			
¹⁶¹ Ho	¹⁶² Ho	¹⁶³ Ho	¹⁶⁴ Ho	¹⁶⁵ Ho	¹⁶⁶ Ho	¹⁶⁷ Ho
2.48 h	15 min	4570 y	28.8 min	100%	26.824 h	3.1 h
ес	ec β+	ес	ec β+, β-		β-	β-

Сечения реакций ^{nat}Dy(α,x)

Стартовая энергия, МэВ	54.0 ± 0.5
Ток, мА	0,33
Количество мишеней в стопке	14
Время облучения, мин	15
Мониторные реакции	$^{27}Al(\alpha,x)^{24}Na$ $^{27}Al(\alpha,x)^{22}Na$ $^{nat}Ti(\alpha,x)^{51}Cr$ $^{nat}Cu(\alpha,x)^{65}Zn$ $^{nat}Cu(\alpha,x)^{66}Ga$ $^{nat}Cu(\alpha,x)^{67}Ga$

Толщина мишеней 5-9 мг/см²

158 Er	159Er	¹⁶⁰ Er	¹⁶¹ Er	¹⁶² Er	163 Er	¹⁶⁴ Er	¹⁶⁵ Er	166 Er
2.29 h	36 min	28.58 h	3.21 h	0.139%	75 min	1.601%	10.36 h	33.503%
ес	ec β+	ec	ec β+		ec β+		ec	
¹⁵⁷ Ho	¹⁵⁸ Ho	¹⁵⁹ Ho	¹⁶⁰ Ho	¹⁶¹ Ho	¹⁶² Ho	¹⁶³ Ho	¹⁶⁴ Ho	¹⁶⁵ Ho
12.6 min	11.3 min	33.05 min	25.6 min	2.48 h	15 min	4570 y	28.8 min	100%
ec β+	28 min	ec β+	5.02 h	ec	67 min	ec	36.6 min	
	21.3 min		ec β +		ec β+		ec β+	
¹⁵⁶ Dy	¹⁵⁷ Dy	¹⁵⁸ Dy	¹⁵⁹ Dy	¹⁶⁰ Dy	¹⁶¹ Dy	¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy
0.056%	8.14 h	0.095%	144.4 d	2.329%	18.889%	25.475%	24.896%	28.26%
	ec β+		ec					

• HAHO

социо

инфо

био

когно

Сечения реакций ¹⁴¹Pr(a,x)

	1	2
Стартовая энергия, МэВ	60.0 ± 0.5	55.0 ± 0.5
Ток, мА	0,87	0,42
Количество мишеней в стопке	10	10
Время облучения, мин	60	15
Мониторные реакции	²⁷ Al(α,x) ²⁴ Na ²⁷ Al(α,x) ²² Na	$\begin{array}{c} {}^{27}\mathrm{Al}(\alpha,x){}^{24}\mathrm{Na}\\ {}^{27}\mathrm{Al}(\alpha,x){}^{22}\mathrm{Na}\\ {}^{\mathrm{nat}}\mathrm{Ti}(\alpha,x){}^{51}\mathrm{Cr}\\ {}^{\mathrm{nat}}\mathrm{Cu}(\alpha,x){}^{65}\mathrm{Zn}\\ {}^{\mathrm{nat}}\mathrm{Cu}(\alpha,x){}^{66}\mathrm{Ga}\\ {}^{\mathrm{nat}}\mathrm{Cu}(\alpha,x){}^{67}\mathrm{Ga} \end{array}$

