ДЖИЛАВЯН Леонид Завенович

Фотоядерные исследования в области гигантских резонансов в прямых и обратных реакциях

01.04.16 – физика атомного ядра и элементарных частиц

АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте ядерных исследований Российской академии наук (ИЯИ РАН)

Официальные оппоненты:

Варламов Владимир Васильевич, доктор физико-математических наук, профессор, ФГБОУ ВО Московский государственный университет имени М.В.Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В.Скобельцына, Отдел электромагнитных процессов и взаимодействий атомных ядер, главный научный сотрудник.

Камерджиев Сергей Павлович, доктор физико-математических наук, профессор, НИЦ «Курчатовский институт», «Курчатовский ядерно-физический комплекс», старший научный сотрудник.

Бессонов Евгений Григорьевич, доктор физико-математических наук, ФГБУН Физический институт имени П.Н. Лебедева Российской академии наук, Отделение ядерной физики и астрофизики, главный научный сотрудник.

Ведущая организация:

Объединенный институт ядерных исследований, Дубна

Защита диссертации состоится	
вчасов на заседании диссертационного совета	Д 002.119.01
при Федеральном государственном бюджетном учре	еждении нау-
ки Институте ядерных исследований Российской ак	адемии наук
по адресу: 117312 Москва, проспект 60-летия Октяб	ря, д. 7а.
С диссертацией можно ознакомиться в библиоте	ке ИЯИ РАН
и на сайте www.inr.ru	
Автореферат разослан	2017 г.
Ученый секретарь	
диссертационного совета Д 002.119.01,	
доктор физмат. наук	

С.В. Троицкий

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Исследования фотоядерных реакций в области мультипольных гигантских резонансов (ΓP) – актуальная задача, поскольку:

- ГР тесно связаны со свойствами ядерной материи и нуклон-нуклонных взаимодействий в ядерной среде;
- ГР (особенно низших мультипольностей) принадлежат к основным коллективным движениям в ядрах, поэтому сопоставление с детальной информацией о ГР служит обязательным «испытательным полигоном» при выработке и проверке наших представлений об атомных ядрах;
- данные о сечениях и выходах фотоядерных реакций в области ГР необходимы для прикладных ядернофизических направлений.

В наиболее освоенном интенсивном источнике фотоны для исследований ГР получают от торможения в мишенях-радиаторах электронов (е-) из их ускорителей. Однако у такого источника есть две проблемы, затрудняющие исследования ГР и связанные с определением спектров тормозных фотонов и с решением обратной задачи — извлечением из измеренных с такими спектрами выходов информации о сечениях изучаемых фотоядерных реакций. Частичная альтернатива исследованиям с тормозными фотонами и проверка корректности решений проблем при применении тормозных фотонов — использование квазимонохроматических фотонов. Для сравнительно недорогих импульсных ускорителей электронов (при энергиях электронов до ~100 МэВ) можно рассматривать получение от аннигиляции позитронов (e^+) на лету в тонких мишенях с низким атомным номером Z. К сожалению, такая «монохроматизация» фотонов достается ценой снижения интенсивности используемых частиц на много порядков при конверсии и $(e^- \rightarrow e^+)$, и $(e^+ \rightarrow \text{«моно-}\gamma)$ ») при значительном возрастании фона. С другой стороны, наличие пучков позитронов (вместе с пучками электронов) позволяет проводить в тонких мишенях исследования позитрон- и электрон- ядерных реакций с использованием отличий соответствующих им спектров виртуальных фотонов и друг от друга, и от спектров реальных тормозных фотонов, обогащая «арсенал» для исследований мультипольных ГР. Пути преодоления указанных сложностей получения корректных результатов с тормозными и аннигиляционными фотонами могут быть частично проверены при изучении обратных реакций с большим обогащением при этом исследований ГР.

Конечно, в указанных исследованиях требуется тщательная оптимизация аспектов генерации пучков позитронов и аннигиляционных фотонов. Кроме того, для проявления возможностей применения всех составляющих актуальное научное направление указанных методик для фундаментальных и прикладных исследований ГР нужен выбор адекватных и актуальных экспериментов.

Цель диссертационной работы — разработка научного направления, связанного с обеспечивающими взаимные проверки и дополняющими друг друга исследованиями в области мультипольных гигантских резонансов в атомных ядрах в прямых и обратных фотоядерных реакциях. Исследования прямых реакций предполагались на пучках электронов и позитронов на импульсных ускорителях электронов с номинальными энергиями до ~100 МэВ (прежде всего, на базе импульсного линейного ускорителя ЛУЭ-100 ИЯИ РАН) под действием реальных тормозных и аннигиляционных фотонов, а также виртуальных фотонов. Для реакций, обратных фотоядерным, предполагались реакции под действием пучков ядер от ускорителей-тандемов. При этом предполагалось решение вопросов генерации прецизионных используемых пучков, а также выбора оптимальных адекватных этим пучкам экспериментов.

Научная новизна

Всё нижеследующее в этом разделе получено впервые.

- 1. Использовано переходное излучение электронов в оптическом диапазоне для мониторирования пучков электронов.
- 2. Измерен для оптимальных конвертеров дифференциаль-

- ный коэффициент $(e^- \to e^+)$ -конверсии при энергии электронов $E^- \approx (25 \div 60)$ МэВ и показано: для генерации интенсивного пучка позитронов оптимальная энергия электронов в пучке с фиксированной мощностью составляет $(60 \div 90)$ МэВ.
- 3. Показано в разработанной модели динамики дополнительного ускорения позитронов в ЛУЭ (адекватной нашим данным), что «доускорение» позитронов целесообразно при их конечной энергии $(E^+)_{\rm K}>30$ МэВ, а при $(E^+)_{\rm K}<30$ МэВ (что соответствует энергиям возбуждения электрических дипольных (E1) изовекторных Γ P) позитроны эффективнее получать без их «доускорения».
- 4. При е[–]-энергиях в несколько десятков МэВ экспериментально исследовано при Z=(4;41;73) и $E^-{\cong}\,50$ МэВ многократное рассеяние электронов.
- 5. Показано на основе предложенной аппроксимации различий тормозных спектров от электронов (современных (Сельцер и Бергер), и используемых ранее (Шифф)) существенное влияние этих различий на получаемые сечения Е1 ГР в прецизионных измерениях с тормозными фотонами.
- 6. Предложен проект источника квазимонохроматических аннигиляционных фотонов на ускорителе-накопителе ВЭПП-3 (Новосибирск) на основе накапливаемого пучка позитронов и внутренней дающей наилучшее соотношение аннигиляционных и тормозных фотонов накопительной газовой H_2 мишени ячейки для E_{ν} =(500÷750) M_2 B.
- 7. На квазимонохроматических аннигиляционных фотонах на ЛУЭ- 100 при энергии фотонов $E_{\gamma} \cong 10$ МэВ и её разбросе $\Delta E_{\gamma} \cong 300$ кэВ измерено с прямой регистрацией осколков деления в поликарбонатных плёнках при автоматическом счёте протравленных треков сечение реакции 238 U(γ ,F). Получена независимая проверка известного метода измерений сечений фотоделения, основанного на обработке зарегистрированной множественности испускаемых в реакциях нейтронов.
- 8. Предложен и осуществлен на основе анализа полученных изомерных отношений выходов заселения метастабильного (J=12) и

- основного (J=2) состояний 196 Au в реакциях 197 Au(γ ,n) 196m,g Au и 197 Au((e⁻),(e⁻)'n) 196m,g Au метод выделения вклада электрического квадрупольного (E2) изовекторного ГР с помощью сопоставления заселений высокоспиновых метастабильных состояний ядер в фото- и электро- ядерных реакциях.
- 9. Предложены оригинальные варианты метода выделения изовекторного E2 ГР при измерении асимметрии вылета нейтронов в (γ,n) -реакции на свинце, основанные на использовании регистрации нейтронов: а) с помощью пороговых активационных детекторов нейтронов; b) с помощью сцинтилляционных спектрометров в реакции 208 Pb (γ,n_0) .
- 10. Дано модельное описание фотоядерного 13 C $(\gamma,p)^{12}$ B активационного детектирования углерода, важное для проверки реалистичности и чувствительности методики, а также для ее оптимизации.

Практическая значимость

Результаты работы могут быть использованы в различных научных центрах соответствующего профиля: для генерации различных прецизионных пучков электронов, позитронов, тормозных и аннигиляционных фотонов; для калибровки аппаратуры на таких пучках; для баз данных по фотоядерным реакциям; для медицинских приложений с использованием радионуклидов 18 F (для позитронно-эмиссионной томографии) и 67 Cu (для радиоиммунотерапии); для разработки (12 N, 12 B)-активационного детектирования скрытых вэрывчатых веществ и наркотиков по содержанию азота и углерода.

На защиту выносятся следующие основные результаты и положения:

1. Создана установка для генерации на импульсном линейном ускорителе электронов ЛУЭ-100 ИЯИ РАН прецизионных пучков электронов, позитронов, тормозных и квазимонохроматических аннигиляционных фотонов в широких динамических диапазонах их параметров. Впервые разработана методика мониторирования пучка электронов с помощью переходного излучения. Полу-

- чены пучки электронов со средними токами до \sim 17 мкA при энергиях \sim (6÷100) МэB и их разбросах до \sim (±0.4)%.
- 2. Создан широкоапертурный магнитный спектрометр для исследования генерации позитронов на ЛУЭ-100 с захватываемыми телесным углом 0.5×10^{-4} ср и разбросом энергий 1.3%. Впервые измерены дифференциальные коэффициенты (e⁻/e⁺)-конверсии при энергии электронов (25÷60) МэВ. Получены прецизионные позитронные пучки с интенсивностью до ~ 10^9 e⁺/c при энергиях (6÷70) МэВ и их разбросах (1÷2)%.
- 3. Выполнен анализ влияния различий используемых расчетных спектров тормозного излучения на результаты при исследовании тонкой структуры в сечениях фотоядерных реакций. Рассмотрены различия тормозного излучения от позитронов и электронов, и показано, что (e^+-e^-) -процедура вычитания вклада от тормозных фотонов в экспериментах с квазимонохроматическими аннигиляционными фотонами корректна. Разработан метод расчета потоков и спектров тормозных фотонов от электронов и решения прямой и обратной задач в фотоядерных экспериментах с толстыми радиаторами и мишенями, используемыми при исследованиях реакций с малыми сечениями. Проведены расчеты спектров виртуальных фотонов различной мультипольности Разработана методика расчета потоков и спектров аннигиляционных фотонов. На ускорителе ЛУЭ-100 получены потоки аннигиляционных фотонов с интенсивностью $\sim (0.1 \div 2) \times 10^5$ у/с при энергиях \sim (10÷40) МэВ и их разбросах до \sim (350÷550) кэВ. Разработана методика получения меченых тормозных фотонов на накопителе во Frascati (Италия) с внутренней струйной Ar мишенью-радиатором и внутренней системой мечения. Предложена методика получения на накопителе позитронов ВЭПП-3 (Новосибирск) с внутренней накопительной H_2 мишенью пучка аннигиляционных фотонов с энергиями (500÷750) МэВ.
- 4. На «игольчатом» пучке электронов с энергией 50 МэВ измерены угловые распределения их многократного рассеяния на Ве, Nb и Та и получено подтверждение теории многократного рассеяния

Мольер. На пучках электронов и позитронов проведены калибровки ядерных эмульсий и рентгеновских пленочных детекторов, используемых при исследованиях космических лучей. На пучке «одиночных» позитронов проведены калибровки черенковских и сцинтилляционных детекторов, использованных при фотоядерных исследованиях в области гигантских резонансов и в исследованиях космических лучей с помощью искусственных спутников Земли.

