Timo Enqvist University of Oulu, Finland

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Moscow, June 10, 2016 - 1/40 -

- The Pyhäsalmi mine and Callio Lab
- Cosmic-ray experiment EMMA
- <sup>14</sup>C concentration in liquid scintillators
- Measurement of 2ν2β half-lives (β<sup>+</sup>EC mode) of <sup>78</sup>Kr and <sup>124</sup>Xe

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

### The Pyhäsalmi Mine

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < ⊙

Moscow, June 10, 2016 - 3/40 -

The Pyhäsalmi mine



- Owned by First Quantum Minerals Ltd, Canada
- Active mine; procuding copper (Cu), zinc (Zn) and pyrite (FeS<sub>2</sub>)
- The deepest metal mine in Europe
  - 1400 m (4000 mwe)
- Very modern infrastructure
  - ► lift (of 21.5 tons of ore or 20 persons) down to 1400 metres takes ~3 minutes
  - via 11-km long decline it takes ~40 minutes (by track)
  - good communication systems
  - large caverns in good shape
- Underground mining operation is expected to end in 2019
  - Callio Lab

The Pyhäsalmi mine - restaurant at 1410 m



The Pyhäsalmi mine - maintenance hall at 1410 m



Moscow, June 10, 2016 - 6/40 -

- Underground mining operation in the Pyhäsalmi mine is expected to end in 2019
- The mine has an excellent infrastructure, large caverns and halls, good location and possibility to excavate larger halls
  - Callio Lab established to operate activities other than mining
- The first deep (1430 m, 4100 mwe) underground laboratory hall (120 m<sup>2</sup>, 8 m height) ready for experiments
  - C14 experiment
  - neutron and muon background measurements
  - ideal for small-scale experiments (dark matter, double-beta decay), for prototypes and testing, and for material screening
- Open Call
  - to send a proposal (scientific or commercial)
  - www.calliolab.com

# Cosmic-ray experiment EMMA

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

Moscow, June 10, 2016 - 8/40 -

### Underground Physics in the Pyhäsalmi mine EMMA – the knee



Moscow, June 10, 2016 - 9/40 -

EMMA – muon lateral distribution – cut-off energy 50 GeV (75 m of rock)



#### EMMA – detector geometry



• • • • • • • •

Moscow, June 10, 2016 - 11/40 -

EMMA – detectors in tracking stations



Moscow, June 10, 2016 - 12/40 -

EMMA – detectors in sampling stations



Moscow, June 10, 2016 - 13/40 -

#### Underground Physics in the Pyhäsalmi mine EMMA – DAQ running in 7 stations



Moscow, June 10, 2016 - 14/40 -

### Underground Physics in the Pyhäsalmi mine EMMA – gas handling



#### Total flux ~8 $\ell$ /min (Ar:CO<sub>2</sub>, 92:8)

Moscow, June 10, 2016 - 15/40 -

### Underground Physics in the Pyhäsalmi mine EMMA – gas handling



#### Total flux ~8 $\ell/min$ (Ar:CO<sub>2</sub>, 92:8)

Moscow, June 10, 2016 - 16/40 -

#### EMMA – gas handling



Total flux ~8  $\ell/\text{min}$  (Ar:CO<sub>2</sub>, 92:8) Moscow, June 10, 2016 – 17/40 –

#### Underground Physics in the Pyhäsalmi mine EMMA – stations C, F ja G



Moscow, June 10, 2016 - 18/40 -

- Former muon detectors from the DELPHI experiment at LEP (at CERN)
  - a plank 7 individual chambers
  - mass 120 kg per plank
  - chamber: 365 cm × 20 cm
  - 3 signals per chamber
- In total 84 planks ( $\sim$ 250 m<sup>2</sup>)
  - form the basis of the array
- Position resolution is good:  $\sim 1 \text{ cm}^2$ 
  - needed by tracking
- ► Ar (92%) : CO<sub>2</sub> (8%) at 1 bar







イロン 不同 とくほと 不良 とう

Moscow, June 10, 2016 - 19/40 -

EMMA – scintillation detectors

- SC16 detector
  - $50 \times 50 \text{ cm}^2$ , H = 13 cm
  - mass ~ 20 kg per SC16
  - 16 individual pixels of 12 × 12 cm<sup>2</sup> × 3 cm pixels
  - APD light collection
  - $\blacktriangleright$  time resolution good:  ${\sim}1$  ns
- Manufactured by Russian Academy of Sciences
- In total 96 SC16s (24 m<sup>2</sup>, 1536 px), 72 SC16s in EMMA (1152 ps)
- Designed especially for
  - large muon multiplisities
  - fast trigger
  - initial guest for the arrival angle