Толщина мишеней 5-10 мг/см²

¹³⁸ Pm	¹³⁹ Pm	¹⁴⁰ Pm	¹⁴¹ Pm	¹⁴² Pm	¹⁴³ Pm	¹⁴³ Pm
10 s	4.15 min	9.2 s	20.9 min	40.5 s	265 d	363 d
ec β^+	ec β^+	ec β^+	ec β^+	ec β^+		
¹³⁷ Nd	¹³⁸ Nd	¹³⁹ Nd	¹⁴⁰ Nd	¹⁴¹ Nd	¹⁴² Nd	¹⁴³ Nd
38.5 min	5.04 h	29.7 min	3.37 d	2.49 h	27.153%	12.173%
ec β^+	ec β^+	ec β^+	ec	ec β^+		
136 Pr	137 Pr	¹³⁸ Pr	¹³⁹ Pr	¹⁴⁰ Pr	¹⁴¹ Pr	¹⁴² Pr
13.1 min	1.28 h	1.45 min	4.41 h	3.39 min	100%	19.12 h
		2.03 h				
ec β^+	ec β^+	ec β^+	ec β^+	ec β^+		β-
¹³⁵ Ce	¹³⁶ Ce	¹³⁷ Ce	¹³⁸ Ce	¹³⁹ Ce	¹⁴⁰ Ce	¹⁴¹ Ce
17.7 h	0.186%	9.0 h	$4.4 \cdot 10^{16} \mathrm{y}$	137.63 d	88.449%	32.511 d
ec β^+		ec β^+	0.215%	ec		β-

Курчатовский комплекс НБИКС-природоподобных технологий

Оценка ядерных реакций как способов наработки изотопов для медицины

160 <mark>Ег</mark> 28.58 ч	Изотоп	ү, кэВ (%)	х, кэВ (%)	Электроны Оже, кэВ (%)	Конверсион ные электроны, кэВ (%)			
ec	¹⁶⁰ Er	108,5 (7) 	47,547 (38) 	3,8-9,4 (113) 	5-5,8 (77%) 			
	^{160m} Ho	59,98 (0,082)	5,9-943 (11,8)	3,8-9,3 (45,4)				
¹⁶⁰ Er (28 58 h)	¹⁶⁰ Ho	Нет эксперим	Нет экспериментальных данных					
¹⁶⁰ Er (28.58 h) ¹⁶⁰ Ho (5.02 h) ¹⁶⁰ Ho (5.02 h) ^{76.2} % ^{23.8} % ¹⁶⁰ Ho (25.6 m) ¹⁶⁰ Ho (25.6 m)								

Способы наработки ¹⁶⁰Er

Путь получения	Энергия частиц	Выход, МБк/мкАч	Примеси
¹⁶⁵ Ho(p,6n) ¹⁶⁰ Er	64→46,9	427	¹⁶¹ Er (2022%), ¹⁶⁵ Er (19,3)*
¹⁶² Er(p,3n) ¹⁶⁰ Tm→ ¹⁶⁰ Er	35,6→28,2	397	¹⁶¹ Er (1,8%)
$^{162}\mathrm{Er}(\mathrm{d},4\mathrm{n})^{160}\mathrm{Tm}{ ightarrow}^{160}\mathrm{Er}$	39,9→36,5	115	
^{nat} Dy(<i>a</i> ,x) ¹⁶⁰ Er	87→45	22	
^{nat} Dy(a,x) ¹⁶⁰ Er	52,9→24,8	2,16	¹⁶¹ Er (4093%), ¹⁶⁵ Er (1507)*

