

Эксперимент ЕХО-200 и космогенные источники фона

Белов В.А. (EXO-200 & nEXO coll.)

Семинар им. В.М.Лобашева ИЯИ, Москва 11.10.2018

Двойной бета-распад

- Разрешён в Стандартной Модели (2β2ν канал)
- Теоретически впервые рассмотрен М. Гепперт-Майер в 1935 г.
- Обладает чрезвычайно большим периодом полураспада (10¹⁹ и более лет).
- Впервые обнаружен по косвенным следам еще в 50-х.
- В лабораторных условиях зарегистрирован лишь в 80-х.

Период полураспада и масса нейтрино

- Процесс второго порядка по «классической» теории слабого взаимодействия, а потому очень медленный.
- Фазовый фактор перехода очень сильно зависит от энергии (Q¹¹, Q⁵).
- Матричные элементы переходов очень тяжело рассчитываются.
- Экспериментально разделение различных каналов осуществляется по форме спектра энергии двух электронов.
- 2*v*-канал распада экспериментально обнаружен для 12 ядер
- 0v-канал до сих пор не зарегистрирован
- Было заявление о его открытии в распаде ⁷⁶Ge, впоследствии не подтвердившееся

$$\begin{split} (T_{\frac{1}{2}\nu})^{-1} &= G_{2\nu}(Q_{\beta\beta},Z) \,|\, M_{2\nu}\,|^{\,2}, \\ (T_{\frac{1}{2}\nu})^{-1} &= G_{0\nu}(Q_{\beta\beta},Z) \,|\, M_{0\nu}\,|^{\,2} < m_{\nu} >^{2}, \\ \text{где}\, < m_{\nu} > = \sum |\, U_{e,i}\,|^{\,2}\,m_{i}. \end{split}$$

Обнаруженные 2β-распады

Существует примерно 70 ядер, для которых возможен двойной бета-распад. Лишь для 12 из них он обнаружен экспериментально.

Изотоп	Q,(МэВ)	Ab.,%	Т _{1/2} ^{2v} , лет	Т _{1/2} ^{0v} , лет	<т_>>, эВ
⁴⁸ Ca	4.271	0.187	4.39 • 10 ¹⁹	> 5.8 • 10 ²²	< 3.1–15.4
⁷⁶ Ge	2.040	7.8	1.65 • 10 ²¹	> 5.2 • 10 ²⁵	< 0.15–0.39
⁸² Se	2.995	9.2	9.19 • 10 ¹⁹	> 3.6 • 10 ²³	< 1.0–2.4
⁹⁶ Zr	3.350	2.8	2.30 • 10 ¹⁹	> 9.2 • 10 ²¹	< 3.6–10.4
¹⁰⁰ Mo	3.034	9.6	7.10 • 10 ¹⁸	> 1.1 • 10 ²⁴	< 0.33–0.62
¹¹⁶ Cd	2.802	7.5	2.87 • 10 ¹⁹	> 1.9 • 10 ²³	< 1.0–1.8
¹²⁸ Te	0.868	31.7	2.00 • 10 ²⁴	> 1.5 • 10 ²⁴	< 2.3–4.6
¹³⁰ Te	2.533	34.1	6.90 • 10 ²⁰	> 4.0 • 10 ²⁴	< 0.26-0.97
¹³⁶ Xe	2.458	8.9	2.19 • 10 ²¹	> 1.1 • 10 ²⁶	< 0.06–0.16
¹⁵⁰ Nd	3.367	5.6	8.37 • 10 ¹⁸	> 2.0 • 10 ²²	< 1.6–5.3
²³⁸ U	1.100	99.3	2.00 • 10 ²¹		
¹³⁰ Ba (ECEC)	2.611	0.106	1.40 • 10 ²¹		

