

The Status of the keV-scale sterile neutrino search with KATRIN

Anton Huber for the KATRIN Collaboration

Vist at the TROITSK Nu-mass II Experiment December 2016

Overview

The KATRIN Experiment and the neutrino mass

- Main goal of KATRIN
- Measurement principle and components
- Status
- The KATRIN Experiment and sterile neutrinos
 - Imprint of a sterile neutrino on tritium beta decay
 - How to use KATRIN
 - Two main planned measurement and sensitivity
 - Phase-0 with current setting
 - Phase-1 with new Detector
- Conclusion and time to discuss

The KATRIN experiment

The stoy of KATRIN includes a long journey...

... with some tight situations...

... and some very big machines...

... and many curious people ...

... and finaly...

... the final destination!

7090 (2004)

KATRIN Collaboration, FZKA Scientific Report

Improvement of a factor of 10

sensitivity of years

- Probing the neutrino mass with a $m(v_e) = 200 \text{ meV} (90\% \text{ CL}), \text{ after } 3$

KATRIN Experiment

Gaseous molecular tritium source of high **stability**: (< 10⁻³) and **luminosity**: (10¹¹ decays/sec)

The KATRIN experiment

The KATRIN experiment

Detector Section

retarding potential U [eV]

- All Components are on the site
- Alignment and connection are prepared, all parts connected
- First Light measurement took place on 14th of October this year

The first alignment measurements

ramping of the pre-spectrometer magnet (variing the size of the flux tube)

The first alignment measurements

- first alignment measurments has been performed this november
- everything is fine and works as expected
- at the moment: "Chrismas Break" for maintainance work
- the next measurement phase with more calibration and comissioning measurements starting in march/april next year
- Nu-mass data taking starting next autumn

... and, there is also something important to do ...

KATRIN and the keV-scale sterile neutrino

Tritium beta decay

Tritium beta decay

Tritium beta decay

Imprint of sterile v's on β -spectrum

Imprint of sterile v's on β -spectrum

Cosmological constraints

Cosmological constraints

The challenge of sterile v search

Statistical sensitivity

PRELIMINARY

Karlsruhe Institute of Technology

Theoretical corrections to the β -spectrum

Detailed sensitivity studies

Spectral fit approach:

"How do theoretical uncertainties impact the sensitivity to find the signature of a sterile neutrino ?"

Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos

S. Mertens,^{a,d} T. Lasserre,^{b,c} S. Groh,^d G. Drexlin,^d F. Glück,^{d,f} A. Huber,^d A.W.P. Poon,^a M. Steidl,^d N. Steinbrink^e and C. Weinheimer^e

Wavelet approach:

"Is a precise knowledge of the spectrum necessary to find the signature of a sterile neutrino ?"

Wavelet Approach to Search for Sterile Neutrinos in Tritium β -Decay Spectra

S. Mertens,^{1,2} K. Dolde,² M. Korzeczek,² F. Glueck,^{2,3} S. Groh,² R. D. Martin,^{1,*} A. W. P. Poon,¹ and M. Steidl²

 ¹Institute for Nuclear and Particle Astrophysics, Nuclear Science Division, Lawrence Berkeley National Laboratory, USA
²Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Germany
³Wigner Research Institute for Physics, P. O. B. 49, H-1525 Budapest, Hungary

Systematic effects related to :

- Source Section
 - scattered electrons arrive at detector

Systematic effects related to :

Source Section

- scattered electrons arrive at detector
- Spectrometer Section
 - electrons pass through spectrometer with high surplus energy

Systematic effects related to :

Source Section

- scattered electrons arrive at detector
- Spectrometer Section
 - electrons pass through spectrometer with high surplus energy

Systematic effects related to :

Source Section

- scattered electrons arrive at detector
- Spectrometer Section
 - electrons pass through spectrometer with high surplus energy

Visit at TROITSK December 2016

Ongoing sensitivity studies

Systematic effects related to :

Rear Wall

- back scattering and auger electrons
- Detector Section
 - Backscattering
 - Charge sharing
 - Pile-up
 - Etc.

Investigated by E. Foerstner

Investiagted by Kai Dolde & Marc Korzeczek Masters Thesis Work of P.V. Grigorieva at KIT

... investigations still ongoing.

How to use KATRIN – the two measurements

> will be performed very soon> requiers a 'improvised' rate reduction

> requiers a new detector system> will be performed after KATRINdetermined the neutrino mass

How to reduce the rate – phase-0

How to reduce the rate – phase-0

How to reduce the rate – phase-0

Novel detector design – phase-1 measurement

Tristan Prototoype

· 'sruhe Institute of Technology

- Key design features:
 - Very small point contacts
 - Thin entrance window (~10 nm)
 - Shared steering electrode
- HLL Max-Planck society Munich (experts on drift rings)
- LBNL in Berkeley (experts on thin deadlayers)
- develop low noise front-end electronics
 - at KIT, Karlsruhe
 - At CEA, Paris

Tristan Prototoype

Tristan Prototoype

,First Light' of TRISTAN Prototype measured at CEA

Preliminary Sensitivity

the phase-0 measurement

the phase-1 measurement

Preliminary Sensitivity

the phase-0 measurement

the phase-1 measurement

Summary and Conclusion

- The KATRIN Experiment Status
 - All components on-site
 - Alignment and final comissioning at the moment
 - Detailed commisoning measurements sheduled for next year
 - start data taking end of next year
- The KATRIN Experiment and sterile neutrinos
 - with the KATRIN source: statistical sensitivity $\sin^2 \theta < 10^{-8}$
 - Study of **systematic uncertainties** is ongoing (goal is to optimize the experiment to reach a sensitivity of $sin^2 \theta < 10^{-7}$
 - Two measurement ideas: teh phase-0 and the phase-1
 - **phase-0** will take place mid 2017 (preliminary: $sin^2 \theta < 10^{-4}$)
 - A new detector system (TRISTAN) is currently developed at KIT, CEA and Munich

Thanks for your attention

And special thanks to:

- N. Titov for inviting me and helping me to prepare this visit in Troitsk
- Susanne Mertens, TUM Munich
- Thierry Lasserre, CEA Paris
- David Radford, Oak Ridge
- Kai Dolde, KIT
- Marc Korzeczek, KIT
 - Ferenc Glück, KIT
 - Joachim Wolf, KIT
 - Guido Drexlin, KIT

Hello from the entire KATRIN Collab.