В условиях циклотрона

У-150: 8 часов облучение 53→40 МэВ 50 мкА 7 дней охлаждения

2,2 МБк с 1% примесной активности

¹⁶¹Но 2.48 ч ес

Y	
En. [keV] Int. %	
25.655 (3) 27 (5)	
103.05 (2) 3.9 (6)	
77.42 (4) 1.9 (3)	
59.2 (3) 0.60 (11)	
157.26 (6) 0.49 (8)	
175.42 (5) 0.43 (8)	
43.80 (3) 0.39 (10)	
X	
En. [keV] Transition Int. 9	6
45.998 Κα1 44	(6)
5.746 - 9.022 L 29	(3)
45.207 Κα2 24	(3)
51.946 - 53.635 Kβ 17.	7 (23)
51.946 - 52.494 Kpβ1 14.	0 (19)
53.461 - 53.495 Kpβ2 3.6	(5)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons	(5)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. ?	(5) %
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119	(5) (11)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. % 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7	(5) (11) (8)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. % 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6	(5) (11) (8) (5)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9	(5) (11) (8) (5) (3)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons	(5) (11) (8) (5) (3)
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition Int. 9	(5) (11) (8) (5) (3) nt. %
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition Int. 9 16.605 - 17.861 (3) L 1	(5) (11) (8) (5) (3) nt. % 49 (9
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition In 16.605 - 17.861 (3) L 23.607 - 24.357 (3) M	(5) (11) (8) (5) (3) nt. % 49 (9 10.9
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition In 16.605 - 17.861 (3) L 23.607 - 24.357 (3) M 23.63 (4) K	(5) (11) (8) (5) (3) 10.9 5.8 (
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition Int En. [keV] Transition Int 16.605 - 17.861 (3) L 23.607 - 24.357 (3) M 23.63 (4) K 68.37 - 69.63 (4) L	(5) (11) (8) (5) (3) 10.9 5.8 (4.6 (
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition Int. 9 16.605 - 17.861 (3) L 23.607 - 24.357 (3) M 23.63 (4) K 68.37 - 69.63 (4) L 25.239 - 25.649 (3) N+	(5) (11) (8) (5) (3) 10.9 5.8 (4.6 (2.7 (
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition In 16.605 - 17.861 (3) L 23.607 - 24.357 (3) M 23.63 (4) K 68.37 - 69.63 (4) L 25.239 - 25.649 (3) N+ 25.239 - 25.649 (3) N	(5) (11) (8) (5) (3) 10.9 5.8 (4.6 (2.7 (2.4 (
53.461 - 53.495 Kpβ2 3.6 Auger Electrons En. [keV] Transition Int. 9 3.698 - 9.016 L 119 35.692 - 53.736 K 5.7 35.692 - 38.204 KLL 3.6 42.694 - 45.992 KLX 1.9 Conversion Electrons En. [keV] Transition Int 16.605 - 17.861 (3) L 23.607 - 24.357 (3) M 23.63 (4) K 68.37 - 69.63 (4) L 25.239 - 25.649 (3) N+ 25.239 - 25.649 (3) N 34.75 - 36.01 (3) L	(5) (11) (8) (5) (3) (3) (1.9 5.8 (4.6 (2.7 (2.4 (2.3 (

«Strike» эмиттер электронов Оже (Filosofov, 2021)

Терапия

Косвенные способы наработки ¹⁶¹Но

Путь получения	Энергия	Выход, МБк/мкА	Примеси (%)	
	частиц	Ч	примеси, (70)	159 Tb(α ,2n) 161 Ho
¹⁶⁵ Ho(p,5n) ¹⁶¹ Er	64→36	11334	160 Er (3,8), 165 Er	¹⁶² Dy(p,2n) ¹⁶¹ Ho
			(1,2)*	$161D_{\rm rv}(n,n)$ 1611L
¹⁶⁵ Ho(d 6n) ¹⁶¹ Er	$49.9 \rightarrow 39.8$	399	165 Fr (8.4) *	^{IOI} Dy(p,n) ^{IOI} HO
	17,7 757,0	577	En (0,4)	$160 D_{\rm U}(d, n) 161 U_{\rm O}$
162Fr(n 2n)161Tm 161Fr	$365 \rightarrow 165$	15.2	$160 \mathrm{Fr} (2611)$	Dy(d,ii) Ho
$EI(p,2II)$ $III \rightarrow EI$	50,5 /10,5	13,2	LI (2011)	161Dy(d 2n) 161 Ho
			¹⁶⁰ Er (2,4), ¹⁶⁵ Er	Dy(d,2h) 110
^{nat} Dy(a,x) ¹⁰¹ Er	52,9→20,4	88,4	(41,4)*	Требуется обогащенные мишени

В условиях циклотрона

У-150: 6 часов облучение 48→30 МэВ 50 мкА Выделение ¹⁶¹Ег после облучения 4 часа охлаждения Выделение ¹⁶¹Но