University of Alabama, Tuscaloosa AL, USA — M Hughes, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan University of Bern, Switzerland — J-L Vuilleumier University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, W Cree, R Gomea, K Graham, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, D Harris, A Iverson, J Todd, T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, EV Hansen, YH Lin, Y-R Yen Duke University, Bloomington IN, USA — JB Albert, S Daugherty Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, A Robinson, U Wichoski University of Maryland, College Park MD, USA — C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, A Pocar McGill University, Montreal QC, Canada — T Brunner, Y Ito, K Murray

The EXO-200 Collaboration

SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis,
S Delaquis, A Johnson, LJ Kaufman, B Mong, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen
University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan
Friedrich-Alexander-University Erlangen, Nuremberg, Germany
G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, M Wagenpfeil, G Wrede, T Ziegler
IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard
IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao
ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich
University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang
Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, A Schubert, M Weber, S Wu
Stony Brook University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino
TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland
Yale University, New Haven CT, USA — Z Li, D Moore, Q Xia

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 5 / 58

Почему ксенон

Несмотря на не самое лучшее энергетическое разрешение, ксенон обладает весомыми преимуществами:

- Возможность использовать <u>мишень как детектор</u>, очень хорошо для достижения больших масс детектора, также самоэкранировка
- Достаточно <u>большое значение Q</u>, расположенное в области, сравнительно свободной от естественной радиоактивности
- <u>Легкость изотопного обогащения</u>, т. к. благородный газ, плюс ¹³⁶Хе самый тяжёлый изотоп
- <u>Легко очищать и перегружать</u> из детектора в детектор, без необходимости растить кристаллы
- Слабая активация космическими лучами, отсутствие долгоживущих изотопов
- Возможность <u>улучшения энергетического разрешения</u> за счёт антикорреляции ионизации/сцинтилляции
- Ограниченная возможность идентификации частиц
- → Уникальная способность подавление фона за счёт тагирования распада по дочернему ядру Ва [м.мое рвс 44, к931, 1991]

Детектор ЕХО-200

- Цилиндрическая сдвоенная ТРС заполненная жидким ксеноном
- Считывание ионизационного и сцинтилляционного сигналов
- В активном объёме 110 кг ксенона, обогащённого до 80.6% по ¹³⁶Хе
- Тонкостенный корпус детектора (1.37 мм, менее 30 кг).
- Мощная пассивная защита от внешней радиоактивности
 - более 50 см хладагента
 - 5.4 см высокочистой меди
 - 25 см низкоактивного свинца
- Активная система вето

Конструкция ТРС

- две идентичные половины
- дрейфовое поле 567 В/см
- две плоскости 38/38 проволочек, скрещенных под углом 60°
- шаг проволочек 3 мм (9 мм на канал)
- 234 APD большой площади, собранные в группы по 7 штук
- всего 226 каналов
- сигналы оцифровываются 1 Мвыб/с
 - Полезадающие кольца из меди
 - Изолирующие вставки из акрила
 - Отражатель света из тефлона
 - рама APD: медь покрытая Au и Al
 - Катод и проволочки: фототравленая фосфористая бронза
 - Гибкие кабели для соединений: медь на каптоне, без клея
 - Всеобъемлющая программа проверки активности материалов

EXO-200 detector:JINST 7 (2012) P05010Characterization of APDs:NIM A608 68-75 (2009)Materials screening:NIM A591, 490-509 (2008)

Подземная лаборатория

Располагается в соляной шахте WIPP в Нью-Мехико (США) Малая активность окружающих пород U ~ 0.048 ppm Th ~ 0.25 ppm K ~ 480 ppm Глубина залегания 650 м (1621 м.в.э.) Измеренный поток мюонов $I_{\rm v} = 2.97 \times 10^{-7} \,{\rm cm}^{-2} \,{\rm c}^{-1} \,{\rm cp}^{-1}$ HV FILTER AND FEEDTHROUGH VETO PANELS DOUBLE-WALLED CRYOSTAT FRONT END ELECTRONICS LXe VESSEL VACUUM PUMPS

JACK AND FOOT

LEAD SHIELDING

Система калибровки источниками

Миниатюрные источники

Используем источники ¹³⁷Cs, ⁶⁰Co, ²²⁸Th и ²²⁶Ra.