- 5. На аннигиляционных фотонах с использованием двухкристальной «совпадательной» активационной методики, обеспечивающей выделение конкретных парциальных реакций, измерены сечения реакции 63 Cu $_{(\gamma,n)}$ 62Cu при энергиях фотонов (12÷25) МэВ.
- 6. Разработана методика прямой регистрации осколков деления в поликарбонатных плёнках при автоматическом счёте треков, с помощью которой на пучке квазимонохроматических аннигиляционных фотонов измерено сечение реакции ²³⁸U(γ,f) при энергии фотонов 10 МэВ.
- 7. Выполнены исследования вкладов изовекторного Е2 гигантского резонанса в сечение фотоядерных реакций. Разработана программа расчетов ядерных у'-каскадов в фотоядерных реакциях. Показано, что при большой разнице спинов основного и возбужденного состояний изомерные отношения выходов возрастают для Е2-возбуждений примерно на порядок по сравнению с Е1возбуждениями. Активационной методикой с использованием Ge у-спектрометров измерено сечение реакции $^{115}{\rm In}(\gamma,\gamma')^{115}{\rm mIn}$ при энергии фотонов (4÷46) МэВ, в этом сечении обнаружен только один пик при $E_{\nu} \cong 9$ МэВ и показано, что можно использовать эту реакцию для изучения поведения полного сечения при энергиях фотонов ниже порога (у,п)-реакции. Впервые выделен вклад изовекторного Е2 гигантского резонанса при заселении высокоспиновых изомерных состояний ядра ¹⁹⁶Аи в фото- и электро- нейтронных реакциях. Рассмотрены возможности развития метода выделения вкладов изовекторного Е2 гигантского резонанса при измерениях асимметрии испускания нейтронов в (у,n)-реакции

- на ядрах Рb. Дан обзор современного состояния решения задачи выделения вкладов изовекторного E2 гигантского резонанса на основе и своих работ, и результатов других исследователей.
- 8. Активационной методикой с использованием HPGe γ-спектрометра исследована (γ,p)-реакция на изотопах Тi в области гигантского дипольного резонанса. Показана неадекватность при больших числах нейтронов N описания этой реакции в претендующей на универсальность модели ядерных реакций TALYS. Использование разработанной в НИИЯФ МГУ комбинированной модели фотонуклонных реакций с учетом изотопического расщепления гигантского резонанса значительно улучшает согласие с экспериментом.
- 9. На ускорителе-тандеме в Legnaro (Италия) с использованием разработанных NaI и BGO γ -спектрометров измерены энергетические спектры и угловые распределения фотонов из обратной фотоядерной реакции ${}^2{\rm H}({\rm d},\gamma)^4{\rm He}$. Получены указания на вклад D-волны в основном состоянии ядра ${}^4{\rm He}$.
- 10. Измерены энергетические спектры фотонов из реакции $^{32}\mathrm{S}^{+27}\mathrm{Al}$. Получены указания на уширение гигантских E1 резонансов, построенных на возбужденных состояниях ядра $^{59}\mathrm{Cu}$, при больших вносимых в ядро моментах за счет динамической деформации (при J до 38 \hbar).
- 11. Предложены фотоядерные методы наработки радиоизотопов на ускорителях электронов для медицины. Экспериментально получены и радиохимически выделены 18 F и 67 Cu со значимо высокими полными и удельными активностями из реакций 23 Na(γ , α n) 18 F и 68 Zn(γ ,p) 67 Cu. Адекватное описание последней реакции удалось получить в рамках комбинированной модели фотонуклонных реакций НИИЯ Φ МГУ.
- 12. Исследованы особенности фотоядерного (12 N, 12 B)-активационного метода детектирования скрытых взрывчатых веществ и наркотиков по содержанию углерода и азота. Показано, что распространенные модели ядерных реакций TALYS и EMPIRE неадекватно описывают сечения фотоядерных реакций с вылетом одного-двух

нуклонов из ядер 14 N и 13 С. Для случая 13 С(γ ,р) 12 В-активационного детектирования углерода создано модельное описание, опирающееся на экспериментальные сечения реакции и необходимое для оптимизации условий проведения такого детектирования.

Апробация работы. Основные результаты диссертационной работы были представлены на следующих научных форумах:

- 1. VIII итоговая конференция Центра ядерных исследований (Харьков, 1971).
- 2. Научная конференция МИФИ (М. 1971).
- 3. Всесоюзная конференция «Разработка и практическое применение электронных ускорителей» (Томск, 1972).
- 4. Международная конференция по физике электромагнитных вза-имодействий (Майнц, Германия, 1979).
- 5. Международная конференция по ядерной физике (Беркли, США, 1980).
- 6. Конференция по фотоядерным реакциям (Плимут, США, 1988).
- 7. Международная научно-практическая конференция «Технические средства противодействия террористическим и криминальным взрывам» (Санкт-Петербург, 2010).
- 8. Международная сессия-конференция секции ядерной физики отделения физических наук РАН «Физика фундаментальных взаимодействий» (МИФИ, Москва, 2014).
- 9. VIII Всероссийская конференция по радиохимии «Радиохимия 2015» (Железногорск, 2015).
- 10. Международная научно-практическая конференция «Специальная поисково-досмотровая техника» (Москва, 2016).
- 11. Три совещания-конференции по ускорителям заряженных частиц (Дубна, 1978; Дубна, 1980; Протвино, 1994).
- 12. Пять международных семинаров «Электромагнитные взаимодействия ядер при малых и средних энергиях» (Москва: 1988; 1991; 2009; 2012; 2015).
- 13. Двенадцать совещаний-конференций по ядерной спектроскопии и структуре атомного ядра (Рига, 1979; Ленинград, 1980; Киев, 1982; Баку, 1988; Москва, 2008; Чебоксары, 2009; Санкт-Петер-

бург 2010; Воронеж, 2012; Москва, 2013; Минск 2014; Санкт-Петербург, 2015; Саров, 2016).

Публикации. Основные результаты диссертации содержатся в 49 публикациях.

Структура диссертации. Диссертация состоит из введения, шести глав, заключения, двух приложений и списка литературы. Общее количество страниц составляет 264, включая 102 рисунка, 15 таблиц и список литературы из 416 наименований.

Личный вклад автора в выносимые на защиту результаты определяющий.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во Введении обоснована актуальность диссертационной работы, сформулирована цель, показаны научная новизна и практическая значимость проведённых исследований, приведены выносимые на защиту основные результаты и положения.

В первой главе рассматривается получение на ЛУЭ-100 (импульсном, на бегущей волне) прецизионных пучков электронов и для их непосредственного использования, и для генерации с их помощью прецизионных пучков как позитронов, так и тормозных фотонов, прежде всего, с целью исследований электро- и фото- ядерных реакций в области ГР. При этом была создана соответствующая установка (см. рис. 1) с основными частями: сам ЛУЭ; система транспортировки, формирования и анализа получаемых пучков (СТФА, с 3 дипольными электромагнитами (M₁÷M₃) и 12 квадрупольными электромагнитами-линзами ($\Pi_1 \div \Pi_{12}$)) с подсистемой — поворотно-анализирующей системой (ПАС); системой четырех узлов конвертерных мишеней и на самом ЛУЭ, и на СТФА (КМ1÷КМ4); системой мониторирования пучков электронов (и позитронов). Работы по сооружению и развитию ЛУЭ, созданию и развитию других частей этой установки (прежде всего, СТФА) шли параллельно и влияли друг на друга, ведя к улучшению параметров пучков электронов. Пучок электронов ЛУЭ позволяет проверять свойства и юстировку магнитных элементов ЛУЭ и СТФА. СТФА же совместно со своими мониторами позволяет

измерять и настраивать различные существенные параметры пучков ЛУЭ (в частности, при генерации пучков позитронов), благодаря чему были проведены (с участием автора) исследования и настройки как целиком ЛУЭ, так и отдельных его систем. Такое параллельное развитие ЛУЭ и СТФА способствовало получению прецизионных пучков электронов (и позитронов). Исследования, моделирование, реконструкция, юстировки и настройки ЛУЭ обеспечили пучки ускоренных электронов с пучковой наработкой в несколько тысяч часов в год и несколько сотен часов в сеансе; более чем удвоенными максимальными средними токами до \sim 17 мкА; удвоенными максимальными энергиями до \sim 100 МэВ; разбросами по энергии до \sim (±0.4)%.

В работе на СТФА накладываются жесткие требования анализа и проводки на десятки метров (для снижения фона от ЛУЭ целиком и от $(e^- \rightarrow e^+)$ -конвертера) без потерь полезных пучков позитронов, обладающих на порядки бо́льшими эмиттансами по сравнению с таковыми у пучков электронов.

Особенно важно отсутствие потерь на участке пучкопровода СТФА «90°» в области аннигиляционной мишени (из-за низкого рабочего коэффициента конверсии ($e^+ \rightarrow$ «моно- γ »). Согласно проделанным расчетам оптимально выбрана и сооружена наиболее функционально нагруженная часть СТФА — ахроматическая ПАС с зеркальной симметрией, состоящая из двух секторных магнитов (2×45°) и четырёх линз между ними и обладающая разрешением до ~0.1% и аксептансами горизонтальным ~1.60×10⁻³ м×рад и вертикальным ~0.57×10⁻³ м·рад.

Для измерений дифференциального коэффициента конверсии $K\{E^-,E^+\}=I^+/(I^-\cdot\Delta E^+\cdot\Delta\Omega^+)$ создан магнитный спектрометр позитронов с захватываемыми разбросом энергий ($\Delta E^+/E^+$) $\cong 1.3\%$ и телесным углом $\Delta\Omega^+$ $\cong 0.5\cdot 10^{-4}$ ср 0.5×10^{-4} ср.

При разных токах пучков электронов и позитронов для измерений их распределений (поперечных линейных, угловых, энергетических, временных) созданы мониторы (цилиндры Фарадея; магнитно-индукционные; вторичной эмиссии; люминесцентные; акустические,

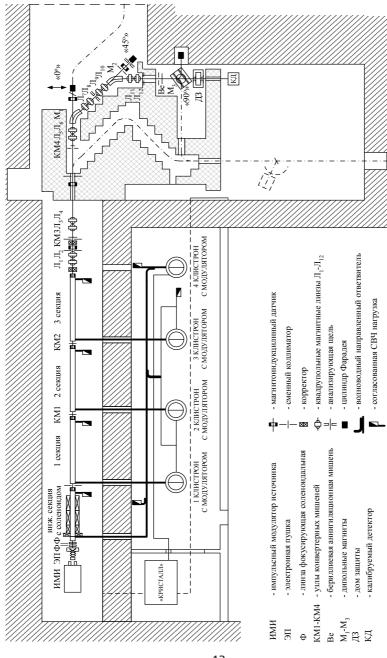


Рис. 1. Схема расположения оборудования ЛУЭ-100 и нашей СТФА (отсутствующие пояснения см. в тексте)

Рис. 2. Полученные изображения пучка электронов при $E^- \approx 50$ МэВ с использованием (справа налево): нелинейного люминофора; ZnS; чистой Al-фольги (свет от переходного излучения)

полупроводниковые, ионизационные, черенковского или переходного излучений (в последних при мониторировании пучков электронов нами использовано переходное излучение в оптическом диапазоне, см. рис. 2)).

Для фольг Be, Nb и Ta с толщинами (0.015; 0.035; 0.012) г \cdot см $^{-2}$ на прецизионном «игольчатом» пучке электронов с $E^-\cong 50$ МэВ исследовано их многократное рассеяние (см. рис. 3).

Во второй главе рассмотрены два варианта методики генера-

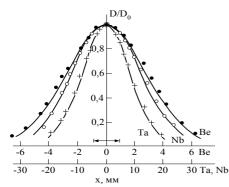


Рис. 3. Распределения рассеянных электронов. х — координата на пластинке, D/D_0 — относительные потемнения. Кривые — расчёт (с параметрами теории Мольер): $\theta_{1/e} = \chi_c (B-1.2)^{0.5}$

ции позитронов: без и с дополнительным их ускорением (для позитронов, образуемых при $(e^- \rightarrow e^+)$ -конверсии в толстых мишенях-конвертерах с большими и Z, и толщинами T). Для обоих вариантов существенны, прежде всего, параметры пучка позитронов из конвертера, которые, к сожалению, плохо поддаются расчётам (так что желательны экспериментальные данные) и которые для наиболее важного из этих параметров $K(E^+,E^-)$ —

дифференциального коэффициента конверсии $(e^- \!\!\!\! \to \!\!\!\! e^+)$ в оптимальных по Z и T конвертерах отсутствовали в нужной области энергий. В начале главы приведены результаты исследований таких $K(E^+,E^-)$, проведенных нами с помощью созданного спектрометра позитронов при $E^-\!\!\approx\!(25\!\div\!60)$ МэВ при нормальных падении электронов и испускании позитронов (см. рис. 4). «Сшивка» с результатами других работ дала K для $E^-\!\!\approx\!(9\!\div\!220)$ МэВ (см. рис. 5 а) и b)) и даже выше (вплоть до

 $E^-\approx 1000$ МэВ), охватывая практически всю интересную для генерации позитронов область E^- и E^+ . Без дополнительного ускорения позитронов полученные $K(E^+,E^-)$ дают ход зависимостей конечных токов позитронов от их энергий $(I^+)_K=f\{(E^+)_K\}$. При фиксированной мощности пучка электронов их оптимальные энергии $(E^-)_{\text{оптим}}\approx (60\div 90)$ МэВ (см. рис. 5 b)).