3325 МБк с 3% примесной активности

Снижение ¹⁶⁰Dy снизит примесную активность

Способы наработки ¹⁴⁰Nd

Реакция	Энергетический диапазон, МэВ	Интегральный выход ЕОВ, МБк/мкАч
¹⁴¹ Pr(α ,5n) ¹⁴⁰ Pm \rightarrow	60→54*	1,4
^{nat} Ce(³ He,xn)	35→20	12
$^{141}\Pr(d,3n)$	50→16	266
$^{141}\Pr(\mathbf{p,}2\mathbf{n})$	30→15	350

100→55 МэВ возможна наработка ~1300 МБк/µАч

4 ускорителя в мире: Japan Atomic Energy Research Institute (Japan), the University of California at Davis (United States), the Catholique Universitie (Belguim), the Forschungszentrum Karlsruhe (Germany)

¹⁶⁷Тт 9,25 суток ес

Диагностика ОФЭКТ «Strike» эмиттер электронов Оже

¹⁸F (5 мКи)

карцинома эндометрия (Chandra, 1974) 10.1148/100.3.687

HAHO

социо

инфс

био

Реакция	Е, МэВ	Выход, МБк/ мкАч
167 Er(p,n) 167 Tm	15→8	6,9
167 Er(d,2n) 167 Tm	20→10	15
168 Yb(p,2n) 167 Lu \rightarrow 167 Yb \rightarrow 167 Tm	30→35	31,3 (¹⁶⁷ Lu)
$^{169}\text{Tm}(p,3n)^{167}\text{Yb}\rightarrow^{167}\text{Tm}$	40→25	14453 (¹⁶⁷ Yb) 11,2 (¹⁶⁷ Tm)
165 Ho(α ,2n) 167 Tm	35→25	2,22
^{nat} Er(³ He,x) ¹⁶⁷ Yb \rightarrow ¹⁶⁷ Tm	40→4	3,0 (¹⁶⁷ Tm)
^{nat} Er(α ,x) ¹⁶⁷ Yb \rightarrow ¹⁶⁷ Tm	60→30	2250 (¹⁶⁷ Yb) 5,4 (¹⁶⁷ Tm)

В условиях циклотрона У-150: 8 часов облучение 45→30 МэВ 50 мкА 9 дней охлаждения

516 МБк с 1% примесной активности

¹⁶⁵Ег 10,36 ч ес

x		
En. [keV] Tr	ansition	Int. %
47.547	Κα1	38.13 (19
46.700	Κα2	21.41 (14
5.942 - 9.369	L	17.0 (7)
53.696 - 55.458	Кβ	15.52 (18
53.696 - 54.268	Κρβ1	12.32 (15
55.274 - 55.312	Κρβ2	3.20 (7)
Auger Electrons		
En. [keV] Tr	ansition	Int. %
3.809 - 9.363	L	65.6 (7)
36.826 - 55.564	К	4.8 (3)
36.826 - 39.472	KLL	3.02 (20)
44.091 - 47.541	KLX	1.57 (11)

«Идеальный» эмиттер электронов Оже (Filosofov, 2021)

Терапия

Сцинтилляционное изображение мыши с имплантированной опухолью (указана стрелкой) спустя 3 часа после введения (Rao, 1974)

Способы наработки ¹⁶⁵Er

Реакция	Энергия частиц	Выход МБк/ мкАч
¹⁶⁵ Ho(p,n) ¹⁶⁵ Er	16→7	79
¹⁶⁵ Ho(d,2n) ¹⁶⁵ Er	21	306
^{nat} Er(p,x) ¹⁶⁵ Tm→	30→14	267
$^{nat}Er(d,x)^{165}Tm \rightarrow$	40→6	396
$^{nat}Er(d,x)^{165}Tm \rightarrow$	50→32	541
$^{166}\mathrm{Er}(\mathrm{p,}2\mathrm{n})^{165}\mathrm{Tm}{ ightarrow}$	15→11	55
$^{\mathrm{nat}}\mathrm{Er}(a,\mathbf{x})^{165}\mathrm{Tm}{ ightarrow}$	60→40	4,6
165 Ho(α ,4n) 165 Tm \rightarrow	65→45	48,7