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 10 / 58

Восстановление событий

- Поиск импульсов согласованные фильтры применяются к формам сигналов
- Параметры импульсов (t, E) оцениваются для заряда и света
- Импульсы объединяются в кластеры, производя положение и энергию, а также разделяя события на Single Site (SS) и Multiple Site (MS)
- Размер кластера оценивается из времени нарастания и числа проволочек
- Положение используется в виде Standof Distance (SD) наименьшего расстояния от любого из зарядовых кластеров до конструкции TPC

События с высокой множественностью (MS) не отбрасываются, а используются для более точного фитирования фона.

Определение энергии

В ксеноне сцинтилляционный и ионизационный сигналы связаны и изменяются в противофазе. Это позволяет, используя их комбинацию, улучшить энергетическое разрешение.

E. Conti *et al.* Phys. Rev. **B**68 (2003) 054201

Энергетическая калибровка

Получение результата

Низкофоновые данные

Vladimir Belov (ITEP) Эксперимент ЕХО-200 и космогенные источники фона 11.10.2018

18 15/58

Измерение 2β2ν

Самое точное измерение периода полураспада среди всех ядер

 $T_{_{1/2}}(2\nu\beta\beta) = 2.165 \pm 0.016(стат) \pm 0.059(сист) \times 10^{_{21}}$ л

[PRC 89, 015502 (2014)]

Эффективность к 2β событиям 58 % (87 %) Мертвое время 5.6 % Полная экспозиция 127.6 сут 23.14 кг·л 2β событий 18984 шт. Соотношение сигнал/фон 11 : 1

Эксперимент ЕХО-200 и космогенные источники фона 11.10.2018 16 / 58

Подавление шума

- Наибольший вклад в разрешение вносит шум в канале APD
- Был разработан специальный алгоритм для подавления этого шума
- Алгоритм использует пространственную информацию о событии из положения зарядовых кластеров и профиль шума в каждом канале для вычисления оптимальной энергии сцинтилляционного кластера

Модернизация детектора

- Новая усилительная часть для электроники, с уменьшенным шумом
- Дрейфовое напряжение увеличено в 1.5 раза
- В результате энергетическое разрешение улучшилось до σ/E(Q) = 1.23%
- Специальный аппарат (дерадонатор) для удаления радона из воздуха
- Измерения показали, что уровень радона внутри защиты снизился более чем в 10 раз

Оптимальный дискриминатор

Можно усилить β/γ разделение используя дополнительную информацию

Космогенные источники фона

- Основной источник фона в ЕХО-200 гамма-фон
- Он уже хорошо оценён по анализу радиоактивности материалов [Phys.Rev. C92 (2015) no.1, 015503]
- Нейтроны являются вторым по значимости источником фона
- ¹³⁷Хе важный источник фона производится нейтронами
- Моделирование показало, что внешние нейтроны не проходят через свинец и хладагент
- Известным источником нейтронов являются мюоны
- Мюоны обладают большой энергией и высокой проникающей способностью
- Ядерные взаимодействия, вызываемые мюонами, редки, зато легко приводят к значительному выделению энергии
- Грубая оценка для свинца: $Y_n \cdot J = 0.2 \ n/\kappa \Gamma \cdot cyT \Rightarrow 10^4 \ n/cyT. !$
- Прямые эффекты подавлены системой активного вето, поэтому наша цель – активация ядер вещества

Распределения мюонов

• Для распределения по углу к вертикали (надиру) мы используем приближение Мияке:

 $I(h, \theta) = I(h, 0) \cdot (\cos \theta)^{1.53} e^{\alpha(\sec \theta - 1)h}$, где $\alpha = -8.0 \times 10^{-4}$ м.в.э.-1, h = 1050 м.в.э.

