

Institute for Nuclear Research of the Russian Academy of Sciences Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук



И.Р. Барабанов, Л.Б. Безруков, А.В. Вересникова, Ю.М. Гаврилюк, А.М. Гежаев, В.И. Гуренцов, В.В. Казалов, В.В. Кузьминов

Детектор на основе Nd-содержащего жидкого органического сцинтиллятора для поиска 0 ${}_{\mathrm{V}}2{}_{\beta}$  распада  ${}^{150}$ Nd и источники внутреннего фона

ПРЕПРИНТ ИЯИ РАН 1428/2016 НОЯБРЬ 2016

MOCKBA 2016 MOSCOW

Institute for Nuclear Research of the Russian Academy of Sciences Федеральное государственное бюджетное учреждение науки Институт ядерных исследований



И.Р. Барабанов, Л.Б. Безруков, А.В. Вересникова, Ю.М. Гаврилюк, А.М. Гежаев, В.И. Гуренцов, В.В. Казалов, В.В. Кузьминов

Детектор на основе Nd-содержащего жидкого органического сцинтиллятора для поиска 0ν2β распада <sup>150</sup>Nd и источники внутреннего фона

> ПРЕПРИНТ ИЯИ РАН 1428/2016 НОЯБРЬ 2016

MOCKBA 2016 MOSCOW

Institute for Nuclear Research of the Russian Academy of Sciences Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

И.Р. Барабанов, Л.Б. Безруков, А.В. Вересникова, Ю.М. Гаврилюк, А.М. Гежаев, В.И. Гуренцов, В.В. Казалов, В.В. Кузьминов

Детектор на основе Nd-содержащего жидкого органического сцинтиллятора для поиска 0ν2β распада <sup>150</sup>Nd и источники внутреннего фона

> ПРЕПРИНТ ИЯИ РАН 1428/2016 НОЯБРЬ 2016

MOCKBA 2016

Institute for Nuclear Research of the Russian Academy of Sciences 60-th October Anniversary prospect 7a, Moscow 117312, Russia

Moscow 117312, Russia Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Россиской академии наук проспект 60-летия Октября, 7а Москва, 117312

#### И.Р. Барабанов, Л.Б. Безруков, А.В. Вересникова, Ю.М. Гаврилюк, А.М. Гежаев, В.И. Гуренцов, В.В. Казалов, В.В. Кузьминов

#### Детектор на основе Nd-содержащего жидкого органического сцинтиллятора для поиска 0v2β распада <sup>150</sup>Nd и источники внутреннего фона

Анализируются источники внутреннего фона сцинтилляционного детектора на основе Nd- содержащего жидкого органического сцинтиллятора (Nd-ЖC), предназначенного для измерения безнейтриного двойного бета распада <sup>150</sup>Nd. Рассчитана форма спектра от распадов <sup>208</sup>Tl (продукт распада <sup>232</sup>Th) и <sup>214</sup>Ві (продукт распада <sup>238</sup>U) внутри детектора. Найдены допустимые содержание U и Th в составе 150Nd для различных масс детектора. Выполнены измерения содержания U и Th в составе образцов естественного Nd с помощью полупроводникового детектора. Рассчитан фон в 0v2β области от 2v2β распада 150Nd для различных значений энергетического разрешения детектора. Показано, что при разрешении 3-5% этот фон составляет пренебрежимо малую величину.

> И.Р. Барабанов, Л.Б. Безруков, А.В. Вересникова, Ю.М. Гаврилюк, А.М. Гежаев, В.И. Гуренцов, В.В. Казалов, В.В. Кузьминов

> > Детектор на основе Nd-содержащего жидкого органического сцинтиллятора для поиска 0v2β распада <sup>150</sup>Nd и источники внутреннего фона