¹⁶⁹Yb-цитрат как визуализация

Без стабильного носителя - «Strike» эмиттер электронов Оже

Hisada, 1975

10.1148/116.2.389

Способы наработки ¹⁶⁹Yb

Реакция	Энергия частиц, МэВ	Выход МБк/мкАч
¹⁶⁹ Tm(p,n) ¹⁶⁹ Yb	18	~1
¹⁶⁹ Tm(d,2n) ¹⁶⁹ Yb	24	5,3
$^{nat}Er(\alpha, x)$	36→10	0,6
$^{nat}Er(\alpha, x)$	40→20	0,04
$^{nat}Er(\alpha, x)$	40→16	0,09
$^{nat}Er(\alpha, x)$	60→20	1,0

В условиях циклотрона У-150: 8 часов облучение 55→20 МэВ 50 мкА 24 дней охлаждения

215 МБк с 1% примесной активности

Хроматографическое разделение Yb, Tm и Er

Хроматографическое разделение Yb, Tm и Er

Выход Тт составил 94,0±1,4%, с содержанием Yb менее 1%. Выход Ег составил 89,2±3,7% с содержанием Tm 0,05%.

выводы

Достигнуты следующие основные результаты:

- 1. Были измерены сечения и рассчитаны выходы реакций:
- 165 Ho(α ,x) 163,165,166,167,168 Tm,
- $^{nat}Er(\alpha,x)^{165,166,167,169}Yb,^{165cum,166,167cum,168}Tm,$
- $^{nat}Dy(\alpha,x)^{160,161}Er$, ^{162m}Ho , ^{157}Dy ,
- ${}^{141}Pr(\alpha, x) {}^{144,143,141}Pm, {}^{138m}Pr, {}^{141cum,140cum}Nd, {}^{139cum}Ce.$

Для большинства реакций значения были получены впервые или расширили исследованный ранее энергетический диапазон. Сечения согласуются с ранее опубликованными экспериментальными данными. Расхождение с теоретически предсказанными значениями из баз TENDL-2019,2021 объясняется отсутствием ранее экспериментальных данных для валидации.

Многие данные уже представлены в EXFOR

выводы

2) Реакции $^{nat}Er(\alpha,x)^{167}Yb \rightarrow ^{167}Tm$, $^{nat}Er(\alpha,x)^{169}Yb$, $^{165}Ho(\alpha,4n)^{165}Tm \rightarrow ^{165}Er$ позволяют наработать достаточное количество для доклинических и клинических испытаний

3) Реакция ^{nat}Dy(α ,x)¹⁶¹Er \rightarrow ¹⁶¹Ho при определенных условиях может представлять интерес для наработки ¹⁶¹Ho, однако для достаточной чистоты продукта требуется снижение содержания ¹⁶¹Dy в исходной мишени.

4) Реакция 141 Pr(α, x) 140 Pm $\rightarrow {}^{140}$ Nd может представлять интерес для наработки в медицинских целях только на высокоэнергетических ускорителях.

5) Реакция ^{nat}Dy(α,x)¹⁶⁰Er не представляет интереса для масштабной наработки в медицинских целях

6) Описанный хроматографический подход может быть использован для производства ¹⁶⁹Yb и ¹⁶⁷Tm без носителя, а также для генераторной системы ¹⁶⁵Tm/¹⁶⁵Er