- Угол по горизонтали (азимут) равномерно
- Распределение по энергии на поверхности (E_0) $\frac{dN}{dE_0 d \Omega} \approx 0.14 \left(\frac{E_0}{\Gamma \ni B}\right)^{-2.7} \left(\frac{1}{1 + \frac{1.1E_0 \cos \theta}{115 \Gamma \ni B}} + \frac{0.054}{1 + \frac{1.1E_0 \cos \theta}{850 \Gamma \ni B}}\right) \frac{1}{cM^2 c cp \Gamma \ni B}$
- Энергия мюонов под землёй (E)
 E₀=(E+ε)e^{bHsecθ}-ε, где ε = 693 ГэВ, b = 3.5 × 10⁻⁴ м.в.э.⁻¹, H = 1620 м.в.э.
- Зарядовое соотношение фиксированное 1.3
- Поток вертикальных мюонов $I_{\nu} = I(\theta = 0) = (2.97^{+0.14}_{-0.13}(cucm) \pm 0.02(cmam)) \times 10^{-7} \frac{1}{cm^2 c cp}$
- Множественностью мюонов можно пренебречь

Распределения мюонов

Угловое распределение выбирали из нескольких по минимуму χ^2 варьируя параметр глубины

Проверяли сравнивая с измерениями мюонов в детекторе

Наблюдаемые скачки на угловых распределениях – следствие применяемого отбора

0.5

Reconstructed $\cos\theta$

0.6

0.7

0.8

900**⊢**

800

700

600

500

400

300

200

100

0

0.1

0.2

0.3

0.4

Counts

t

0.9

Расчётные модели

- Решили использовать лучшее FLUKA и Geant4
- Включена адронная физика, особое внимание нейтронам
 - Мюон-ядерные и фотоядерные реакции
 - Захваты μ^- , π^- , K^- и \overline{p} после остановки
 - Генерация тяжёлых фрагментов и их взаимодействий
 - Для нейтронов малых энергий (< 20 МэВ) модели высокой точности, с использованием файлов данных сечений и реакций, включая сечения для тепловых нейтронов
- Модель FLUKA использует упрощённую геометрию, модель Geant4 точную, отличие масс < 1%
- Основной результат расчёт скорости активации

Проведение моделирования

- Проведение полного расчёта заняло 62 тыс. ядер-часов для FLUKA и 2 тыс. ядер-часов для Geant4.
- Эквивалентная экспозиция установки, рассчитанная по количеству прошедших мюонов, составила в модели FLUKA 5.5 лет, а в модели Geant4 — 57 лет.
- Для всей активации FLUKA даёт результат в 1.5 раза больше Geant4
- Но для только захватов нейтронов лишь на 9% больше

Автоматизированный метод отбора

- Задача: проверить ~ 2 тыс. изотопов на предмет потенциального вклада в низкофоновые данные
- Много радиоактивных, в т. ч. с распадными цепочками
- ⇒ считать руками долго и чревато ошибками
- ... но можно поручить это компьютеру
- Итого:
 - Нас волнуют события с *E* > 2300 кэВ
 - Снаружи в детектор могут попасть только ү-кванты
 - Гамма-квантов такой энергией немного
 - Не следует забывать про тормозное излучение бета-электронов
 - Эффективность регистрации сильно зависит от расстояния до детектора, но можно использовать упрощенную модель
- Сумма по всем переходам последовательно для конкретного изотопа должна дать искомый результат

Автоматизированный метод отбора

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 26 / 58

Краткий список опасных изотопов

После автоматической проверки:

- Для оставшихся смоделирована реальная эффективность регистрации распада
- Особое внимание производным ксенона, т. к. для β-распада положение сильно влияет на эффективность
- Также проверена возможность генерации ядер в возбуждённом состоянии ⇒ без заметного эффекта
- Окончательный отбор ⇒ результирующий список:

Область	Изотоп	T _{1/2}	Энергия, кэВ	Эфф. 2,3 — 2,6	Эфф. SS ROI	Geant4, шт./г	FLUKA, шт./г	
Хладагент НFE-7000	¹⁶ N	7,1 c	10 420	0,009%	0,001%	2380 ± 90	2910±110	
Корпус ТРС	⁶⁰ Co	5,3 г	2 823	0,19%	0,0002%	2.6 ± 0.3	2.9 ± 0.6	
Жидкий ксенон	¹³⁰	12 ч	2 949	2,0%	0,001%	7.3 ± 0.5	21.6 ± 1.8	
Жидкий ксенон	¹³²	2,3 ч	3 581	1,6%	0,013%	7.7 ± 0.5	22.2 ± 1.8	
Жидкий ксенон	¹³⁴	53 мин	4 175	1,4%	0,012%	7.3 ± 0.5	20.4 ± 1.7	
Жидкий ксенон	¹³⁵	6,6 ч	2 627	1,2%	0,035%	8.6 ± 0.6	21.6 ± 1.8	
Жидкий ксенон	¹³⁵ Xe	9,1 ч	1 165	—	_	1110 ± 40	1060 ± 40	
Жидкий ксенон	¹³⁷ Xe	3,8 мин	4 173	4,1%	1,5%	439 ± 17	403 ± 16	
[JCAP 1604 no.04, 029 (2016)]								

Захват нейтронов на ядрах

 Один из процессов активации – радиационный захват нейтронов на ядрах,

например 1 H (*n*, γ) 2 H, E_{γ} = 2.223 МэВ

- Идёт при любых энергиях, имеет резонансные пики
- Обычно случается с тепловыми нейтронами
- Характерное время до захвата достигает миллисекунд
- Захват с попаданием на метастабильное состояние достаточно редок

- Производит характерное излучение
- Может быть выделен в совпадении с мюонами

События в совпадении с вето-сигналом

События в ТРС после сигнала вето-панелей:

- Слева γ -кванты неупругого рассеяния и тормозного излучения
- Посередине события от захвата нейтронов на ядрах
- Справа обычные низкофоновые события, большей частью 2β

Мгновенное ү-излучение при захвате

- Схема каскада отличается от обычной
- Мы брали экспериментальные данные из ENSDF
- Очень многое было измерено в 70-х, но с ограниченной точностью
- Пришлось дорабатывать напильником
- Данные были преобразованы в специальные генераторы для МК

Пространственное распределение

• Сильно неоднородно, особенно в хладагенте

Vladimir Belov (ITEP)

- Нейтроны летят из свинца и термализуются в хладагенте
- Нужно правильно смоделировать эффективности регистрации
- Разыгрывали испускание ү-квантов из положения точек захвата

Эксперимент ЕХО-200 и космогенные источники фона 11.10.2018 31 / 58

Наложение событий

- Дополнительную сложность создаёт множественность событий
- Нейтронов бывает много, и их захватов тоже
- Более того, все они имеют разное время
- Но достаточно близкое, чтобы мешать друг другу
- FLUKA и Geant4 разошлись в оценке времён до захвата примерно в 2 раза, кажется это связано в расчётом термализации нейтронов
- Было проведено специальное моделирование для расчёта коррекции

Vladimir Belov (ITEP)

Эксперимент ЕХО-200 и космогенные источники фона 11.10.2018

32 / 58

Отбор реальных событий

- События от захвата нейтронов отличаются от обычных событий
- Большая энергия и высокая множественность ү-квантов ведёт к сложной топологии событий
- Поэтому нам пришлось изменить процедуру отбора:
 - Не требуется полное восстановление всех кластеров
 - Допускается несколько сцинтилляционных кластеров
 - Отменена блокировка на 1 с после события
- Также введены поправки на:
 - Неэффективность триггера и DAQ
 - Восстановления событий после прохождения мюона через ТРС
 - Наложение событий по времени
- Результирующий набор данных фитировался PDF как обычно