・ロト ・回ト ・ヨト ・ヨト

Э

#### Underground Physics in the Pyhäsalmi mine EMMA – Limited Streamer Tube (LST) detectors

- Muon detectors of KASCADE–Grande experiment (Karlsruhe)
- To be used as the second detector layer at the edge of the array and at 45-level
- Read-out electronics modified and is now being tested
  - LSTs in operation by the end of 2016
- 60 LST modules
  - $\blacktriangleright$  ~ 180 m<sup>2</sup>
- Properties
  - ▶ 2.9 m × 1.0 m
  - pixel size (PAD):
    2 cm × 8 cm
  - ▶ gas: CO<sub>2</sub> at 1 bar



EMMA – first test runs with single stations (station C)



Moscow, June 10, 2016 - 22/40 -

EMMA – conclusions

- EMMA is an underground cosmic-ray experiment studing the knee region of the energy spectrum
  - at the depth of 75 m  $\implies$  energy cut-off of 50 GeV
- It consists of 11 detector stations
  - ▶ 7 stations currently in the DAQ, all stations by the end of 2016
  - three detector types: drift chambers, small-size plastic scintillation detectors and limited streamer tube detectors
- EMMA can extract the muon multiplicity, the lateral distribution and the arrival angle of an air shower
  - $\blacktriangleright$  angular accuracy  ${\sim}1$  deg
- Simulations and data analysis packages under development
  - first test runs (with multiplicities only) are looking fine
- Collaboration
  - university of Oulu and university of Jyväskylä (Finland), Russian academy of sciences and Moscow institute of physics and technology (Russia), and university of Aarhus (Denmark)

Moscow, June 10, 2016 - 23/40 -

### C14 Experiment

#### Measurement of ${}^{14}C/{}^{12}C$ ratio in liquid scintillator

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ● ●

Moscow, June 10, 2016 - 24/40 -

C14 - introduction - 1

- Measurement of <sup>14</sup>C/<sup>12</sup>C ratio of several liquid scintillator samples
- Detector development
  - $\blacktriangleright$  currently the lowest concentration:  $^{14}C/^{12}C\sim 2\,\times\,10^{-18}$
  - Iow-background liquid scintillator detector
- From the  $^{14}$ C half life ( $\sim$ 5700 a) and the age of oil sources,
  - $\blacktriangleright$  the ratio  $^{14}\text{C}/^{12}\text{C}$  should be  ${\sim}10^{-21}$   $10^{-22}$
  - ► contamination from local environment (U, Th, K, ...)
- Collaboration between
  - university of Oulu, Finland
  - university of Jyväskylä, Finland
  - Russian Academy of Sciences, Russian
- Measurements in two laboratories
  - Baksan Underground Laboratory, Russia, at 4900 mwe
  - Pyhäsalmi Mine (CallioLab), Finland, at 4000 mwe
  - ► ~similar method, ~similar shielding

C14 – introduction – 2

- LAB (Linear Alkylbenzene) is currently the favoured liquid scintillator in large LS detectors
  - ▶ SNO+ (1 kton) in Canada, JUNO (20 kton) in China
  - <sup>14</sup>C concentration of LAB not measured before
- JUNO (Jiangmen Underground Neutrino Observatory)
  - main scientific priority: neutrino mass hierarchy determination
  - supernova neutrinos, solar neutrinos, …
- $\blacktriangleright$  In JUNO the upper limit is:  $^{14}\text{C}/^{12}\text{C} \sim 10^{-17}$
- The decay energy of <sup>14</sup>C is small ( $Q_{\beta}$ =156 keV)
  - usually below the threshold
- If the <sup>14</sup>C concentration too large  $\implies$  pulses may pile-up
- The <sup>14</sup>C concentration (of JUNO) to be measured in Baksan and Pyhäsalmi

## Underground Physics in the Pyhäsalmi mine C14 – earlier measurements for ${}^{14}C/{}^{12}C$

| <sup>14</sup> C/ <sup>12</sup> C (×10 <sup>-18</sup> ) | Liquid Scintillator | Experiment      | [Ref] |
|--------------------------------------------------------|---------------------|-----------------|-------|
| (1.94±0.09)                                            | PC+PP0              | Borexino CTF    | [1]   |
| (9.1±0.4)                                              | PXE+p-Tp+           | Borexino CTF    | [2]   |
| (3.98±0.94)                                            | PC-Dodecane+PPO     | KamLAND         | [3]   |
| (12.6±0.4)                                             | PXE+p-Tp+           | Dedicated setup | [4]   |