> > > Препринт 1428/2016

Ноябрь 2016

Подписано в печать 14.11.2016

Ф-т 60х84/8. Уч.-изд.л. 1,82. Зак. 22407 Тираж 55 экз. Бесплатно

> Печать цифровая Издательский отдел

Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

117312, Москва, проспект 60-летия Октября, 7а

#### ISBN 978-5-94274-317-8

© Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук, 2016 Institute for Nuclear Research of the Russian Academy of Sciences, 2016 С 2016 г в ИЯИ РАН разрабатывается проект эксперимента по поиску безнейтринного двойного (0v2β) бета распада <sup>150</sup>Nd. Планируется создание сцинтилляционного детектора на основе Nd-содержащего жид-кого органического сцинтиллятора (Nd-ЖC). Поиск безнейтринного двойного бета распада является одной из наиболее интересных и актуальных задач современной экспериментальной физики и проводится в целом ряде научных лабораторий.

Выбор изотопа <sup>150</sup>Nd в качестве кандидата для поиска безнейтринного двойного бета распада имеет ряд важных преимуществ по сравнению с другими экспериментами по его поиску:

- энергия распада (3.367 МэВ) является одной из наибольших и, как следствие, ожидаемая вероятность 0ν2β является одной из наибольших.
- предварительные оценки показывают, что благодаря большой энергии распада в жидком органическом сцинтилляторе может быть получено хорошее энергетическое разрешение (несколько процентов).
- большая энергия распада и высокий атомный номер приводят к тому, что часть событий от двух нейтринного двойного бета распада 2ν2β, попадающих в область 0ν2β, оказывается минимальной по сравнению с другими элементами.
- наибольшая энергия внешнего гамма излучения от естественных радиоактивных изотопов составляет 2.615 МэВ (<sup>208</sup>Tl в ряду <sup>232</sup>Th) и существенно меньше энергии 0v2β распада. Это существенно упрощает проблему внешнего гамма фона по сравнению с другими кандидатами 0v2β, например <sup>76</sup>Ge.

Возможность крупномасштабного эксперимента по поиску  $0v2\beta$  распада <sup>150</sup>Nd обсуждалась много раз, но основная проблема заключалась в отсутствии метода получения обогащенного по <sup>150</sup>Nd образцов в большом количестве. В последнее время предприятие AO «ПО ЭХЗ» осваивает производство Nd обогащённого по изотопу <sup>150</sup>Nd (в естественном Nd 5.6 %) и проект становится реальным.

Детекторы на основе органических сцинтилляторов имеют худшие разрешения по сравнению с криогенными и полупроводниковыми детекторами, применяемыми для поиска 0v2β распада, однако позволяют использовать практически неограниченные количества исследуемого элемента и позволяют достичь более высокой чистоты по радиоактивным примесям по сравнению с твердотельными детекторами.

На начальной стадии планируется создание сцинтилляционного детектора объемом 10–15 л с концентрацией <sup>150</sup>Nd 20-30 г/л.

В настоящей работе мы рассмотрим внутренние источники фона подобного детектора от примеси естественных радиоактивных элементов и  $2\nu 2\beta$  распада <sup>150</sup>Nd.

### Внутренний фон от примеси U и Th для Nd-ЖC

Максимальное значение внешнего гамма фона для Nd-ЖC создается гамма линией <sup>208</sup>Tl с энергией 2,615 МэВ в радиоактивном ряду <sup>232</sup>Th. Энергия  $0v2\beta$  распада для <sup>150</sup>Nd составляет 3,367 МэВ. Выше этого значения внешний гамма фон может создаваться только гамма квантами, возникающими в реакциях альфа частиц и нейтронов, интенсивность которых существенно ниже и зависит от содержания радиоактивных элементов (U и Th) в окружающих детектор материалов.

Основным источником фона детектора на основе Nd-ЖС являются радиоактивные элементы, содержащиеся в нем в качестве примесей.