Итоговый фит

- В качестве фона были взяты низкофоновые данные и отмасштабированы на соответствующее время
- Всё вместе отлично описывает экспериментальные данные

Сравнение скоростей захвата

- В целом наблюдается хорошее соответствие расчёта эксперименту
- Результаты модели Geant4 значительно ближе к экспериментальным, чем для FLUKA

Компонент	Событий (>1500 кэВ)	Эксперимент, захватов/г	Geant4, захватов/г	FLUKA, захватов/г
Фон	35.9 ± 11.7			
⁶⁴ Си и ⁶⁶ Си	306 ± 70	$(4.23 \pm 1.30) \times 10^{5}$	4.69×10^{5}	5.78×10^{5}
¹⁹ F	87.1 ± 38.0	$(2.85 \pm 1.29) \times 10^4$	2.75×10^{4}	2.45×10^{4}
¹ H	309 ± 52	$(2.41 \pm 0.50) \times 10^{5}$	2.48×10^{5}	3.50×10^{5}
¹³⁴ Xe	20.1 ± 18.2	72.9 ± 67.1	116	120
¹³⁶ Xe	86.0 ± 29.4	338 ± 132	439	403

[JCAP 1604 no.04, 029 (2016)]

Сравнение ¹³⁷**Хе**

- Для ¹³⁷Хе мы имеем данные не только о захватах...
- … но и о распадах из фита низкофоновых данных
- Активацией за пределами защиты можно пренебречь, т. к. малая масса и длинный путь
- Удалением из детектора за счёт циркуляции – тоже
- Результаты обоих измерений хорошо совпадают
- Результаты обоих расчётов хорошо совпадают друг с другом и с результатами измерений

Специальный отбор для ¹³⁷Хе

- 137Хе опасный источник фона
- β-распад с энергией перехода 4173 кэВ, только 30% сопровождаются γ-квантом 450 кэВ
- 2/3 образовавшихся ¹³⁷Хе не сопровождаются мюоном в ТРС

- Период полураспада 3.8 мин не позволяет просто блокировать ТРС
- Захват нейтрона на ¹³⁶Хе выделяет 4025 кэВ
- Скорость движения жидкости мала (~0.1 мм/с), а диффузии еще меньше

 Можно определить событие захвата и тогда блокировать ТРС надолго

Промежуточный итог

- Мюоны везде, но это не повод отчаиваться
- Моделирование методом МК имеет хорошую точность
- Скорости современных ЭВМ позволяют моделировать даже большие установки
- Результаты расчётов совпадают с измерениями
- Активация космическими лучами может создавать неустранимые источники фона
- Это представляет значительную опасность для экспериментов, нацеленных на поиск редких процессов
- Размер установок в данном случае работает против нас
- Часть событий активации (нейтронный захват) могут быть подавлены за счёт тагирования захвата

Набор данных

Phase-I					Phase-II						
• Сент. 2011 – Февр. 2014				•	• Доступ восстановлен в 2015 после						
• Полное живое время 596.7 сут.					остановки из-за аварии в шахте						
• Избранные результаты				•	 Янв. – Май 2016 						
 Наиболее точное измерение 2vßß 					• Модернизация установки						
• Phys. Rev. C 89 , 015502 (2013)				•	• Новый набор данных с мая 2016						
• Жё	 Жёсткий предел на 0vββ 					• Полное живое время 271.8 сут.					
 Nature 510, 229 (2014) 				•	 Новый результат показан ТАUP-2017 						
 Чувствительность Т_{1/2}^{0vββ} > 1.9x10²⁵ yr (90%CL) 					 Phys.Rev.Lett. 120 (2018) no.7, 072701 						
Live time (days) L	,200 900 600				Cumulati	ve Live	time				Other Golden
	500		F	Phase I					Phase	e II	
	0	Jan 2012	Jan 201	3	Jan 2014	Jan	2015 Jar	2016	Jan 2	2017	