[1] G. Alimonti et al., Physics Letters B 422 (1998) 349

[2] H.O. Back *et al.*, Nuclear Instrum. Methdos A 585 (2008) 48
 [3] G. Keefer, arXiv:1102.3786

[4] C. Buck et al., Instrum. and Experim. Techniques 55 (2012) 34

#### Underground Physics in the Pyhäsalmi mine C14 – <sup>14</sup>C background in Borexino



## Underground Physics in the Pyhäsalmi mine C14 – the instrument

LAB (C<sub>6</sub>H<sub>5</sub>C<sub>n</sub>H<sub>2n+1</sub>, n=10-16) + PPO 4g/I



- two low-background PMTs (ET 9302B, 3")
- quartz or acryllic vessel of 1.6  $\ell$  (1350 g of LAB)
- acryllic light guides (20–30 cm long)
- VM2000 wrapping
- ▶ surrounded by thick layers (10–15 cm) of copper and lead
- liquid purified by Al<sub>2</sub>O<sub>3</sub>

Moscow, June 10, 2016 - 29/40 -

#### Underground Physics in the Pyhäsalmi mine C14 – dedicated low-background hall in Baksan (4900 mwe)



### Underground Physics in the Pyhäsalmi mine C14 – the shielding at Baksan



#### ► Copper 15 cm

Moscow, June 10, 2016 - 31/40 -

C14 – the laboratory hall at the Pyhäsalmi mine (Callio Lab 2)



C14 - conclusions

- Only a few measurement of <sup>14</sup>C concentration in liquid scintillators exist
  - the lowest measured concentration is  $2 \times 10^{-18}$  by Borexino CTF
  - concentration of <sup>14</sup>C in Linear Alkylbenzene not previously measured
- Measurements started (in Baksan) and to be started (in Pyhäsalmi) for a series of <sup>14</sup>C concentration determination
  - a dedicated setup
- $\blacktriangleright$  <sup>14</sup>C concentration of the JUNO experiment will be determined
- $\blacktriangleright$  An ultimate aim is to find a sample with a concentration of  ${\sim}10^{-20}$ 
  - Iow-backgound experiment
- Collaboration
  - university of Oulu and university of Jyväskylä (Finland), Russian academy of sciences

Moscow, June 10, 2016 - 33/40 -

### Measurement of $2\nu 2\beta$ half lives of <sup>78</sup>Kr and <sup>124</sup>Xe (EC $\beta^+$ mode)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Moscow, June 10, 2016 - 34/40 -

## Underground Physics in the Pyhäsalmi mine $2\nu 2\beta$ of <sup>78</sup>Kr and <sup>124</sup>Xe – half-lives of <sup>78</sup>Kr

 Jouni Suhonen, Physical Review C 87 (2013) 034318, Analysis of double-β transitions in <sup>78</sup>Kr



FIG. 2. (Color online) Computed partial decay half-lives of the ECEC,  $\beta^+$ EC, and  $\beta^+\beta^+$  decay transitions from the ground state of <sup>78</sup>Kr to the ground and excited states in <sup>78</sup>Se. The half-lives are given in units of years.

イロト 不得 トイラト イラト 一日

## Underground Physics in the Pyhäsalmi mine $2\nu 2\beta$ of <sup>78</sup>Kr and <sup>124</sup>Xe - $2\nu 2\beta$ half-lives of <sup>124</sup>Xe

 $2_{gs}^{-}$  -Jouni Suhonen.  ${}^{124}_{52}I_{71}$ Romanian Journal of Physics  $0_{gs}^{+} -$ 58 (2013) 1232,  $^{124}Xe_{70}$ Positron-emitting and double-EC  $\overset{0}{0^+_1} \overset{1657.28 \ \mathrm{keV}}{-}$ ECEC:  $(1.7 - 580) \times 10^{25}$ ,  $\beta^+$ EC:  $(4.4 - 38000) \times 10^{32}$ modes of double  $_{2^+_{\pm}}$  <u>1325.51 keV</u> ECEC: (1.1 – 3700) × 10<sup>30</sup>,  $\beta^+$ EC: (2.0 – 13000) × 10<sup>31</sup> beta decay ECEC:  $(2.3-11000)\times 10^{28},\,\beta^+\text{EC}\text{:}\,(8.8-25000)\times 10^{26}$ 602.73 keV $2^{+}_{1}$  $\beta^+\beta^+$ :  $(1.0-32) \times 10^{43}$ 

$$0_{\rm gs}^{+} \underbrace{124_{52} {\rm Te}_{72}}_{124} {\rm Te}_{72} \xrightarrow{\rm ECEC: (4.0 - 88) \times 10^{20}, \ \beta^{+} {\rm EC: (9.4 - 97) \times 10^{21}}_{\beta^{+} \beta^{+}: (1.7 - 38) \times 10^{26}}$$

