

Experiment Tunka-Rex. Seven years of Tunka-Rex operation

Oleg Fedorov for the Tunka-Rex Collaboration

September 5, 2019

APPLIED PHYSICS INSTITUTE, IRKUTSK STATE UNIVERSITY

TAIGA

Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

= 3 km² covered by:

Cosmic ray detectors < EeV

- Tunka-133 air-Cherenkov
- Tunka Radio Extension (Tunka-Rex)
- Tunka-Grande scintillators

Gamma ray detectors >TeV

- HiSCORE
- IACTs

Ingeneering detectors

Tunka-21cm

Single cluster of Tunka facility

- 7 Optical Modules
- 8 m² (on-ground) + 5 m² (underground) scintillators
- 3 antenna stations (2 polarizations, 30-80 MHz)

Total: 19 clusters

Gamma measurement

- Joint measurements with imaging and no-imaging atmospheric Cherenkov telescopes
- 4 PMT per TAIGA-HiSCORE station
- Mirror area of TAIGA-IACT $10m^2$

Tunka-Rex

Tunka Radio Extension

- Tunka-Rex successfully operates since 2012
- Frequency band 30-80 MHz
- 63 antennas (2016)
- Energy range 10^{17} 10^{18} eV
- Measurement season from October to April
- Duplex and triplex measurements with Tunka-133 and Tunka-Gande: $\gamma_{\rm ch}/\mu/e$ + radio
- Energy resolution of 10-15%, shower maximum resolution of 25–35 g/cm²

Tunka-Rex detector timeline

~100 events per season triggered by Tunka-133		commission of Tunka-Grande with		~1000 e triggere	vents per season d by Tunka-133 and Tunka-Grande		
18 antennas	25 antennas	44 antennas	Φφ	63 antenn	as ₽₽₽		TRVO and decommission
2012	2013	2014	2015	2016	2017	2018	2019
Achiev * Cross-(* Precise showe * Calibra experir * Estima * Mean s	vements: calibration of e reconstructi r maximum tion of absolu ments via rad tion of apertu shower maxir	radio and air-C on of energy a ute energy sca lio extensions ire and exposu na as function	In Progress: * Independent reconstruction with radio * Joint reconstruction of electromagnetic and muon components of air showers * Mass composition study * Technologies for lowering the threshold * Open-access to data and software * Self-tirgger for radio				

Amplitude calibration

- Tunka-Rex, LOPES, LOFAR calibrated consistently with same source
- Calibration is used as normalization for simulated antenna pattern
- CoREAS amplitude scale confirmed (17%)

Example of event

Blind cross-check with Tunka-133

Comparison of energy scales via radio

Independent check via LOPES and Tunka-Rex has shown that energy scales of KASCADE-Grande and Tunka-133 are consistent within 10%

Phys.Lett. B763 (2016) 179-185

Influence of air refractivity

- Event-to-event uncertainty 3 g/cm² (refractivity variation of 2%)
- Systematic shift up to 5 g/cm² (refractivity difference of 5%)

EAS signal search

Autoencoder is binded with Tunka-Rex fork of Auger Offline Reconstruction of CoREAS simulations (reproduction of 2012-2014 events)

Template fit method

Chi-square fit of clipped envelopes concatenated to a single trace

 $X_{\rm max}$ resolution improved to 25-35 g/cm², $E_{\rm pr}$ resolution is 10% *Phys.Rev. D97 (2018) no.12, 122004*

Effective radius of Tunka-Rex

3 antenna stations per cluster

x...

xx

200 m

Angular efficiency

$\langle X_{\mathrm{max}} angle$ as function of energy

Flux of cosmic rays

Tunka-Rex decommission

Tunka-Rex based pathfinder arrays

Engineering multi-purpose array for 21cm cosmology

Oleg Fedorov for the Tunka-Rex Collaboration - 7y of Tunka-Rex operation

Summary and outlook

- Tunka-Rex successfully operates since 2012
- Energy resolution of 10-15%, shower maximum resolution of 25–35 g/cm²
- Ideal tool for energy scale calibration between CR experiments (KG + Tunka-133)
- SALLA will be used in the radio upgrade of the Pierre Auger Observatory
- More detailed calibration and study of systematics
- Mass composition study combining radio ($E_{
 m pr}$ + $X_{
 m max}$) and particles (Tunka-Grande e/μ)
- Study of inclined air-showers
- Small engineering arrays
- Development of self-trigger for radio

backup

Air-shower reconstruction (phenom.)

Reconstruction pipeline

- Station-level analysis
 - Digital filtering
 - RFI rejection
 - SNR cuts
- Event-level analysis
 - $N_{\text{ant}} \geq 3$
 - Reconstruction of arrival direction and core position
 - Comparison with Tunka-133/Tunka-Grande reconstruction ($\Delta\Omega<5^\circ)$
 - Signal correction (adjustment $f_c(t', \text{SNR}), V \times V \times B$ correction)
 - Amplitude fits
 - Energy and shower maximum reconstruction
- Statistical analysis
 - Quality and efficiency cuts
 - Aperture and exposure estimation

For part of the analysis we use the Auger Offline software Pierre Auger Collaboration, NIM A 635 (2011) 92

Aperture and exposure

Cosmic-ray flux

$$J(E) = \frac{\mathrm{d}^4 N}{\mathrm{d}E \,\mathrm{d}A \,\mathrm{d}\Omega \,\mathrm{d}t} \approx \frac{\Delta N_{sel}(E)}{\Delta E} \frac{1}{\mathcal{E}(E)}$$

Estimation of exposure

$$\mathcal{E}(E) = \int_T \int_\Omega \int_S \varepsilon(E, t, \theta, \phi, x, y) \cos \theta \, \mathrm{d}S \, \mathrm{d}\Omega \, \mathrm{d}t = \int_T \mathcal{A}(E, t) \, \mathrm{d}t$$
$$\mathrm{d}\Omega = \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\phi, \quad \mathrm{d}S = \mathrm{d}x \, \mathrm{d}y$$

In case of radio measurements $\varepsilon(\phi) \neq \text{const}$

$$(\theta, \phi) \to (\theta, \alpha) : \varepsilon = \varepsilon(E, t, \theta, \alpha, x, y), \quad \alpha = \alpha(\theta, \phi, \theta_{\mathbf{B}}, \phi_{\mathbf{B}})$$
$$\varepsilon = \varepsilon_R(E, \theta, \alpha, x, y) \varepsilon_a(E, \theta, \alpha) \varepsilon_i(E, x, y, t)$$

Oleg Fedorov for the Tunka-Rex Collaboration - 7y of Tunka-Rex operation

Benchmark of efficiency model

Calculation of 90% efficiency for mass composition study

Gen.	Years	Number of	Expected	Detected	Efficiency
		antennas	events	events	
1a	2012/13	18	23	20	$0.85^{+0.05}_{-0.09}$
1b	2013/14	25	28	27	$0.96\substack{+0.02\\-0.05}$
2	2015/16	44	14	14	$1.00\substack{+0.00\\-0.07}$
3	2016/17	63	17	16	$0.94_{-0.08}^{+0.04}$
		Total	82	77	$0.94_{-0.03}^{+0.02}$

- Sufficient large footprint \Rightarrow no bias due to deep protons
- Model gives reasonable predictions for all three generations of Tunka-Rex array
- Perfect agreement with measurements of full-efficient Tunka-133