Применение лазерной АВЛИС технологии для получения ¹⁵⁰Nd

НИЦ «Курчатовский институт»

Принцип АВЛИС метода

ALIS – Atomic Vapor Laser Isotope Separation АВЛИС – атомный вариант лазерной изотопной сепарации

Поток испаренных атомов проходит через область лазерного излучения, где происходит селективная фотоионизация атомов. Фотоионы Nd-150 вытягиваются электрическим полем на коллектор продукта, в то время как атомы других изотопов, оставаясь нейтральными продолжают свой путь по прямой на коллектор отвала.

Преимущества

- 1. Универсальность. Не требует летучих соединений
- 2. Позволяет сконцентрировать ресурсы на выделении одного изотопа

Схема АВЛИС установки

I.S.Grigoriev, A.B.Diachkov, S.K.Kovalevich, et al "AVLIS of neodymium", Proc. SPIE Vol.5121, p.406-410 (2003).

3

Особенности АВЛИС технологии для Nd

Потребовалась разработка

- 1) Узкополосного одномодового лазера на красителях $\Delta v \sim 100 \text{ MHz}$
- 2) Термического испарителя металлического неодима с коллимацией атомного потока.

Разработка одномодового лазера на красителях

Генерация на 5÷6 модах (Диген=2÷3ГГц)

Многомодовый генератор лазера на красителе

Схема многомодового генератора не красителях: (1) выходное зеркало; (2) кювета с красителем; (3) поляризатор (4) призматический телескоп; (5,8) цилиндрические линзы; (6) дифракционная решетка; (7) глухое зеркало

Генерация на одной моде ($\Delta v_{ren} = 0.1 \div 0.15 \Gamma \Gamma \mu$)

Одномодовый генератор лазера на красителе

Схема одномодового генератора не красителях: (1) дихроичное зеркало; (2) кювета с красителем; (6) дифракционная решетка; (7) глухое зеркало

Схема фотоионизации неодима

Экспериментальная зависимость фотоионного тока Nd-150 от средней плотности мощности лазерного излучения третьей ступени $\lambda_3 = 6405$ Å. Средняя плотность мощности первой $\lambda_1 = 5966$ Å и второй $\lambda_2 = 5794$ Å ступеней равны 3,8 Bt/cm² и 6 Bt/cm² соответственно.

Влияние допплеровского уширения

Amplifiers of Copper Vapor Laser (CVL) system.

Total average power 300W. Pulse duration 30ns, repetition rate 10kHz. Dye laser system.

Spectral half width 100MHz, total average power 100W

Separator for AVLIS of the Rear Earth elements.

Наработка Nd150

Результаты измерений образца Nd № 424 от 11.07.2007, представленных Ковалевичем С.К.

	Концентрация изотопов, % атомн.						
Изотоп а.е.м .№ образца	142	143	144	145	146	148	15).
424	8,4±9,95	4,2±005	8,4±0,0	3,4±0,05	8,3±0.05	7,4-0,05	59,)- ⁺ 0,1

Начальник лаборатории: Инальник лаборатории:

Масса образца - 1г

Experimental Separation Cell

Nd Enrichment Facility

Length	0.3 m
Evaporation Rate	120 g/day
Productivity	1 g/day
Product Concentration	60 %
CVL Average Power	300 W
Dye Average power	100 W

Length	10 m (30 cells)
Evaporation Rate	6 kg/day
Productivity	30 kg/year
Product Concentration	60 %
CVL Average Power	1000 W
Dye Average power	300 W

Rough estimations of the time and budget necessary to produce ~100kg of Nd-150, ~60%

	Separator	Lasers	Documents	Total
2010	Separator Unit Design 200 k\$	PD-SSL Test 300 k\$	Technical – Economic Calculation 200 k\$	700 k\$
2011	Separator Unit Construction & Test 200 k\$	Laser System Design 300 k\$	Technical Project 1500 k\$	2100 k\$
2012	Separator Production & Assembling 1000 k\$	Laser System Construction 1000 k\$		2000 k\$
2013		Production of 30	kg	1500 k\$
2014		1500 k\$		
2015		Production of 30	1500 k\$	
	1			9300 k\$ ₁₂

Разработка сепаратора

Создание сепаратора

- Возможность стыковки модулей в цепочку.
- Возможность непрерывной работы.
- Удобство работы и обслуживания камеры.
- Применена современная система безмасляной откачки.