Fig. 1 – Computed partial half-lives (in units of years) for two-neutrino double beta decays of <sup>124</sup>Xe.

イロト 不得下 イヨト イヨト 二日

Moscow, June 10, 2016 - 36/40 -

### Underground Physics in the Pyhäsalmi mine $2\nu 2\beta$ of <sup>78</sup>Kr and <sup>124</sup>Xe – previous measurements

- ► <sup>78</sup>Kr
  - C. Sáenz et al., Phys. Rev. C 50 (1994) 1170, Results of a search for double positron and electron-positron conversion of <sup>78</sup>Kr
  - ► Yu.M. Gavrilyuk *et al.*, Phys. Atom. Nuclei (2000) 2201, New limit on the half-life of <sup>78</sup>Kr with respect to the 2K(2ν)-capture decay mode
  - ► Yu.M. Gavrilyuk *et al.*, Phys. Rev. C 87 (2013) 035501, Indications of 2*v*2K capture in <sup>78</sup>Kr
  - Yu.M. Gavrilyuk et al., Phys. Atom. Nuclei 76 (2013) 1063, Results of experiments devoted to searches for 2K capture on <sup>78</sup>Kr and for the double-beta decay of <sup>136</sup>Xe with the aid of proportional counters
  - ▶ <sup>124</sup>Xe
    - A.S. Barabash *et al.*, Phys. Lett. B 223 (1989) 273, Results of the experiment on the search for double beta decay of <sup>136</sup>Xe, <sup>134</sup>Xe and <sup>124</sup>Xe
    - Yu.M. Gavrilyuk et al., arXiv:1507.04520v1 [nucl-ex] 16 Jul 2015, Search for 2K(2ν)-capture of <sup>124</sup>Xe

Moscow, June 10, 2016 - 37/40 -

## Underground Physics in the Pyhäsalmi mine $2\nu 2\beta$ of <sup>78</sup>Kr and <sup>124</sup>Xe – an idea for the experiment

- ▶ Liquid scintillator (LAB) of 500 1000  $\ell$  (active volume)
  - acryllic cylinder with PMTs at the ends
- gamma and neutron shielding by liquid scintillator or water of ~20 tons
- $\blacktriangleright~\sim 5\%$  of enriched Kr and Xe mixed with the liquid
  - the maximum amounts of mixing should be studied
- At the Pyhäsalmi mine (Callio Lab) at the depth of 1430 m (4100 mwe)

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

## Underground Physics in the Pyhäsalmi mine $2\nu 2\beta$ of <sup>78</sup>Kr and <sup>124</sup>Xe – conclusions

- An idea to measure 2*ν*2β half lives of the ECβ<sup>+</sup> mode of <sup>78</sup>Kr and <sup>124</sup>Xe with a liquid scintillator setup
  - active volume 500 1000  $\ell$
  - active shielding
- Theoretical calculations predict half lifes of  $10^{22-23}$  years
  - possible with a small-scale experiment
- Important for understanding nuclear stucture and matrix elements
- Collaboration
  - university of Oulu and university of Jyväskylä (Finland), Russian academy of sciences

イロト イロト イヨト イヨト ヨー わへの

Conclusions

- The mine provides excellent conditions for scientific work
- More activities (scientific and commercial) are looked for (Callio Lab concept) due to the mine closure in 2019
  - new deep laboratory ready
  - Open Call (at www.calliolab.com)
- Physics studies going on
  - EMMA and C14 running or under construction
  - background measurements to be started (muon and neutron flux)
  - $\blacktriangleright$  an idea for measuring  $2\nu 2\beta$  decay of  $^{78}{\rm Kr}$  and  $^{124}{\rm Xe}$
- Russian institutes have been strongly participated in EMMA and C14 experiments
  - Institute of Nuclear Research of the Russian academy of sciences

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三● ・ のへで

Moscow Institute of Physics and Technology