К таким элементам относятся <sup>214</sup>Ві с максимальной энергией распада 3,272 Мэв в ряду <sup>238</sup>U и <sup>208</sup>Tl с максимальной энергий распада 5,001 МэВ в ряду <sup>232</sup>Th. Энергия распада <sup>214</sup>Ві меньше энергии 0v2 $\beta$  распада для <sup>150</sup>Nd, однако из-за конечного энергетического разрешения часть распадов может создавать фон в области регистрации 0v2 $\beta$  распада для <sup>150</sup>Nd. Упрощенная схема распада <sup>208</sup>Tl приведена на рис. 1. Вылетающая бета частица вместе с взаимодействующим в детекторе гамма квантом может создавать энерговыделение, попадающее в область  $0v2\beta$  распада для  $^{150}$ Nd. Поскольку эффективность регистрации гамма кванта зависит от размеров детектора, то этот фон будет зависеть от его объема.

Вклад в область  $0\nu 2\beta$  распада для <sup>150</sup>Nd от этих элементов был рассчитан методом М.-К. для детектора объемом 10 л и объема большего 0.1 кт ( когда эффективность регистрации гамма кванта, сопровождающего бета распад равна ~100%).

#### Метод расчета

Бета распада ядра можно представить как случайный процесс. Моделирование случайных процессов сводится к моделированию последовательностей случайных событий. В случае бета распада эту последовательность можно представить в виде цепи Маркова с конечным числом состояний:

$$n \\ \Sigma P_{ij} = 1 \ i = 1, \dots, n \ P_{ij} \ge 0 \\ j = 1$$

где  $P_{ij}$  вероятность излучения бета электронов с максимальной энергией  $E_{\max,i}$  и соответствующая ей последовательность каскадных  $\gamma$ -квантов с энергией  $E_{\gamma i}$ .

Существуют известные процедуры, (например, метод обратной функции) моделирования произвольного распределения случайной величины при помощи генератора случайных чисел, равномерно распределённых на отрезке (0–1). Переход к генератору случайных чисел k с дискретным распределением  $P_{ij}$  выполняется посредством решения уравнения:

$$a_{i} = \sum_{j=1}^{k=n-j+1} P_{ij} / \sum_{j=1}^{n} P_{ij} = F_{i}(k) \qquad \qquad k = F_{i}^{-1}(a_{i})$$

Трек гамма кванта, можно представить в виде случайной последовательности событий: излучение, рассеяние, поглощение и регистрация. Полагаем, что γ-кванты рождаются в одной и той же точке сцинтиллятора с энергией *E* и имеют равную вероятность двигаться в любом на-

правлении. Сечения рассеяния и поглощения заданы в виде таблиц из работы [1]. Для нашего сцинтиллятора сечение образование пар мало и им можно пренебречь. Алгоритм полностью определяется заданием правила перехода от точки  $\mathbf{X}_n = (r_n, \Omega_n, E_n)$  к точке  $\mathbf{X}_{n+1} = (r_{n+1}, \Omega_{n+1}, E_{n+1})$ фазового пространства. Плотность вероятности распределения Е<sub>n+1</sub> определяется формулой Клейна-Нишины-Тамма. Угол отклонения от первоначального направления однозначно определяется энергией рассеяния, а азимутальный угол распределён равномерно. Координаты в декартовой системе  $r_{n+1}$  равны:  $x_{n+1} = x_n + L_{n+1}S_n$ , у  $_{n+1} = y_n + L_{n+1}Q_n$ ,  $z_{n+1}=z_n+L_{n+1}P_n$  где L—путь пройденный  $\gamma$ -квантом без взаимодействия с электронами вещества, а величины  $S_n$ ,  $Q_n$  и  $P_n$  определяются азимутальным и зенитным углами.

Подробные схемы распада <sup>208</sup>Т и <sup>214</sup>Ві были взяты из [2]. Результаты расчета спектра фона от распадов <sup>208</sup>Tl и <sup>214</sup>Bi представ-



лены на рисунках 2-5. Результаты представлены для энергетическо-

*Рис.* 2. Зависимость (красные квадратики) числа событий распада <sup>232</sup>Th от зарегистрированного энерговыделения Е детектором с объёмом 10 л. Сплошная кривая иллюстрирует распределение вероятности зарегистрировать энерговыделение в 3367 кэВ с разрешением 3%. Число событий на один распад <sup>232</sup>Th в области энерговыделений от событий  $0\nu 2\beta$  распада  $^{150}$ Nd равно  $5.2^{*10^{-3}}$ 