Измерение 2β0ν

- Данные Phase-I и Phase-II фитировались независимо
- Результаты объединялись после
- Статистически значимого избытка не наблюдается (~1.5σ)

Измерение 2β0ν

- Полная экспозиция 177.6 кг·л
- Индекс фона в области поиска (1.5 ± 0.2) × 10-3 соб./(кг·л·кэВ)
- Чувствительность 3.7 · 10²⁵ лет (90% CL)
- *T*_{1/2}(0vββ) > 1.8 · 10²⁵ лет
- $\langle m_{\beta\beta} \rangle$ < 147–398 meV (90% CL)

Phys. Rev. Lett. **120**, 072701

Сравнение

EXO-200: this result, arXiv: 1707.08707 GERDA: arXiv:1710.07776 KamLAND-Zen: PRL 117 (2016) 082503 KK&K Claim: Mod. Phys. Lett., A21 (2006) 1547

EXO-200: this result, arXiv: 1707.08707 CUORE: talk by O. Cremonesi @ TAUP-2017 Sensitivity in PRL 115 (2015) 102502

Другие результаты

- 2β-распад ¹³⁶Хе с испусканием майорона
 - T_{1/2}(χ) > 1.2 × 10²⁴ л (90% CL)
 - [Phys.Rev. D90 (2014) no.9, 092004]
- 2β-распад ¹³⁶Хе на возбуждённое состояние 0₁+ Ва
 - Т_{1/2}² (0+→0₁+) > 6.9 × 10²³ л (90% CL)
 - [Phys.Rev. C93 (2016) no.3, 035501]
- Нарушение Лоренц-инвариантности и СРТ симметрии
 - Отклонений не обнаружено
 - [Phys.Rev. D93 (2016) no.7, 072001]
- 2β-распад ¹³⁴Хе
 - $T_{1/2}(2\nu\beta\beta) > 8.7 \times 10^{20}$ л и $T_{1/2}(0\nu\beta\beta) > 1.1 \times 10^{23}$ л (90% CL)
 - [Phys.Rev. D96 (2017) no.9, 092001]
- Распад нуклонов в ядре на примере ¹³⁶Хе
 - T_{1/2}(¹³³Sb) > 3.3 × 10²³ л и T_{1/2}(¹³³Te) > 1.9 × 10²³ л (90% CL)
 - [Phys.Rev. D97 (2018) no.7, 072007]

ЕХО-200 и далее

- Детектор с 200 кг жидкого ксенона успешно работает вот уже 5 лет
- <u>Самое точное измерение</u> периода полураспада среди 2β
- Измеренный уровень фона очень низок
- Имеем время жизни электрона <u>~ 3 мс постоянно</u>
- Использовали <u>самоэкранировку</u> в монолитном детекторе
- Продемонстрировали силу <u>β/γ разделения</u> (SS/MS)
- Получили энергетическое разрешение 1.2% (в области 2.5МэВ)
- Пора подумать о тонном детекторе!
- Мы предлагаем 5000 кг детектор на жидком ксеноне nEXO
- На таком масштабе находится область «золотой эры» экспериментов по исследованию 2β-распада, т. к. размеры детектора становятся заметно больше радиационной длины
- nEXO это не просто EXO-200 ×30
- Наша цель увеличить чувствительность более чем в 100 раз

Борьба с гамма-фоном

- Экранировать детекторы при поиске 2β-распада сложнее, чем при поиске WIMP
- Для тонных детекторов самоэкранировка выходит на новый уровень эффективности

Общий вид

- Цилиндрическая ТРС 1.3 × 1.3 м
- Масса активного ксенона ~ ×30
- Уровень обогащения 90%
- Тонкостенный медный корпус
- Единая зона дрейфа, катод внизу
- НFE для охлаждения и защиты
- Более глубокая шахта