Для варианта с дополнительным ускорением позитронов в резонансных ЛУЭ удалось, используя измеренные нами

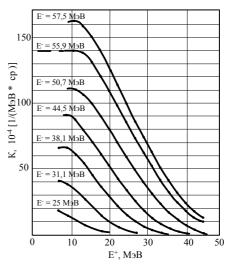


Рис. 4. Зависимости $K(E^+)$ при различных E^- для Та конвертеров толщиной T=1.3 X_0

зависимости $K(E^+,E^-)$, развить модель динамики дополнительного ускорения позитронов. Рассчитанные по этой модели зависимости: $(I^+)_{\kappa} = f\{(E^+)_{\kappa}\}; (I^+)_{\kappa \, \text{макс}} = f\{(E^+)_{\kappa \, \text{макс}}\}$ (при некой неизменной напряженности СВЧ-поля в «доускорителе» позитронов и при разных её значениях соответственно (для последнего см. рис. 6)); $(I^+)_{\kappa \, \text{макс}} = f\{\Delta \phi_{\text{H}}\}$, где начальный сдвиг фазы СВЧ волны в «доускорителе» $\Delta \phi_{\text{H}}$ связан с фазовым скольжением позитронов в нем, хорошо согласуются с нашими измерениями. Указанная модель позволила выявить эффективный диапазон начальных энергий $(E^+)_{\text{H}}$ захватываемых в дополнительное ускорение позитронов с конвертера, важный для проектирования согласующих и фокусирующих магнитных устройств на части

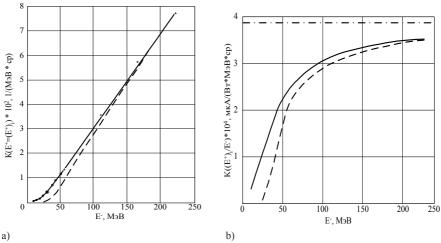


Рис. 5. Зависимости **а)** $K(E^+=(E^+)_i)$ и **b)** $K(E^+=(E^+)_i)/E^-$ от E^- для $(E^+)_i=1=(E^+)_{\text{макс}}$ (сплошные кривые) и $(E^+)_{i=2}=20$ МэВ (штриховые кривые) при 9 МэВ ≤ E^- ≤ 220 МэВ. При E^- ≈ $(25 \div 60)$ МэВ данные наши; при E^- ≈ $(25 \div 60)$ МэВ данные наши; при E^- ≈ $(25 \div 60)$ МэВ; при $(25 \div 60)$ МэВ данные из Орсе, нормированные на наши данные при $(25 \div 60)$ МэВ

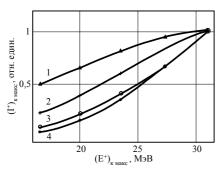


Рис. 6. Зависимости $(I^+)_{\rm K}$ макс при $\Delta \phi_{\rm H}$ опт и расстоянии от выхода конвертера до входа в «доускоряющую» позитроны секцию w=20 см от $(E^+)_{\rm K}$ макс. 1 — расчет для $\Delta (E^+)_{\rm K}$ =±150 кэВ и аксептанс СТФА (V_a) >эмиттанса пучка позитронов (V_3) ; 2 — расчет для $\Delta (E^+)_{\rm K}$ / $(E^+)_{\rm K}$ макс=±0.5% и V_a > V_a \$ 3 и 4 — расчет и эксперимент для $\Delta (E^+)_{\rm K}$ / $(E^+)_{\rm K}$ макс=±0.5% и V_a < V_a \$, соответственно

ЛУЭ — «доускорителе» позитронов, и дать рекомендации для оптимальных для «доускорения» позитронов фазовращателей в многосекционных ЛУЭ.

Сообщается о получении на ЛУЭ-100 пучков позитронов и для проведения исследований позитрон-ядерных реакций с ними, и для получения квазимонохроматических аннигиляционных фотонов. Описаны методические приёмы и результаты получения прецизионных пучков позитронов на ЛУЭ-100 без и с дополнительным ускорением позитронов. Созданы прецизи-

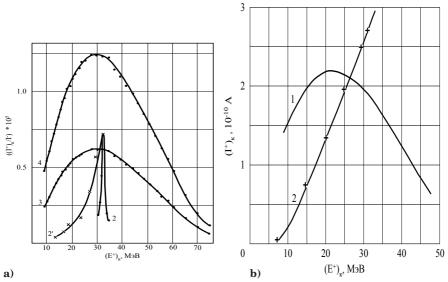


Рис. 7. а) наши данные для $(I^+)_{\kappa}/(I^-)$ от $(E^+)_{\kappa}$ для разных конвертеров (номер на кривой — номер конвертера) на ЛУЭ-100 ИЯИ РАН, 2′ — максимумы кривых 2 от $(E^+)_{\kappa}$ при разном «доускорении» позитронов; b) $(I^+)_{\kappa}$ от $(E^+)_{\kappa}$ из Сакле без «доускорения» позитронов (кривая 1) и из Гисен с «доускоренем» позитронов (кривая 2) для ЛУЭ с близкими параметрами (на полных ускорителях $E^- 70 \text{ МэВ}; \Gamma^- 100 \text{ мкА};$ кривые 1 и 2 взяты для одинаковых значений $\Delta(E^+)_{\kappa}/(E^+)_{\kappa} = 1\%$; в обоих случаях из пучков полученных позитронов выделяются с помощью практически одинаковых СТФА части с малыми и близкими друг другу эмиттансами)

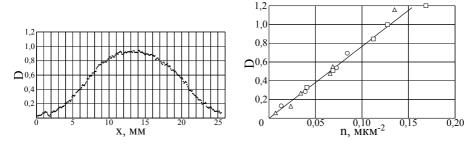


Рис. 8. Профиль пятна на рентгеновской плёнке при облучении пучком позитронов

Рис. 9. Кривая почернения для области малых плотностей облучения

онные пучки позитронов: 1) основные (с максимально достижимыми $(I^+)_{\kappa}$ при малых поперечном эмиттансе и разбросе $(\Delta(E^+)_{\kappa}/(E^+)_{\kappa});\ 2)$ калибровочные либо с плотностью, близкой к однородной по сечениям

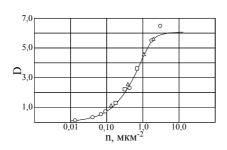


Рис. 10. Полная кривая почернения

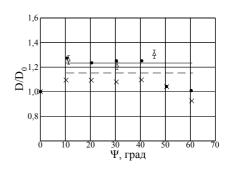


Рис. 11. D и D_0 — потемнения в плёнках, стоящих под углами ψ и нормально к пучку, соответственно. Кружки, треугольники и сплошная линия — $D_0 \le \sim 0.8$; крестики и штриховая линия — $D_0 \approx 3$

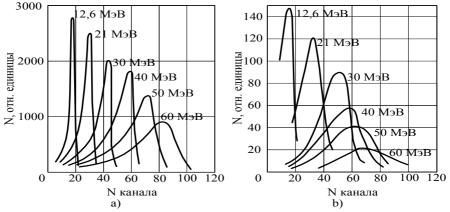


Рис. 12. Функции отклика спектрометров при различных E^+ для: a) NaI(Tl); b) CЭЗ-8MA

сравнительно простой формы, либо «одиночных» частиц. Доступные выходные параметры пучков позитронов: $(E^+)_{\rm K}\approx (6\div70)~{\rm MpB};~(\Delta(E^+)_{\rm K}/(E^+)_{\rm K})\approx (1\div2)\%;~(I^+)_{\rm K}$ до $\sim 10^9~{\rm e}^+/{\rm c}.$ При этом максимальные полные коэффициенты $({\rm e}^-{\to}{\rm e}^+)$ -конверсии находятся на лучшем достигнутом мировом уровне при близких условиях.

Из проведенных расчетов и экспериментов на ЛУЭ-100, а также из анализа данных из Сакле и Гисен (см. рис. 7 а) и b)) следует: для

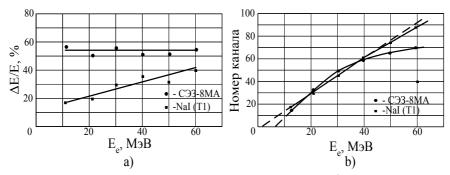


Рис. 13. Для спектрометров NaI(Tl) и $C\partial 3$ -8MA зависимости от E^+ для: a) ($\Delta E/E$); b) A_0 .

исследований ΓP в атомных ядрах при $E^+ < \sim 30$ МэВ выгоднее получать позитроны без их дополнительного ускорения, используя внешний для ЛУЭ конвертер ($e^- \rightarrow e^+$).

Проведён цикл измерений кривой почернения (зависимость $D=D_{\infty}(1-e^{-ns})$ от n, где D и D_{∞} — оптическое потемнение при конечных значениях n и при насыщении соответственно, n — число прошедших частиц на единицу площади, (здесь n в мкм $^{-2}$), s — параметр кривой в мкм 2 для рентгеновских плёнок РТ-6М для рентгеноэмульсионных камер (слои Pb и рентгеновской плёнки), используемых для регистрации электронов, позитронов, γ -квантов и адронов космического излучения с энергиями до 10^{12} эВ и более (см. рис. $8\div11$).

Проведён на пучках «одиночных» позитронов на ЛУЭ-100 цикл измерений функций отклика и эффективностей регистрации черенковских и сцинтилляционных детекторов частиц, в частности, для стандартных (100 мм× \varnothing 150 мм) NaI(Tl)-сцинтиблоков и для использованного на искусственных спутниках Земли спектрометра электронов СЭЗ-8MA (см. рис. 12, 13).

В третьей главе рассмотрены свойства и оптимальные условия получения прецизионных пучков реальных фотонов от тормозного излучения электронов и позитронов и от аннигиляции позитронов на лету, а также виртуальных фотонов в электрон- и позитрон- ядерных реакциях. Дан анализ сечений получения тормозного излучения

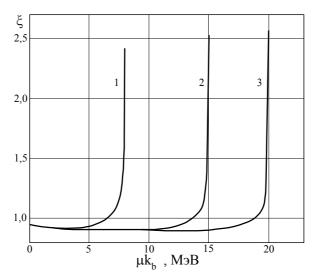


Рис. 14. Графики зависимости отношений $\zeta=(d\sigma_b/dk_b)_{SB}/(d\sigma_b/dk_b)_{Sch}$ от μk_b для Z=74. Кривые 1; 2 и 3 – для $(\gamma-1)\mu=(8;\ 15\ и\ 20)$ МэВ соответственно

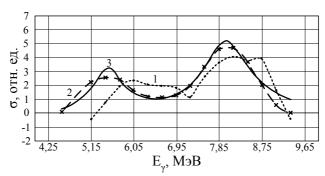


Рис. 15. Решения модельной обратной задачи. Кривая 1 –сечение реакции, полученное из модельного выхода, используя спектры Шиффа (без учета потерь энергии и много-кратного рассеяния электронов в Та радиаторе толщиной $T_p = 0.11 X_0$ и собственного углового разброса тормозных фотонов); кривая 2 — сечение реакции, полученное с тем же радиатором и из того же модельного выхода, используя рассчитанные искаженные эффективные спектры тормозных фотонов; кривая 3 — исходное модельное сечение

электронов и позитронов как с учетом требований, имеющихся при проведении современных прецизионных исследований ΓP с помощью тормозных фотонов полного спектра, так и для выяснения кор-

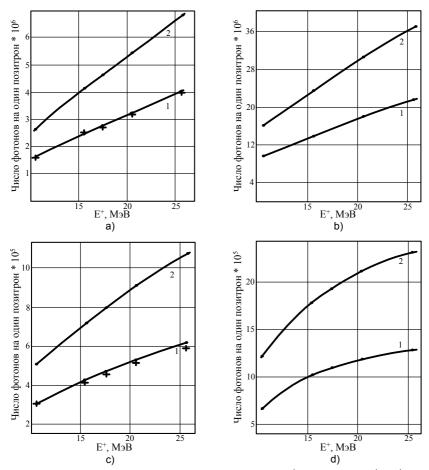
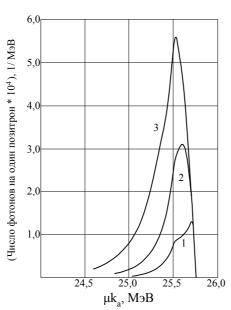