Установка для испытания модуля сепаратора

- Число модулей 2-3 шт
- Число ячеек 4-6 шт
- Производительность 4-6 г/сутки

Поиск схемы фотоионизации с высоким сечением

Применение разработок для разделения изотопов других элементов

Разделение изотопов лютеция для медицины 540,4 нм

Выделение радионуклида ⁶³Ni для автономных источников питания 322,2 нм

16

Разработка лазерного АВЛИС комплекса для выделения изотопа ¹⁵⁰Nd и радионуклидов ¹⁷⁷Lu и ⁶³Ni.

Выводы

1) Создана технология лазерного АВЛИС разделения изотопов неодима применительно к задаче выделения изотопа ¹⁵⁰Nd из природной смеси для поиска двойного безнейтринного бета распада и массы нейтрино

2) Разработан и спроектирован модуль сепаратора промышленной установки, способной произвести 100 кг обогащенного неодима.

3) Завершается создание установки для испытания модуля сепаратора промышленной установки, состоящей из двух модулей. Производительность установки 200 -2000 г обогащенного неодима в год.

4) Разработка технологии разделения изотопов неодима позволила расширить возможности АВЛИС метода до решения других практически важных задач – выделение радионуклида ¹⁷⁷Lu для медицины и радионуклида 63Ni для автономных источников питания.

Neodymium selectivity

 $P1=2,1 \text{ W/cm}^2$

Average intensity of the first step laser -1.7 W/cm², second step laser -1.5 W/cm².

		-		
		Изотоп	Начальная	Концен
			концентрация	в про,
ОРДЕНА ЛЕНИНА ИНСТИТУ	T ATOMHON SHEPFUN NN. N. B. KVPUATORA	6Li	7.5%	99.9
	earning of the ass the first strategy	⁷ Li	92.5%	99.
Cekto	<u>p 28</u>	⁶ Li ₂	7.5%	53
	Store cause of the second of the boost of an	⁷ Li ₂	92.5%	97.
"YTBEPTHAD"		⁴² Ca	0.65%	97.
И.к.кикоин		⁴⁴ Ca	2.09%	96.
" LN 1968r.		⁴⁸ Ca	0.19%	91.
		¹⁵⁰ Nd	5.6%	99
NEWONU DIOLDUN	a second a subject of the second second	¹⁵⁰ Nd	5.6%	67
НА СЕЛЕКТИРИО	<u>A MOTORODICE UNUE</u>	¹⁴⁴ Sm	3.09%	91.
	№ ФОТОРОЗРУЖДЕНИИ	¹⁴⁸ Sm	11.3%	94.
		¹⁵² Sm	26.7%	97.
НАЧАЛЬНИК СЕКТОРА	СМОРОДИНСКИЙ Я.А.	¹⁵⁴ Sm	27.7%	98.
ИСПОЛНИТЕЛИ	кудрин л.п.	¹⁵⁶ Gd	50%	95
	НОВИКОВ В.М.	¹⁶⁰ Gd	50%	96
	Dollo	¹⁷⁶ Lu	2.59%	94.
			1	1

Изотоп	Начальная	Концентрация	Селективность или
	концентрация	в продукте	производительность в
			г/сутки
⁶ Li	7.5%	99.95%	24000
⁷ Li	92.5%	99.8%	40
⁶ Li ₂	7.5%	53%	14
⁷ Li ₂	92.5%	97.7%	24
⁴² Ca	0.65%	97.3%	5500
⁴⁴ Ca	2.09%	96.7%	1400
⁴⁸ Ca	0.19%	91.2%	5590
¹⁵⁰ Nd	5.6%	99%	1670
¹⁵⁰ Nd	5.6%	67%	1 г/сутки
¹⁴⁴ Sm	3.09%	91.5%	280
¹⁴⁸ Sm	11.3%	94.8%	144
¹⁵² Sm	26.7%	97.7%	120
¹⁵⁴ Sm	27.7%	98.7%	260
¹⁵⁶ Gd	50%	95%	20
¹⁶⁰ Gd	50%	96%	20
¹⁷⁶ Lu	2.59%	94.5%	650
¹⁷⁶ Lu	2.59%	65%	0.12 г/сутки
⁶³ Ni	1%	93%	1200

"YTBEPKLAD Im In " 00 11

Atomic Beam

2° collimation half angle,

 ΔV D=100 MHz

Low density, now collisions

Very low flux and productivity

Atomic Flux

 30° -60° collimation half angle, $\Delta V D \sim 400 - 1000 \text{ MHz}$

Significant density, atom collisions

High flux and significant productivity, but ...

Deselecting Processes

Doppler broadening

Scattering of atoms in operation volume

Scattering of Atoms

Enrichment Facility Development

Step1. Separator Unit Design.

Step2. Separator Unit Construction and Test.

Step3. Separator Units Production and Assembling.

Step4. Enriched Neodymium Production

ETNA HP Nd:YAG, 150W at 532 nm. A candidate?