ПУБЛИКАЦИИ

- 1. Kormazeva E.S. et al. New experimental data on ^{nat}Dy(a,x) reactions: Details on the production of the medically relevant ¹⁶¹Er, ¹⁶⁰Er, and ¹⁶¹Ho Auger emitters // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 2022. Scopus, WoS. (Импакт-фактор журнала 1,270)
- Aliev R.A., Khomenko I.A., Kormazeva E.S. Separation of ¹⁶⁷Tm, ¹⁶⁵Er and ¹⁶⁹Yb from erbium targets irradiated by 60 MeV alpha particles // J. Radioanal. Nucl. Chem. 2021. Scopus, WoS. (Импакт-фактор журнала 1,371)
- **3. Kormazeva E.S.** et al. Experimental study of α-particle induced reactions on natural erbium for the production of Auger-emitters ¹⁶⁷Tm, ¹⁶⁵Er and ¹⁶⁹Yb // Appl. Radiat. Isot. 2021. **Scopus, WoS. (Импакт-фактор журнала 1,513**)
- 4. Kormazeva E. S. et al. New data on Ho(α,x) reactions and the aspects of ¹⁶⁷Tm and ¹⁶⁵Er production for medical use // J. Radioanal. Nucl. Chem. 2022. Scopus, WoS. (Импакт-фактор журнала 1,371)
- 5. Kormazeva E. S. et al. ¹⁴¹Pr(α,x): new cross-sections data with special reference to ¹⁴⁰Nd production for medicine // Nuclear Science and Engineering. 2023 Scopus, WoS. (Импакт-фактор журнала 1,460)

№ 2020663480

Заявка № 2020662411

Дата поступления 15 октября 2020 г.

в Реестре программ для ЭВМ 28 октября 2020 г.

Руководитель Федеральной службы

Telecca

по интеллектуальной собственности

Дата государственной регистрации

路路路路路路

容

-

斑

斑

密

密

斑

路路

密

斑

密

密

路

斑

斑

斑

密

斑 密

密

密

斑

密

密

掖

崧

肉

斑

容

孩

52

Г.П. Ивлиев

ПРОГРАММЫ ДЛЯ ЭВМ

Спасибо за внимание!

АПРОБАЦИЯ РАБОТЫ

Результаты исследований по теме диссертации представлены на 8 конференциях:

- 1. Кормазева Е.С., Алиев Р.А., Хоменко И.А. «Ядерные реакции ^{nat}Dy(α,х) для производства медицинских изотопов», Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2022», Москва, Россия, 11 22 Апреля 2022 года (тезисы, устный доклад)
- 2. Кормазева Е.С., Хоменко И.А., Алиев Р.А., «Получение медицинских изотопов в реакциях на ядрах гольмия и эрбия под действием альфа-частиц», IV Международная научно-практическая конференция «Радиофарма-2021», Ярославская область, г. Переяславль-Залесский, 30 сентября 03 октября 2021 года (тезисы, постерный доклад)
- Хоменко И.А., Кормазева Е.С. «Медицинские изотопы в ядерных реакциях под действием альфа-частиц на ядрах ^{nat}Er», Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2021», Москва, Россия, 12 – 23 Апреля 2021 года (тезисы, устный доклад).
- 4. Хоменко И.А., Кормазева Е.С. «Исследование ядерных реакций на эрбиевых мишенях под действием альфачастиц», Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020», Москва, Россия, 10-27 ноября 2020 года (тезисы, устный доклад).
- 5. Хоменко И.А., Кормазева Е.С., «Исследование функций возбуждения ядерных реакций под действием альфачастиц на мишенях из оксида эрбия», 63-я Всероссийской научной конференции МФТИ, ИНБИКСТ секция «НБИК-технологий», Москва, 23-29 ноября 2020 года (тезисы, устный доклад).
- 6. Хоменко И.А, **Кормазева Е.С.**, «Получение тулия-167 в реакциях под действием альфа-частиц на эрбиевых мишенях», XXI межвузовская научная школа молодых специалистов «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине», Москва, 23-24 ноября 2020 года (тезисы, устный доклад)
- 7. Кормазева Е.С., Хоменко И.А. Выделение ¹⁶⁷Tm, ¹⁶⁵Er, и ¹⁶⁹Yb из эрбиевых мишеней, облученных альфачастицами. Х Российская конференция «РАДИОХИМИЯ-2022», Санкт-Петербург, 26-30 сентября 2022 года. (тезисы, постерный доклад)
- 8. Кормазева Е.С. Выделение ¹⁶⁷Tm, ¹⁶⁵Er, и ¹⁶⁹Yb из эрбиевых мишеней, облученных альфа-частицами. Всероссийский конгресс «Ядерная медицина-2022», Санкт-Петербург, 2-3 декабря 2022 года. (Устный доклад (онлайн))