Рис. 16. Зависимости полного коэффициента конверсии $e^+ \rightarrow$ «моно- γ » от $E^+ = \mu \gamma^+$ для Ве мишеней толщиной 1-T=0.5 мм и 2-T=1.0 мм при углах приосевого коллиматора θ_c : а) 0.40×10^{-2} рад; b) 0.97×10^{-2} рад; c) 1.74×10^{-2} рад; d) 2.88×10^{-2} рад. Крестики — Монте-Карло расчеты

ректности «разностных» методов (позитронов и электронов на одной и той же аннигиляционной мишени)- и (позитронов и позитронов на двух разных по Z аннигиляционных мишенях)- вычитаний измеренных выходов фотоядерных реакций под действием фотонов от аннигиляционной мишени для учета фона из-за тормозных фотонов от

FWHМ (для µk_h), $\theta = 1.74*10^{-2}$ рад E+, МэВ

Рис. 17. Зависимости дифференциального коэффициента конверсии $e^+ \rightarrow$ «моно- γ » от μ k_a для Ве T=1 мм и $E^+=25.5$ МэВ. $1-\theta_c=0.97\times10^{-2}$ рад; $2-\theta_c=1.74\times10^{-2}$ рад; $3-\theta_c=2.88\times10^{-2}$ рад

Рис. 18. FWHM спектров аннигиляционных фотонов для разных E^+ , Ве мишени T=1 мм и $\theta_c=(0.97\times 10^{-2};\ 1.74\times 10^{-2}$ и $2.88\times 10^{-2})$ рад. $1-(\Delta E^+/E^+)=0;\ 2-(\Delta E^+/E^+)=\pm 0,5\%;\ 3-(\Delta E^+/E^+)=\pm 1,0\%$

позитронов. На основе предложенной аппроксимации (см. рис. 14) различий тормозных спектров от электронов (более современных (Сельцер и Бергер), и используемых ранее (Шифф)) впервые показано существенное влияние этих различий на получаемые сечения Е1 ГР в прецизионных измерениях с тормозными фотонами. Показано: методика (позитронно-электронного)-вычитания фона от тормозных фотонов в экспериментах с аннигиляционными фотонами корректна. Приведен метод расчета потоков и спектров тормозных фотонов от электронов и решения прямой и обратной задач при проведении фотоядерных экспериментов (см. рис. 15) для радиаторов и мишеней различной толщины, включая толстые, нужные для исследования

Таблица 1. Полные потоки N_γ и разбросы (FWHM) энергии ΔE_γ фотонов от аннигиляции на лету позитронов с энергией $(E^+)_\kappa \approx 16$ МэВ и ее разбросом $\Delta(E^+)_\kappa/(E^+)_\kappa)\cong \pm 1\%$ из Ве толщиной T на ЛУЭ-100 при пучке электронов с $E^-\approx 85$ МэВ и $I^-\cong 17$ мкА, для позитронов из конвертера КМЗ при разных T и углах коллимирования θ_c

Т, мм	$\theta_{\mathrm{c}},10^{-2}$ рад	N _γ , 1/ceκ	$\Delta \mathrm{E}_{\gamma}$, кэ B
1	0.97	~10 ⁴	~350
1	~3	~10 ⁵	~450
2÷3	~3	~2×10 ⁵	~550

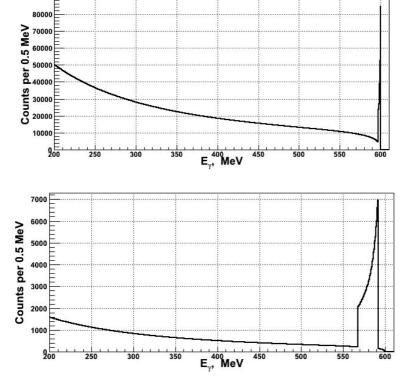


Рис. 19. Спектры тормозных и аннигиляционных фотонов для коллимирования с θ_c от 0 до 3 мрад (верх) и θ_c от 5 до 10 мрад (низ) при: E^+ =600 MэB; L=6×10³² см⁻² и каналах по 0.5 МэВ

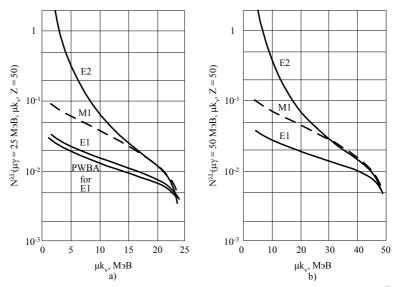


Рис. 20. Рассчитанные по DWBA спектры интенсивностей виртуальных фотонов N^{E1} , N^{E2} и N^{M1} от e^- для Sn и для энергий электронов а) $\mu\gamma$ =25 MэB и b) $\mu\gamma$ =50 МэВ в зависимости от энергии виртуальных фотонов μk_v

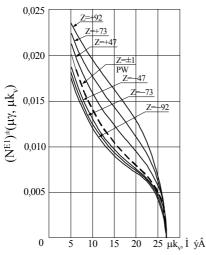


Рис. 21. DWBA-спектры N^{E1} виртуальных фотонов от электронов и позитронов при $\mu\gamma$ =27.5 MэB и различных Z

фотоядерных реакций с малыми сечениями. Сообщается о разработанной методике и результатах расчета потоков и спектров квазимонохроматических нов от аннигиляции позитронов на лету (см. табл. 1 и рис. 16÷18). Описано получение на ЛУЭ-100 прецизионных пучков тормозных и квазимонохроматических аннигиляционных фотонов И дан анализ достижимых потоков и спектров таких фотонов (и возможности применения этих результатов для иных импульсных резонансных ускорителей

электронов). Рассмотрены возможности получения тормозных и аннигиляционных фотонов при соединении ЛУЭ с ускорителями-накопителями (ADONE и ВЭПП-3 (см. рис. 19)). Рассмотрены спектры виртуальных фотонов при электрон- и позитрон- ядерных реакциях (см. рис. 20 и 21).

В четвертой главе сообщается о проведенных исследованиях изовекторных Е1 ГР в ядрах в реакциях с квазимонохроматическими аннигиляционными реальными фотонами. При проведении этих исследований проведен тщательный выбор методик регистрации продуктов исследуемых реакций, адекватных как типам этих реакций, так и особенностям используемых импульсных резонансных ускорителей электронов (особенно их временным характеристикам). Были выбраны два типа таких методик работы с полученными на ЛУЭ-100 квазимонохроматическими аннигиляционными фотонами.

С методикой первого типа проведены на ЛУЭ-100 измерения сечений «эталонной» для активационных фотоядерных исследований парциальной реакции 63 Cu(γ ,n) 62 Cu с использованием для из-

сравнительно мерения малых β+ -активностей образуемых радиоизотопов 62 Cu низкофонового двухкристального NaI(Tl)-спектрометра регистрации для (ү',ү')- совпадений вылетающих в противоположные стороны «распадных» ү'-квантов с энергиями $E_{\nu'}{\cong}0.511$ МэВ каждый. Основные черты этого эксперимента рис. 1): $(e^{-} \rightarrow e^{+})$ конвертер в узле КМ3 при $E^- \cong 80$ МэВ и І⁻≅7 мкА; Ве аннигиляционная мишень толщиной 1 мм; облучаемые образцы из натуральной $Cu~(8~{
m mm} \times arnothing 35~{
m mm})$ сразу за вы-

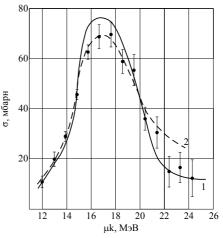


Рис. 22. Сечение реакции 63 Сu(γ ,n). Точки и кривые 1 и 2 — данные наши и из Сан Диего и из Ливермор, соответственно

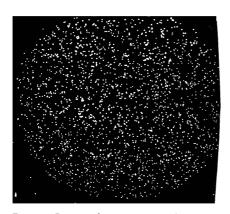


Рис. 23. Фотография следов пробоев в металлизированной плёнке

деляющим с аннигиляционной мишени угол 0.97×10^{-2} рад коллиматором $\varnothing 30$ мм в локальном доме защиты (со стенками от периферии к центру: >10 см полиэтилена и/или парафина; листы Cd; 10 см Pb); γ' -спектрометр с двумя кристаллами NaI (каждый 60 см× $\varnothing 60$ см), имеющий измеренную с помощью специально изготовленного источника 18 F эффективность регистрации $\cong 6\%$. Результаты измерений

указанного сечения показаны на рис. 22. Важно отметить, что у этой методики имеются большие резервы и она пригодна для измерений большой группы сечений парциальных фотоядерных реакций.

Низкофоновая, высокочувствительная и избирательная методика второго типа была впервые предложена и освоена нами для измерений с квазимонохроматическими аннигиляционными фотонами сечения реакции ²³⁸U(у,f), которое принято считать «эталонным» для сечений фотоделения. В этой методике использован трековый детектор осколков на основе тонких поликарбонатных пленок с автоматическим счётом протравленных треков (см. фотографию следов пробоев в металлизированной лавсановой пленке на рис. 23). Методика пригодна для ускорителей электронов с высокой скважностью для изучения деления ядер под действием либо непосредственно позитронов (электронов), либо аннигиляционных фотонов, что позволило для последних на ЛУЭ-100 измерить абсолютное сечение реакции 238 U (γ,f) , обеспечив независимую проверку известного метода на основе множественности испускаемых нейтронов. По сравнению с только что описанной методикой, где толщина физической мишени возможна до $\sim 10 \text{ г/см}^2$, здесь она $\leq \sim 1 \text{ мг/см}^2$, т.е. на $\sim 4 \text{ порядка мень-}$ ше, так что для приемлемой точности измерений нужна тщательная оптимизация (в частности, использование многослойных мишеней

большой площади с обеспечением при этом регистрации осколков с высокой эффективностью). Осколки производят в пленках радиационные повреждения, превращающиеся после протравливания в щелочи в сквозные отверстия диаметром в несколько мкм, которые можно обнаружить и сосчитать с помощью пробоя. Использовались мишени из естественного U толщиной (1±0.02) мг/см 2 и \varnothing 100 мм на АІ подложке толщиной 0.2 мм. Для облучения слои (до 30 штук) собирались в сэндвич с поликарбонатными плёнками. Оптимизировались условия травления и пробоев этих плёнок. Измеренная по спонтанному делению ²³⁸U абсолютная эффективность регистрации осколков деления оказалась $\approx 60\%$. Сечение фотоделения $^{238}\mathrm{U}$ было измерено нами при облучениях длительностью 2.5 часа 20 слоев U при $E_{\nu} \cong 10$ МэВ и $\Delta E_{\nu} \cong 350$ кэВ (FWHM) и оказалось $\cong (65 \pm 12)$ мбарн, что хорошо согласуется при той же $\mathbf{E}_{\scriptscriptstyle \gamma}$ со значениями этого же сечения \cong 55 мбарн и \cong 68 мбарн соответственно из Сакле и из Ливермор, измеренными также с аннигиляционными фотонами, но с использованием регистрации нейтронов после их замедления и с учетом анализа множественности этих нейтронов. Была показана применимость такого типа измерений и в случае реакции 237 Np(γ ,f).

Результаты наших экспериментов для реакций 63 Cu(γ ,n) и 238 U(γ ,f) указывают на то, что трудности из-за возможного фона как от конвертера, так и при взаимодействии проводимых по СТФА пучков позитронов и электронов со стенками пучкопровода (особенно на участке «90°»!) оказываются вполне преодолимыми. Они же подтверждают корректность: процедуры вычитания фона от образуемых в аннигиляционной мишени тормозных фотонов; калибровки энергетической шкалы системы; расчетов потоков квазимонохроматических фотонов от аннигиляции позитронов на лету в Ве мишени. Анализ показывает, что у таких экспериментов могут быть большие резервы за счет увеличения токов электронов и позитронов, потоков аннигиляционных фотонов и эффективностей регистрации продуктов реакций.