- Платы вместо проволочек
- ... для считывания 2D положения
- SiPM`ы на боковой поверхности
- ... чувствительные к VUV
- Хорошее отражение везде
- Холодная электроника
- Энергетическое разрешение < 1%

nEXO @ SNOLab

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 47 / 58

Доверительный объём

- У детекторов такого размера индекс фона начинает зависеть от размера доверительного объёма
- Общий фит данных из всего объёма более полно использует информацию и позволяет достичь лучших результатов
- 95% чувствительности достигается с 2000 кг

Моделирование проводилось с измеренной активностью материалов, без экстраполяции, заложены все материалы по проекту.

Сигнал и фон

Текущая оценка на уровень фона: 3 × 10⁻⁴ соб./FWHM/кг/л, предполагая доверительный объём 2000 кг.

Перспективы nEXO

- nEXO это эксперимент следующего поколения по поиску 2β0v-распада
- Ведётся активная разработка конструкции
- Имеет потенциал для открытия в области обратной иерархии
- Ожидаемая чувствительность к 2β0v-распаду ¹³⁶Хе составляет 9.1 × 10²⁷ л при 90% С.L. за 10 набора данных

Rodriguez, Martinez-Pinedo, Phys.Rev.Lett. 105 (2010) 252503

Заключение

- Поиск 280v-распада направлен на открытие «новой» физики и связан со многими областями современной физики
- Мы построили превосходный детектор и набираем данные
- Наблюдаемый уровень фона соответствует ожиданиям и расчётам
- Результаты измерений 100 кг представлены и не содержат сигнала
- ЕХО-200 успешно продемонстрировал преимущества избранного подхода
- Ведутся значительные работы по доводке конструкции nEXO
- Этот 5000 кг детектор позволит решительно шагнуть вперёд
- Область массы нейтрино 10 мэВ в пределах нашей доступности!

Спасибо

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 52 / 58

Внутренности детектора

 Vladimir Belov (ITEP)
 Эксперимент EXO-200 и космогенные источники фона
 11.10.2018
 53 / 58

Общий вид детектора

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 54 / 58

Чистота ксенона и уровень радона

Непрерывная циркуляция ксенона через высокотемпературные очистители SAES с использованием специально сконструированного насоса.

[Neilson et al. (2011) arXiv:1104.5041v1]

Среднее время жизни электрона

~3 мс обеспечивает на максимальном времени дрейфа 110 мкс уменьшение сигнала <3%.

Восстановление после остановок занимает несколько дней

nEXO Ba tagging

Goal of barium tagging:

- Recover and identify xenon decay daughter barium if present
- Suppress background to almost background free

Several concepts are being investigated:

Probe removed to vacuum; Ba⁺ identified by (1) laser ablation/resonance ionization or (2) thermal desorption/ionization

Probe removed to vacuum; Ba/Ba⁺ identified laser fluorescence single atom imaging in SXe Capillary extraction ⁴

Ba⁺ "sucked" out of LXe through capillary into ion trap and identified laser fluorescence and MRTOF spectroscopy

³B. Mong et al., "Spectroscopy of Ba and Ba⁺ deposits in solid xenon for barium tagging in nEXO", Phys. Rev. A 91, (2015) 022505

⁴T. Brunner et al., "An RF-only ion-funnel for extraction from high-pressure gases", Int J. Mass Spec., 379, 110-120 (2015)

nEXO фотодетекторы

Vladimir Belov (ITEP) Эксперимент EXO-200 и космогенные источники фона 11.10.2018 57 / 58

nEXO регистрация заряда

- Orthogonal, noble-metal strips of 10 cm length on a quartz substrate
- Each strip consists of small metal pads linked diagonally, lying parallel to either the X- or the Y-axis.

- Improving fabrication process.
- Investigating different readout schemes.
- Integrating with cold electronics.