В пятой главе в ее разделе 5.1 сообщается о проведенных исследованиях разделения изовекторных Е1 и Е2 ГР в реакциях с ре-

альными тормозными (полного спектра) фотонами и с виртуальными фотонами в электрон-ядерных реакциях. На основе разработанной и многосторонне проверифицированной модели γ' -каскадов в атомных ядрах дан анализ возможностей исследования ядер в реакциях с заселением изомерных состояний. При энергиях падающих фотонов $E\gamma\approx(4\div8)$ МэВ для неупругого рассеяния фотонов с заселением метастабильных (m) и основных (g) состояний ядер реакций $(\gamma,\gamma')^{m,g}$ показано, что в случаях большой разницы спинов mJ и gJ (как, например, у 180 Hf $(^gJ^\pi=0^+; \ ^mJ^\pi=8^-; \ ||^mJ|-|^gJ||=8)$ изомерное отношение сечений заселения таких состояний $\approx = \sigma_m/\sigma_g$ может вырасти примерно на порядок при переходе от E1- к E2-фотопоглощению (см. рис. 24), тогда как при сравнительно малой разнице спинов mJ и gJ (как, например, у 115 In $(^gJ^\pi=(9/2)^+; ^mJ^\pi=(1/2)^-; ||^mJ|-|^gJ||=4)$ соответствующий рост \approx не превышает несколько десятков % (см. рис. 25). Приведены проведен-

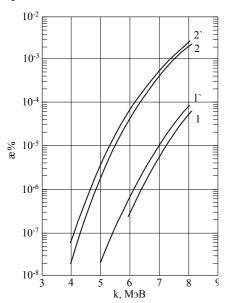


Рис. 24. Наш расчёт $\mathfrak{x}\{k\}$. Реакция $(\gamma,\gamma')^{\mathbf{m}}$ для $^{180}\mathrm{Hf}(^{\mathbf{g}}\mathrm{J}^{\pi}=0^{+};\ ^{\mathbf{m}}\mathrm{J}^{\pi}=8^{-})$. Кривые для фотопоглощения: E1 $(1-\mathrm{fe3},\ 1'-\mathrm{c}$ E2-переходами в γ' -каскаде); E2 $(2-\mathrm{fe3},\ 2'-\mathrm{c}$ С E2-переходами в γ' -каскаде).

ные с помощью Ge-спектрометров на неразрезном микротроне в Ужгороде и на ЛУЭ-100 под действием реальных (тормозных полного спектра) и виртуальных (в электрон-ядерных реакциях) фотонов исследования заселения различных изомерных ний для In и Au. Для ядер 115 In исследованы поведение коэнергетической части Е1 ГР (рис. 26 и 27), позволяющие при $E_{\gamma} {<} E_{(\gamma,n)\text{-порог}}$ судить о полном сечении фотопоглощения ядра, а при $E_{(\gamma,n)\text{-порог}} < E_{\gamma} < \sim (E_{(\gamma,n)\text{-порог}} +$ 1.5 МэВ) об изменении соотношения радиационной и нейтронной ширин при девозбуждении ядер. Кроме того, доказано отсутствие большого пика в кривой сечения

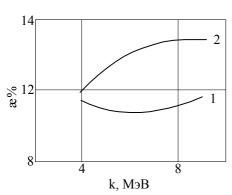


Рис. 25. Рассчитанное $\mathfrak{X}(E_{\gamma})$ для реакции $^{115} \mathrm{In}(\gamma,\gamma')^{115} \mathrm{mIn}$ при E1- и E2-фотопоглощении (кривые 1 и 2)

 $^{115}In(\gamma,\gamma')^{115m}In$ реакции при $E_{v} \sim 27 \text{ MэВ (см. рис. 27), который}$ пытались трактовать, как проявление изовекторного Е2 ГР. Измерены на ЛУЭ-100 изомерные отношения выходов заселения метастабильного $(J^{\pi} = 12^{-})$ и основного ($J^{\pi}=2^{-}$) состояний ¹⁹⁶Au реакции 197 Au $(\gamma,n)^{196m,g}$ Au (см. рис. 28), а также в реакции 197 Au((e⁻),(e⁻)'n) 196m,g Au. B peзультате анализа полученных результатов впервые предложен и успешно осуществлен ориги-

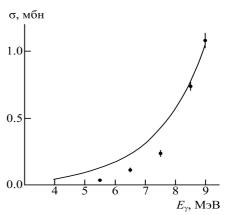


Рис. 26. Сечение (точки) и часть кривой Лоренца для реакции $^{115}{\rm In}(\gamma,\gamma')^{115}$

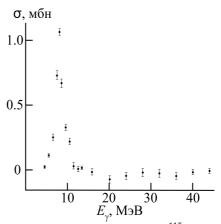
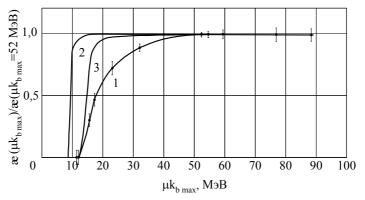



Рис. 27. Измеренное реакции $^{115} In(\gamma, \gamma')$ $^{115m} In$

нальный метод выделения изовекторного E2 ΓP с использованием заселения высокоспиновых метастабильных состояний ядер. Этот метод использует: а) значительно увеличенный «эффективный» порог из-за необходимости для заселения состояния 196m Au набрать в γ' -каскаде высокий спин; b) возрастание изомерного отношения в ~ 10 раз при переходе в фотопоглощении от E1 κ E2 (см. рис. 24 и

 $\label{eq:puc.28.1} \begin{array}{l} \text{Рис. 28. 1--измерения $\widetilde{\tilde{x}}$ {μk_{max}};}\\ 2--\text{расчет } (\texttt{\bar{x}=const}, (\mu k_{nop})_m = 8.7 \text{ M}\text{3B}); 3--\text{расчет } (\texttt{\bar{x}=const}, (\mu k_{nop})_m = 12 \text{ M}\text{3B}) \end{array}$

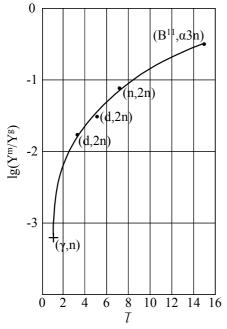


Рис. 29. Для 196 Au из различных реакций $(Y_m/Y_g)=f\{\tilde{l}\}$. Точки — из ОИЯИ, крестик — наш результат

29); с) отношение количеств «работающих» виртуальных квадрупольных и дипольных у-квантов ≈ 3 (см. рис. 20 b)); d) уменьшение погрешностей при использовании относительных измерений. В дополнение рассмотрены (исходя из предварительных экспериментов на ЛУЭ-25 Института биофизики МЗ РФ) возможности продолжения исследований изовекторных Е2 ГР в асимметрии сечений и выходов испускания быстрых нейтронов от (ү,n)-реакций (см. рис. 30, 31), но на импульсных ускорителях электронов на основе измерений с помощью пороговых детекторов нейтронов, а также сцинтилляционных спектрометров нейтронов для 208 Pb(γ , n_0)-реакции.

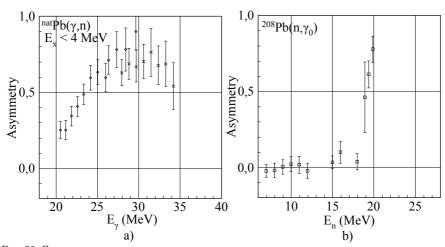
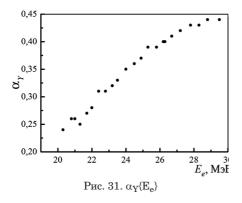



Рис. 30. Зависимости асимметрии вылета частиц-продуктов от энергии падающих частиц для реакций: а) $^{\rm nat}$ Pb(γ ,n); b) $^{\rm 208}$ Pb($\rm n,\gamma_0$)

Таблица 2. Образование радиоизотопов в фотоядерных реакциях на природном Ті ($E_{\gamma'}$ — энергии γ' -линий, по которым производилась идентификация радиоизотопа; $I_{\gamma'}$ — квантовый выход γ' -линии; $\sigma_{\text{инт}}$ — интегральные сечения реакций при $E_{\text{инт}}$ = E_{e} \approx 55 MəB)

радио-	доминирую-	T _{1/2}	$\mathrm{E}_{\gamma'},$	$I_{\gamma^{\iota}}$	$\sigma_{\scriptscriptstyle m MHT}$, Мә $ m B imes$ мб		
изотоп	щие реакции		кэВ		наст. работа	TALYS [301]	CPNRM [303]
⁴⁵ Ti	$^{46}{\rm Ti}(\gamma,n)^{45}{\rm Ti} + \\ ^{47}{\rm Ti}(\gamma,2n)^{45}{\rm Ti}$	184.8 мин	720 1409	0.00154 0.00085	280±50	329	278
$^{46}\mathrm{Sc}$	$^{47}{\rm Ti}(\gamma, {\rm n})^{46}{\rm Sc}+ \ ^{48}{\rm Ti}(\gamma, {\rm pn})^{46}{\rm Sc}$	83.79 сут	889.3 1120.5	0.99984 0.99987	178±33	128	227
⁴⁷ Sc	$^{48}\mathrm{Ti}(\gamma,p)^{47}\mathrm{Sc}$	3.3492 сут	159	0.683	110±19	109	204
⁴⁸ Sc	$^{49}{\rm Ti}(\gamma,p)^{48}{\rm Sc} + \\ ^{50}{\rm Ti}(\gamma,pn)^{48}{\rm Sc}$	43.67 ч	175 984 1038 1213 1312	0.0748 1.001 0.976 0.0238 1.001	101±19	56.8	125
⁴⁹ Sc	$^{50}\mathrm{Ti}(\gamma,p)$ $^{49}\mathrm{Sc}$	57.2 мин	1622.6 1761.97	0.0001 0.0005	68.5±20	12.7	74.8

В разделе 5.2 в рамках выработки представлений о диссипации энергии и девозбуждении в атомных ядрах при возбуждении в них Е1 ГР в фотоядерных реакциях измерены на разрезном микротроне РМ-55 выходы конкурирующих между собой различных парциальных фотонуклонных реакций в зависимости от числа

нейтронов N в ядрах-мишенях при фиксированном атомном номере Z=22 (титан). Показаны неудовлетворительное состояния описания конкуренции между (γ,p) - и (γ,n) - реакциями при больших N в претендующей на универсальность модели ядерных реакций TALYS и перспективность использования для этих целей разработанной в НИИЯФ МГУ комбинированной модели фотонуклонных реакций (CPNRM, см. табл. 2).

В разделах 5.3 и 5.4 рассмотрены прикладные применения пучков электронов и тормозных фотонов от импульсных резонансных ускорителей электронов с использованием реакций в области возбуждения ΓP (и несколько выше).

Таблица 3. Возможности фотоядерной наработки полной активности a радиоизотопов

ядро- мишень; М, г. моль ⁻¹	соединение в мишени; М, г·моль ⁻¹	реакции; (первичные распады)	ядро- продукт; ${ m T}_{1/2}$	$(E_{\gamma})_{nopor}, \ M ightarrow B$	$[(\sigma_{-1})_{ m насыщ} \cdot \ \chi_{ m эфф}], \ { m M}{ m G}$	а, мКи
¹⁰⁰ Mo; 99.907		(γ,n)	⁹⁹ Мо; 66.02 ч	8.3	50	3050
²³ Na;	NaCl; 58.443	(γ,nα);	¹⁸ F; 109.8 мин	20.9;	0.10÷0.30	10÷30

¹²⁴ Xe;	$(\gamma,n) \rightarrow$	¹²³ I;	10.2	80÷100	3938÷
123.906	(EC, β^+)	13.0 ч			4923
		(2.08 ч)			
⁴⁸ Ti;	(γ , p)	⁴⁷ Sc;	11.4	9.95	1266
47.95		3.42 сут			
⁶⁸ Zn;	(γ , p)	⁶⁷ Cu;	10.0	3.4	305
67.93		61.9 ч			
¹¹² Sn;	(γ , p);	¹¹¹ In;	7.5;	1.1	4361÷
111.91	$(\gamma,n) \rightarrow$	2.83 сут	10.8	80÷100	5451
	(EC, β+)	(35 мин)			

Таблица 4. Возможности наработки α в реакциях (γ ,d) и (γ ,pn) для некоторых перспективных ПЭТ-радиоизотопов

ядро- мишень	М, г· моль ⁻¹	ядро- продукт	Т _{1/2} , мин	(Еү) _{порог} , МәВ	[(σ _{–1}) _{насыщ} · χ _{эфф}], мб	а, мКи
$^{32}\mathrm{S}$	31.972	³⁰ P	2.5	21.2	0.4÷0.7	76÷133
⁴⁰ Ca	39.963	^{38g} K	7.6	21.4	>0.17	>26
⁴⁶ Ti	45.953	^{44g} Sc	235.8	21.7	0.26÷0.31	34÷41
⁶⁴ Zn	63.929	⁶² Cu	9.7	18.6	>0.32	>30
⁶⁶ Zn	65.926	⁶⁴ Cu	762.0	18.8	0.3÷1.0	28÷92
⁷⁰ Ge	69.924	⁶⁸ Ga	68.1	18.8	1.6	140

В разделе 5.3 проведены оценки наработки в фотоядерных реакциях радиоизотопов для исследований, диагностики и терапии в медицине (для однофотонной томографии, позитронно-эмиссионной томографии (ПЭТ), и радиоиммунотерапии) (см. табл. 3 и 4). Для оценок были выбраны существенные и яркие примеры наработки тех радиоизотопов, эффективность применения которых в медицине доказана и для которых уже разработаны методики использования. В табл. 3 для некоторых из таких радиоизотопов даны достижимые активности a при: E_e =55 MэB; W-радиатор с X_p =1 мм; $t_{oбn}$ = $T_{1/2}$; мишень с молекулярным весом M, составами химическим η_{xum} =1 и изотопным η_{u3} =1, толщиной 10 r · cм $^{-2}$. В табл. 4 к этому добавлены перспективные радиоизотопы, которые могут быть получены в (γ,d) - и (γ,pn) -ре-

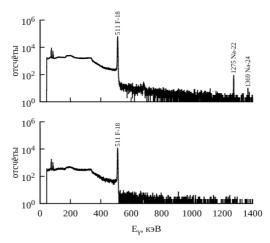


Рис. 32. у́— спектр облученной мишени (вверху) и выделенного препарата (внизу), $^{22}{\rm Na}$ не наблюдается

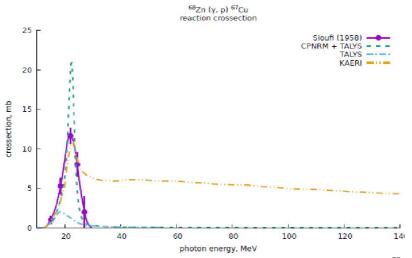


Рис. 33. Экспериментальное и модельные сечения фотопротонных реакций на $^{68}{\rm Zn}$

акциях и которые, хотя пока широко не применяются, но перспективны. Эти оценки позволили сформулировать и получить патент $P\Phi$ на способ наработки радиоизотопов для медицины с использованием

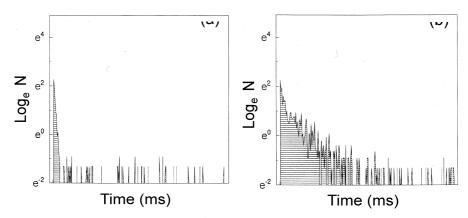


Рис. 34. Зарегистрированные отсчеты в расчете на один импульс ускорителя из эксперимента в Стокгольме. (а) Al пластина; (b) графитовый блок на этой пластине. $(\mathbf{E}_{\mathbf{e}})_{\mathbf{n}_{\mathbf{X}}}{\approx}\,50~\mathrm{MpB}$

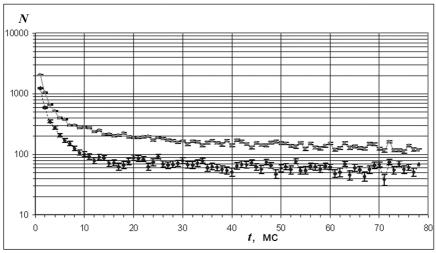


Рис. 35. Примеры измеренных нами "распадных" кривых. Мишени – графит (верхняя группа точек) и алюминий (нижняя группа точек). $(E_e)_{\rm BX}$ ≈55 МэВ

фотоядерных реакций. Для 18 F, 47 Sc и 67 Cu на микротроне PM-55 проведены измерения выходов в реакциях 23 Na(γ ,αn) 18 F, 48 Ti(γ ,p) 47 Sc и 68 Zn(γ ,p) 67 Cu, а для 18 F (см. рис. 32) и 67 Cu (см. рис. 33) проведено и успешное радиохимическое разделение, так что получены значимые уровни полной и удельной активностей.

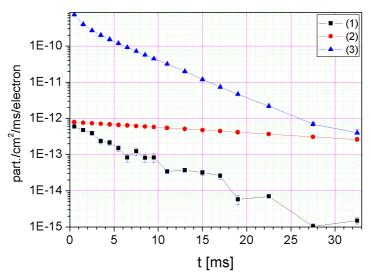


Рис. 36. Рассчитанные временные зависимости плотностей потоков гамма-квантов и нейтронов в сцинтилляционном детекторе и зале облучения: (1) — плотность потока гамма-квантов в зале, вызванных образованными нейтронами; (2) — плотность потока гамма-квантов в сцинтилляционном детекторе от распадов 12 В в графитовой мишени; (3) — плотность потока нейтронов в зале

В разделе 5.4 рассмотрены (с использованием результатов экспериментов на синхротроне C-25P (Троицк) и разрезном микротроне PM-55 аспекты разработок фотоядерного детектирования взрывчатых веществ и наркотиков (ФДВВН), то есть спрятанных концентраций углерода и азота на основе регистрации наводимой в фотоядерных реакциях активностей радиоизотопов 12 N и 12 B. Эти аспекты включают: радиационную безопасность при использовании ФДВВН для проверки багажа авиапассажиров; потоки и спектры γ -квантов, электронов и позитронов, испускаемых из «характерного багажа» в результате распадов образованных в нем радиоизотопов 12 B и 12 N; анализ имеющейся экспериментальной и расчетно-модельной информации о сечениях и выходах обеспечивающих для ФДВВН эффект фотоядерных реакций 14 N(γ ,2n) 12 N, 14 N(γ ,2p) 12 B и 13 C(γ ,p) 12 B (показавший, в частности, неадекватность моделей TALYS и EM-PIRE для описания этих реакций); проект измерений сечений и вы-

ходов реакций 14 N $(\gamma,2n)^{12}$ N и 14 N $(\gamma,2p)^{12}$ B; оценки возможностей фотоядерного 13 С $(\gamma,p)^{12}$ B (единственная из трех указанных «рабочих» для ФДВВН реакций, для сечения которой имеются приемлемые экспериментальные данные) активационного детектирования углерода; модельное описание такого детектирования углерода (см. рис. 34–36).

В шестой главе сообщается о проведенных на ускорителе-тандеме в Леньяро разработках и калибровках NaI(Tl)- и BGO- спектрометров, использованных далее в собственных исследованиях на этом ускорителе реакций, обратных фотоядерным. На основе анализа измеренных спектров фотонов от реакции ${}^2{\rm H}({\rm d},\gamma)^4{\rm He}$ и (см. рис. 37) их угловых распределений (см. рис. 38) получены указания на существенные особенности взаимодействий нуклонов в ${}^4{\rm He}$ (на примесь D-волны для основного состояния ${}^4{\rm He}$). На основе обработки измеренных спектров вторичных фотонов от реакций синтеза ускоренных ядер ${}^{32}{\rm S}$ с ядрами мишени ${}^{27}{\rm Al}$ (см. рис. 39) проведено исследование ширин E1 ГP, построенных на возбужденных состояниях ${}^{59}{\rm Cu}$ при умеренно больших значениях энергий возбуждения (до ${\rm E_x} \approx 77~{\rm Mps}$) и спинов (до ${\rm J} \approx 38~{\rm h}$), которые связываются с тем, что форма ядер ${}^{59}{\rm Cu}$ при ${\rm E_x} \cong 77~{\rm Mps}$ существенно меняется из-за динамической деформации, вызванной большими J.

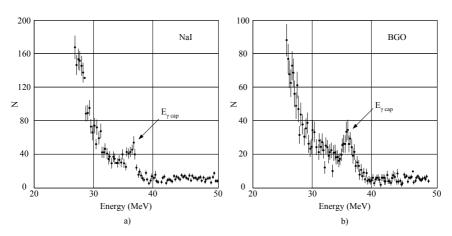


Рис. 37. Измеренные спектры при $E_d{\cong}28$ МэВ, $\theta_{\gamma}{\cong}120^\circ,\ E_{\gamma}{\cong}36$ МэВ (в лабораторной системе)

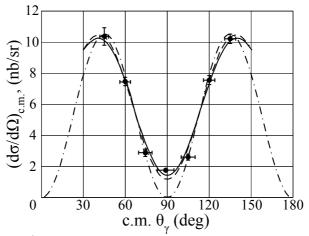


Рис. 38. Для $^2{\rm H}({\rm d},\!\gamma)^4{\rm He}$ при ${\rm E}_{\rm d}\!\!\cong\!\!28$ МэВ измеренные угловые распределения (в системе центра масс)

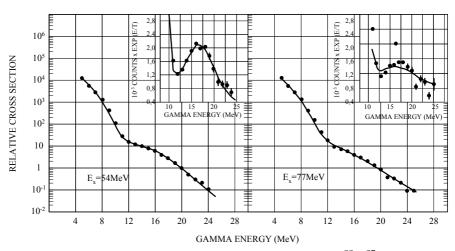


Рис. 39. Точки — измеренные γ -спектры для реакции синтеза ($^{32}\mathrm{S}+^{27}\mathrm{Al}$), сплошные кривые — подогнанные по методу наименьших квадратов результаты статистической модели

В Заключении приводятся основные результаты диссертационной работы:

- Впервые в нашей стране создана комплексная установка для получения прецизионных пучков электронов (е), позитронов (е), тормозных и квазимонохроматических аннигиляционных фотонов («моно-у») для исследований гигантских резонансов (ГР) в атомных ядрах, состоящая из: импульсного линейного ускорителя электронов на бегущей волне ЛУЭ-100; системы транспортировки, формирования и анализа пучков электронов и позитронов (с разрешением до ~0.1% и аксептансами горизонтальным до $\sim 1.60 \cdot 10^{-3}$ м×рад и вертикальным до $\sim 0.57 \cdot 10^{-3}$ м×рад.), включающей в себя спектрометр позитронов (захватываемые телесный угол $\Delta\Omega^{+} \cong 0.5 \cdot 10^{-4}$ ср и диапазон импульсов ($\Delta p/p_0$)=1.3%.); системы узлов конвертерных (е->е+) мишеней; узла аннигиляционной ($e^+ \rightarrow$ «моно- γ ») мишени с очищающим магнитом; системы мониторов пучков с использованием, в частности, впервые в мире переходного излучения в оптическом диапазоне для мониторирования пучков электронов. Получены коэффициенты конверсии $(e^- \to e^+)$ и $(e^+ \to \text{«моно-у»})$ на уровне лучших мировых достижений при интересуемых энергиях.
- 2. Впервые измерен $K(E^+,E^-,\theta^+=\theta^-=0,Z,T)$ дифференциальный коэффициент конверсии $(e^-\to e^+)$ для энергий электронов $E^-\sim(25\div60)$ МэВ, что позволило определить поведение K при $E^-\sim(9\div220)$ МэВ. Показано: для получения пучков позитронов оптимальная энергия электронов в их пучке с фиксированной мощностью составляет $(E^-)_{\text{онт}}\sim(60\div90)$ МэВ.
- 3. На ЛУЭ-100 получены прецизионные пучки электронов с энергией (E^-) \approx ($6\div100$) МэВ при ($\Delta E^-/E^-$) вплоть до \approx (±0.4)% и среднем токе до ≈17 мкА и пучки позитронов с (E^+) \approx ($6\div70$) МэВ при ($\Delta E^+/E^+$) \approx ($1\div2$)% и среднем токе до $\approx10^9$ е $^+$ /с. Разработана модель динамики позитронов при их дополнительном ускорении в ЛУЭ, результаты которой хорошо согласуются с данными экспериментов. Показано: на ЛУЭ с (E^-) до ≈100 МэВ позитроны с E^+ <30 МэВ (что практически включает весь диапазон, требуемый для иссле-

- дований $E1\ \Gamma P)$ эффективнее получать без их дополнительного ускорения.
- 4. Впервые для Ве, Nb и Та (толщины $(0.015;\,0.035;\,0.012)\,\mathrm{r\cdot cm^{-2}})$ на «игольчатом» пучке электронов с $\mathrm{E^-}{\cong}50\,$ МэВ исследовано многократное рассеяние электронов.
- 5. Проведены исследования-калибровки рентгеновских пленок РТ-6М, применяемых в рентгеноэмульсионных камерах, используемых для регистрации электронов, позитронов, у-квантов и адронов космического излучения с энергиями до 10¹² эВ (и более). Проведён цикл работ на пучках «одиночных» позитронов и у-квантов различных энергий на ЛУЭ-100 по измерениям функций отклика и эффективностей регистрации черенковских и сцинтилляционных детекторов частиц, в частности, для использованного на искусственных спутниках Земли спектрометра электронов СЭЗ-8МА.
- 6. Проанализированы данные о потоках и спектрах тормозных фотонов от электронов (для наиболее интенсивного и используемого источника фотонов) и от позитронов (для фонового процесса при образовании аннигиляционных фотонов) и спектров виртуальных фотонов разной мультипольности в электрон- и позитронядерных реакциях. Показано: методика (позитронно-электронного)-вычитания фона от тормозных фотонов в экспериментах с аннигиляционными фотонами корректна. На основе предложенной аппроксимации различий тормозных спектров от электронов (более современных (Сельцер и Бергер), и более ранних (Шифф)) впервые показано существенное влияние этих различий на получаемые сечения Е1 ГР в прецизионных измерениях с тормозными фотонами. Разработана методика расчетов потоков и спектров тормозных фотонов и решения прямой и обратной задач для фотоядерных реакций при толстых и радиаторах, и мишенях в «плотной геометрии» при работах в области ГР.
- 7. Создана программа расчётов полных и дифференциальных коэффициентов конверсии ($e^+ \rightarrow$ «моно- γ »), которая применена для системы получения на ЛУЭ-100 аннигиляционных фотонов с

- $E_\gamma \approx (10 \div 40)\,$ МэВ. Показано, в частности, что для Ве аннигиляционной мишени толщиной $(1 \div 2.5)\,$ мм и углов коллимирования фотонов $(1 \div 3) \cdot 10^{-2}\,$ рад при $E_\gamma \cong 16\,$ МэВ получены потоки аннигиляционных фотонов $\sim (0.1 \div 2) \cdot 10^5\,$ с $^{-1}\,$ при $\Delta E_\gamma \approx (350 \div 550)\,$ кэВ.
- 8. Рассмотрены возможности получения прецизионных пучков тормозных и квазимонохроматических аннигиляционных фотонов при соединении ЛУЭ с ускорителями-накопителями. В частности, эти возможности осуществились для тормозных фотонов на ускорителе-накопителе ADONE (Фраскати, Италия) на созданной с участием автора установке с внутренними по отношению к накопителю струйной Ar-мишенью и системой мечения для $E_{\gamma} \approx (200 \div 1200)$ МэВ. Кроме того, впервые предложен проект источника квазимонохроматических аннигиляционных фотонов на ускорителе-накопителе ВЭПП-3 (Новосибирск) на основе накапливаемого пучка позитронов и внутренней дающей наилучшее соотношение аннигиляционных и тормозных фотонов накопительной H_2 мишени ячейки для $E_{\gamma} = (500 \div 750)$ МэВ.
- 9. С квазимонохроматическими аннигиляционными фотонами на ЛУЭ-100 двухкристальной «совпадательной» методикой при $E_{\gamma} {\cong} (12 {\div} 25)$ МэВ с $\Delta E_{\gamma} {\approx} 350$ кэВ измерены сечения используемой в качестве эталона при активационных фотоядерных исследованиях ГР реакции 63 Cu(γ ,n) 62 Cu. Методика пригодна для измерений сечений большой группы реакций.
- 10. Впервые с помощью методики прямой регистрации осколков деления в поликарбонатных плёнках с автоматическим счётом протравленных треков на пучке квазимонохроматических аннигиляционных фотонов на ЛУЭ-100 при $E_{\gamma} \cong 10$ МэВ и разрешении $\sim \! \! 300$ кэВ измерено сечение реакции $^{238} \text{U}(\gamma, \text{f})$. Получена независимая проверка известного метода измерений сечений фотоделения, основанного на обработке зарегистрированной множественности испускаемых в реакциях нейтронов.
- 11. В рамках задачи выделения вкладов изовекторного Е2 ГР:
 - 11.1. Освоена и многосторонне проверена методика расчётов γ' -каскадов при девозбуждении атомных ядер. Доказано, что

- для реакций с заселением высокоспиновых изомерных состояний есть усиление примерно на порядок относительного вклада $E2\ \Gamma P.$
- 11.2. На тормозных фотонах на ЛУЭ-100 и микротроне в Ужгороде с Ge-спектрометрами измерено сечение реакции 115 In- $(\gamma,\gamma')^m$ при $E_{\gamma}\cong (4\div 46)$ МэВ, в котором есть пик при E_{γ} у порога (γ,n) реакции $(\sigma_{\max}\approx 1 \text{ мб})$, но нет заявленного в литературе большого пика при $E_{\gamma}\sim 27$ МэВ, трактовавшегося, как возможное проявление вклада изовекторного E2 ГР. При $E_{\gamma}< E_{(\gamma,n)-\text{порог}}$ измеряемые $(\gamma,\gamma')^m$ -сечения позволяют судить о поведении полного сечения ядерного фотопоглощения, а при $E_{(\gamma,n)-\text{порог}}< E_{\gamma}< (E_{(\gamma,n)-\text{порог}}+1.5 \text{ МэВ})$ об изменении соотношения радиационной и нейтронной ширин при девозбуждении ядер.
- 11.3. Измерены на ЛУЭ-100 изомерные отношения выходов заселения метастабильного (J=12) и основного (J=2) состояний $^{196}\mathrm{Au}$ в реакциях $^{197}\mathrm{Au}(\gamma, n)^{196\mathrm{m,g}}\mathrm{Au}$ и $^{197}\mathrm{Au}((e^-), (e^-)'n)^{196\mathrm{m,g}}\mathrm{Au}$. В результате анализа полученных результатов впервые предложен и успешно осуществлен оригинальный метод выделения изовекторного E2 ΓP с использованием заселения высокоспиновых метастабильных состояний ядер.
- 11.4. Впервые предложены оригинальные варианты метода выделения изовекторного Е2 ГР при измерении асимметрии вылета нейтронов в (ү,п)-реакции на свинце, основанные на использовании регистрации нейтронов: а) с помощью пороговых активационных детекторов нейтронов; b) с помощью сцинтилляционных спектрометров в реакции 208 Pb(ү,n₀) (последнее частично опробовано на ЛУЭ-25 Института биофизики МЗ РФ).
- 11.5 На основе собственных разработок и анализа литературных данных дан краткий обзор современного состояния решения проблемы выделения изовекторного $E2\ \Gamma P$.
- 12. В рамках выработки представлений о диссипации энергии и де-

возбуждении в атомных ядрах при возбуждении в них $E1\ \Gamma P$ в фотоядерных реакциях измерены на разрезном микротроне на $55\ M{
m o}B\ \Phi UAH$ — $HUU {
m H} \Phi\ M\Gamma {
m y}$ выходы конкурирующих между собой различных парциальных фотонуклонных реакций в зависимости от числа нейтронов N в ядрах-мишенях при фиксированном атомном номере Z=22 (титан). Показаны неудовлетворительное состояния описания конкуренции между (γ,p) - и (γ,n) -реакциями при больших N в претендующей на универсальность модели ядерных реакций TALYS и перспективность использования для этих целей разработанной в $HUU {
m H} \Phi\ M\Gamma {
m y}$ комбинированной модели фотонуклонных реакций.

- 13. В рамках задачи получения медицинских радиоизотопов с помощью фотоядерных реакций:
 - 13.1. Даны оценки фотоядерного получения радиоизотопов для медицины.
 - 13.2. На разрезном микротроне на 55 МэВ ФИАН НИИЯФ МГУ проведены эксперименты для медицины по образованию и радиохимическому выделению 18 F и 67 Cu с высокими полными и удельными активностями из реакций 23 Na(γ , α n) 18 F и 68 Zn(γ , ρ) 67 Cu.
- 14. В рамках разработки фотоядерного (12 N; 12 В)-детектирования азота и углерода:
 - 14.1.Доказано выполнение требований радиационной безопасности при облучениях багажа авиапассажиров при фотоядерном (12 N; 12 B)-детектировании скрытых взрывчатых веществ и наркотиков (Φ ДВВН).
 - 14.2. Проведено исследование потоков и спектров вторичных γ' -квантов, электронов и позитронов, испускаемых при распадах 12 B и 12 N, образованных в «характерных образцах».
 - 14.3. Дан анализ литературных сведений и результатов собственных расчетов по моделям ядерных реакций TALYS и EMPIRE для сечений реакций фотоядерного образования в азоте и углероде изотопов 12 N и 12 B, используемых для Φ ДВВН. Показано: только для реакции 13 C(γ ,p) 12 B имеется удовлет-

- ворительные экспериментальные данные; есть указания на неадекватность описания используемых в ФДВВН реакций этими моделями.
- 14.4. Предложены проекты измерений сечений и выходов реакций $^{14}{\rm N}(\gamma,2{\rm n})^{12}{\rm N}$ и $^{14}{\rm N}(\gamma,2{\rm p})^{12}{\rm B}$.
- 14.5.Даны оценки и впервые модельное описание фотоядерного $^{13}{\rm C}(\gamma,p)^{12}{\rm B}$ активационного детектирования углерода, важные для проверки реалистичности и чувствительности методики, а также для ее оптимизации.
- 15. На ускорителе-тандеме в Legnaro (Италия) с помощью созданных NaI- и BGO- спектрометров, измерено угловое распределение γ -квантов от реакции 2 H(d, γ) 4 He при возбуждениях E_x до 38 МэВ и показано, что есть указания на примесь D-волны для основного состояния 4 He.
- 16. Там же и с теми же γ -спектрометрами измерены спектры γ -квантов от реакции синтеза ($^{32}\mathrm{S+^{27}Al}$) при возбуждениях $\mathrm{E_x} \cong (54$ и 77) МэВ и угловых моментах J до 38ћ. Из усреднённых параметров изовекторных E1 ГР, построенных на возбуждённых состояниях $^{59}\mathrm{Cu}$ (то есть для существенного расширения области применимости понятий о E1 ГР) и извлечённых из обработки этих γ -спектров, следует, что форма ядер $^{59}\mathrm{Cu}$ при $\mathrm{E_x} \cong 77$ МэВ существенно меняется из-за динамической деформации, вызванной большими J.
- 17. Проведенные работы по получению прецизионных пучков электронов, позитронов, тормозных и аннигиляционных фотонов и по исследованиям фото- и электро- ядерных реакций с этими пучками в области ГР подтверждают большую перспективность проведения таких исследований на импульсных резонансных ускорителях электронов.
- **В Приложении 1** дан краткий обзор методов «монохроматизации» фотонов.
- **В Приложении 2** дан обзор принципов получения пучков ультрарелятивистских позитронов с малыми поперечным эмиттансом и разбросом по энергии.

Основные результаты диссертации опубликованы в работах:

- 1. Л.З.Джилавян, В.А.Обозный. Некоторые варианты ахроматических поворотно-анализирующих систем. Варианты разводки пучков от линейного ускорителя электронов ФИАН. Труды ФИ АН СССР. Т. 69. М.: Наука, 1973. С. 120-124; 125-128.
- 2. Г.Б. Вербицкий, Л.З. Джилавян и др. Юстировка фокусирующих катушек инжекторной секции линейного ускорителя электронов методом крутого восхождения. Там же, с. 132-134.
- 3. Л.З. Джилавян, В.А. Обозный, В.Н. Пономарев. Оптимальная настройка ускорителя ЛУЭ-50 по фазам. Вопросы атомной науки и техники (ВАНТ). Физика высоких энергий и атомного ядра. 5(7), ХФТИ, Харьков, 1973, с. 45-47.
- 4. Ю.М. Александров, В.Ф. Грушин, А.Н. Зиневич, Л.З. Джилавян, В.А. Обозный. Экспериментальное исследование многократного рассеяния электронов с энергией 50 МэВ. ЖЭТФ 68(1975)1597-1600.
- 5. Л.З. Джилавян, В.А. Обозный, В.Н. Пономарев. Измерение фазовой протяженности электронных сгустков ЛУЭ-50 ИЯИ АН СССР. ВАНТ. Линейные ускорители. 1(2), ХФТИ, Харьков, 1976, с. 59-60.
- 6. Л.З. Джилавян, В.А. Обозный, В.Н. Пономарев. Использование переходного излучения для наблюдения формы и положения пучка ускоренных электронов. Там же, с. 61-62.
- 7. Г.Г. Векслер, С.С. Вербицкий, Л.З. Джилавян, В.А. Обозный. Предварительные результаты по регистрации пика квазимоно-хроматических фотонов от аннигиляции позитронов на лету на ЛУЭ-50. Там же, с.66-67.
- 8. Л.З. Джилавян. Система получения пучков позитронов и квазимонохроматических фотонов от аннигиляции позитронов на лету на ЛУЭ ИЯИ АН СССР. Препринт ИЯИ АН СССР П-0099, М., 1978; Труды VI Всесоюзного совещания по ускорителям заряженных частиц. Изд. отдел ОИЯИ, Дубна, 1979, том 2, с. 182-185.
- 9. Л.З. Джилавян и др. Кривая почернения рентгеновской пленки, используемой для исследований космических лучей, при облучении ее позитронами с энергией 30 МэВ. Вестник МГУ. Серия: фи-

- зика, астрономия. Т. 19, № 5, 1978, с. 13-16.
- Л.З. Джилавян, А.В.Лелеков. Магнитный спектрометр для измерения дифференциального коэффициента конверсии электронов в позитроны. Краткие сообщения по физике ФИ АН СССР, № 8, 1979, с. 43-48.
- 11. Л.З. Джилавян, А.В. Лелеков. Измерение дифференциального коэффициента конверсии электронов в позитроны на танталовых мишенях оптимальной толщины для 25 МэВ < E $^-<$ 60 МэВ. Там же, с. 37-42.
- 12. Л.З. Джилавян, Н.П. Кучер. Калибровка детекторов релятивистских заряженных частиц и гамма-квантов на системе получения квазимонохроматических аннигиляционных фотонов. ВАНТ. Серия: Техника физического эксперимента. Вып. 1(3), ХФТИ, Харьков, 1979, с. 82-84.
- 13. Л.З.Джилавян, Н.П.Кучер. Измерение сечения реакции 63 Cu(γ ,n) на пучке квазимонохроматических фотонов в области энергий 12-25 МэВ. ЯФ 30(1979)294-298.
- 14. Л.З.Джилавян, Н.П.Кучер, Г.В.Лупенко. Спектрометр релятивистских электронов низких энергий в составе космических лучей и его градуировка на пучке «одиночных» позитронов. Краткие сообщения по физике ФИ АН СССР, № 2, 1980, с. 15-21.
- Л.З. Джилавян, А.И. Карев. Динамика позитронного пучка с конвертерной мишени при его доускорении в ЛУЭ на бегущей волне.
 Труды VII Всесоюзного совещания по ускорителям заряженных частиц. ОИЯИ, Дубна, 1981, т. I, с. 209-212.
- 16. Л.З. Джилавян, Л.Е. Лазарева, В.Н. Пономарев, А.А. Сорокин. Изомерные отношения выходов реакций 197 Au(γ ,n) $^{196\text{m,g}}$ Au и 197 Au(e,e'n) $^{196\text{m,g}}$ Au при энергиях 10-90 МэВ. ЯФ 33 (1981)591-600.
- 17. Л.З. Джилавян, Г.Г. Рыжих, А.Ю. Чуприков. Определение сечения по выходу фотоядерной реакции из мишени, стоящей вблизи толстого радиатора. Препринт ИЯИ АН СССР Π -0492, M., 1986, 18 с.
- 18. M.Anghinolfi, P.Corvisiero, L.Z.Dzhilavyan, G.Ricco, M.Sanzone, M.Taiuti, Zucchiatti. Tagged photon beam between 200 and 1200

- MeV. Research Summary Book of the 1988 Gordon Research Conference on Photonuclear Reactions. New Hampshire, USA, Printed courtesy of CEBAF, 1988.
- G. Viesti, M.Anghinolfi, P.F. Bortignon, P. Corvisiero, L. Dzhilavyan, B. Fornal, F. Gramegna, J.B. Natowitz, G. Nebbia, G. Prete, M. Taiuti, A. Zucchiatti. Shapes of ⁵⁹Cu nuclei at moderate excitation energies and spin. Phys. Rev. C 40(1989) R1570-R1573.
- 20. P.Corvisiero, M.Anghinolfi, L.Z.Dzhilavyan, G.Gervino, G.Ricco, M.Ripani, M.Sanzone, M.Taiuti, A.Zucchiatti. Measurement of the ${}^2{\rm H}({\rm d},\gamma)^4{\rm He}$ reaction at intermediate excitation energies. Few-Body Systems 10(1991)135-141.
- 21. P.Corvisiero, M.Anghinolfi, L.Z.Dzhilavyan, G.Gervino, L.Grosso, G.Ricco, M.Sanzone, M.Taiuti, A.Zucchiatti. Realization and performance of a BGO spectrometer for photons of 10–100 MeV. Nucl. Instr. and Meth. A294(1990)478-484.
- 22. Л.З.Джилавян, В.Л.Кауц, В.И.Фурман, А.Ю.Чуприков. Некоторые вопросы заселения изомерных состояний. ЯФ 51(1990)336-344.
- 23. А.М. Громов, Л.З. Джилавян, ... Р.Л. Кондратьев и др. Система формирования пучка для экспериментов по рассеянию электронов на ядрах на Московском разрезном микротроне непрерывного действия. Труды XIV совещания по ускорителям заряженных частиц. ИФВЭ, Протвино, 1994, т. 4, с. 202-206.
- 24. Г.М. Гуревич, Л.З. Джилавян м др. Исследование возбуждения и распада СО, С1 и С2 гигантских резонансов в (e,e'X) совпадательных экспериментах. Проект программы исследований на Московском разрезном микротроне непрерывного действия с максимальной энергией ускоренных электронов 175 МэВ. Препринт ИЯИ РАН 1040/2000, 83 стр.
- 25. Л.З. Джилавян. Аспекты фотоядерного (12 N; 12 В)-активационного детектирования взрывчатых веществ с учетом фоновых фотонейтронов. Изв. РАН. Сер. Физ. 73(2009)846-852.
- 26. L.Z.Dzhilavyan, A.I.Karev, V.D.Laptev, V.G.Raevsky. Production of the short-lived isotopes ^{12}N and ^{12}B in the $^{14}N(\gamma,2n),\,^{14}N(\gamma,2p),$

- and $^{13}\text{C}(\gamma,p)$ reactions. Proc. of the XII Int. Seminar on Electromagnetic Interactions of Nuclei EMIN-2009. Moscow, INR RAS, 2910, pp. 75-85.
- 27. Л.З.Джилавян, А.И.Карев. О радиационной безопасности фотоядерного метода обнаружения взрывчатых веществ при досмотре багажа авиапассажиров. Известия РАН. Серия физическая, 75(2011)1655-1659;
- 28. Л.З.Джилавян, А.И.Карев, В.Г.Раевский. Возможности наработки с помощью фотоядерных реакций радиоизотопов для задач ядерной медицины. ЯФ 74(2011, № 12)1728-1734.
- 29. С.С.Белышев, Л.З.Джилавян А.Н.Ермаков, Б.С.Ишханов, А.И.Карев, В.Г.Раевский, В.В.Ханкин, В.И.Шведунов. Образование изотопа 18 F в реакции 23 Nа(γ ,αn) при $E_{\gamma m} \approx 55$ МэВ. Вестник МГУ. СерияЗ. Физика, астрономия 2012, № 3, С. 8-12.
- 30. С.С. Белышев, Л.З. Джилавян, А.Н. Ермаков, Б.С. Ишханов, А.А. Кузнецов, А.С. Курилик, К.А. Стопани, В.В. Ханкин, В.И. Шведунов. Образование 18 F в реакции 19 F(γ ,n). Известия РАН. Серия физическая 77(2013)531-534.
- 31. Л,З.Джилавян, А.И,Карев, В.Г.Раевский. Способ генерации медицинских радиоизотопов. Патент РФ RU 2500429 C2 (10.12.2013 Бюл. \mathbb{N} 34).
- 32. L.Z.Dzhilavyan, S.I.Mishnev, V.G.Nedorezov, D.M.Nikolenko, I.A.Rachek, D.K.Toporkov. "Source of monochromatic photons driven by positron in-flight annihilation using internal target of storage ring VEPP-3". Proceedings of the XIII Intern. seminar on Electromagnetic interactions of nuclei (Moscow, September 20-23, 2012). INR, Moscow, 2013, pp. 138-147.
- 33. Л.З.Джилавян, В.Г.Недорезов. Фотоделение 238 U в области гигантского резонанса». ЯФ 76(2013)1529-1536.
- 34. Р.А.Алиев, С.С.Белышев, Л.З.Джилавян, А.Н.Ермаков, Б.С.Ишханов, Н.И.Пахомов, В.В.Ханкин, В.И.Шведунов. Экспериментальное исследование возможностей наработки 18 F, 67 Cu, 177 Lu для ядерной медицины на ускорителях электронов. Препринт ИЯИ РАН 1340/2013, М., 2013, 52 стр.

- 35. Л.З.Джилавян. Потоки и спектры квазимонохроматических аннигиляционных фотонов для исследований E1-гигантских резонансов в атомных ядрах. ЯФ 77(2014)1578-1590.
- 36. Р.А.Алиев, С.С.Белышев, Л.З.Джилавян и др. Исследование возможностей получения и выделения радиоизотопа ¹⁸F на ускорителях электронов. Вестник МГУ. Серия 3. Физика, астрономия, 2014, № 3, С. 29-32.
- 37. Л.З.Джилавян. Сопоставление реальных тормозных фотонов от электронов и позитронов и виртуальных фотонов в электрон- и позитрон- ядерных реакциях для задач исследования гигантских резонансов. Изв. РАН. Сер. Физ. 78(2014)635-641.
- 38. С.С.Белышев, Л.З.Джилавян и др. Измерения выходов фотоядерных реакций на природном титане при $E_{\gamma \ \rm Makc} \approx 55$ МэВ. Известия РАН. Серия физическая. $78(2014)1420{-}1424$.
- 39. С.С.Белышев, Л.З.Джилавян и др. Фотоядерные реакции на изотопах титана $^{46-50}$ Ті. Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2014. № 5. С. 3-12.
- 40. С.С.Белышев, Л.З.Джилавян и др. Фотоядерные реакции на изотопах титана. ЯФ 78(2015)246-255.
- 41. Л.З.Джилавян. Экспериментальные параметры изовекторного E1-гигантского резонанса в зависимости от корректности учета спектров тормозных фотонов. Изв. РАН. Сер. Физ. 79(2015)581-586.
- 42. Л.З.Джилавян. Сечение реакции 115 In $(\gamma,\gamma')^{115m}$ In в области E1 гигантского резонанса. ЯФ 78(2015)668–677.
- 43. Л.З.Джилавян. Возможность разделять изовекторные E1 и E2 гигантские резонансы при измерении асимметрии вылета нейтронов с помощью пороговых детекторов. Известия РАН. Серия физическая 80(2016)648-654.
- 44. L.Z.Dzhilavyan, et al. Scintillation spectrometers ability for forward-to-backward asymmetry measuring at neutron emission in (γ, n_0) -reactions. Proc. of the XIV Int. Seminar on Electromagnetic Interactions of Nuclei (EMIN 2015, Moscow). INR RAS, Moscow, 2016, pp. 6–11.

- 45. L.Z.Dzhilavyan. About yield measuring for the reactions $^{14}{\rm N}(\gamma,2n)^{12}{\rm N}$ and $^{14}{\rm N}(\gamma,2p)^{12}{\rm B}$. Ibid., pp. 12-15.
- 46. Р.А.Алиев, С.С.Белышев, Л.З.Джилавян и др. Экспериментальное определение выходов перспективных медицинских радионуклидов 67 Cu, 69m Zn и 161 Ho в реакциях (γ , р) и (γ , рп) под действием тормозных фотонов с $E_m\cong 55.6$ МэВ. LXVI межд. конференция по проблемам ядерной спектроскопии и структуре атомного ядра «Ядро-2016». Тезисы докладов. Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2016, с. 171–172.
- 47. О.И.Ачаковский, С.С.Бельшев, Л.З.Джилавян, Ю.Н.Покотиловский. Сечения реакций 14 N(γ , 2n) 12 N, 14 N(γ , 2p) 12 B, 13 C(γ , p) 12 B. Известия РАН. Серия физич. 80(2016)633-639.
- 48. С.С.Белышев, Л.З.Джилавян, Ю.Н.Покотиловский. Эмиссия γ -квантов, электронов, позитронов из характерных мишеней при распадах образованных в этих мишенях 12 N и 12 B. Известия РАН. Серия физическая. 80(2016)627-632.
- 49. L.Z.Dzhilavyan, A.M.Lapik, V.G.Nedorezov, B.A.Tulupov. Separation of Contributions of Isovector *E*2 and *E*1 Giant Resonances in Direct and Inverse Reactions with Real and Virtual Photons. Physics of Particles and Nuclei, 2017, Vol. 48, No. 1, pp. 139–146.

Научное издание

Джилавян Леонид Завенович

Фотоядерные исследования в области гигантских резонансов в прямых и обратных реакциях

Автореферат диссертации на соискание ученой степени доктора физико-математических наук на тему

Ф-т 60х84/16 Уч.-изд.л. 2,1 Зак. № 22411 Тираж 80 экз. Бесплатно Печать цифровая

Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

Издательский отдел 117312, Москва, проспект 60-летия Октября, 7а