го разрешения детектора 3% при энергии 3367 кэВ. Для распадов  $^{208}$ Tl число событий на один распад  $^{232}$ Th в области энерговыделений от событий  $0v2\beta$  распада  $^{150}$ Nd практически не зависит от энергетического разрешения детектора. Полученные результаТаблица 1. Число событий от распада  $^{238}$ U или  $^{232}$ Th на один распад  $^{238}$ U или  $^{232}$ Th в области энерговыделений от событий  $0v2\beta$  распада  $^{150}$ Nd для детекторов объемом 10 л и больше 0.1 кт

| Объем детек-<br>тора | $^{238}\mathrm{U}$ | $^{232}$ Th      |
|----------------------|--------------------|------------------|
| 10 л                 | $2.1^{*}10^{-5}$   | $5.2^{*}10^{-3}$ |
| > 0.1 кт             | $8.5^{*}10^{-4}$   | $2.5^{*}10^{-2}$ |

ты суммированы в таблице 1. При расчете предполагалось, что  $^{238}$ U и  $^{232}$ Th находятся в равновесии со своими радиоактивными рядами.

Таблица 2. Активности изотопов:  $^{40}$ К,  $^{214}$ Ві,  $^{208}$ Т<br/>l и  $^{228}$ Ас, вычисленные по измеренному спектру оксида неодима чисто<br/>той 99.9 %

| Изотоп            | Энергия<br>линии,<br>кэВ | Эффектив-<br>ность реги-<br>страции в % | Окно,<br>кэВ | Скорость счёта<br>в окне (без под-<br>ложки), час <sup>-1</sup> | Собственный<br>фон ППД в ок-<br>не (без подлож-<br>ки), час <sup>-1</sup> | Активность (за вы-<br>четом фона ППД),<br>Бк/кг,<br>(концентрация г/г) |
|-------------------|--------------------------|-----------------------------------------|--------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|
| <sup>40</sup> K   | 1460,8                   | 0,17                                    | ±3           | 0,052                                                           | $2,1 \cdot 10^{-2}$                                                       | $0,15\pm0,10$                                                          |
| <sup>208</sup> Tl | 2614,5                   | 0,12                                    | ±5           | 0,37                                                            | $2,0.10^{-3}$                                                             | $0,28\pm0,04$<br>$(2.0*10^{-7} \text{ rTh/r})$                         |
| <sup>214</sup> Bi | 609,3                    | 0,22                                    | ±3           | 0,18                                                            | $9,1 \cdot 10^{-2}$                                                       | $0,080\pm0,044$<br>$(6.4*10^{-9} \text{ rU/r})$                        |
| <sup>228</sup> Ac | 911,2                    | 0,20                                    | ±3           | 0,48                                                            | ≤5,7 · 10 <sup>-3</sup>                                                   | $0,8\pm0,1$                                                            |

Таблица 3. Активности изотопов:  $^{40}$ К,  $^{214}$ Ві,  $^{208}$ Т<br/>l и  $^{228}$ Ас, вычисленные по змеренному спектру оксида неодима чистото<br/>й 99.99%

| Изотоп            | Энергия<br>линии,<br>кэВ | Эффектив-<br>ность реги-<br>страции в % | Окно,<br>кэВ | Скорость счё-<br>та в окне (без<br>подложки),<br>час <sup>-1</sup> | Собственный фон<br>ППД в окне<br>(без подложки),<br>час <sup>-1</sup> | Активность (за вы-<br>четом фона ППД),<br>Бк/кг,<br>(концентрация г/г) |
|-------------------|--------------------------|-----------------------------------------|--------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| <sup>40</sup> K   | 1460,8                   | 1,33                                    | ±4           | 0,40                                                               | $2,1 \cdot 10^{-2}$                                                   | 0,24±0,02                                                              |
| <sup>208</sup> Tl | 2614,5                   | 0,83                                    | ±6           | 0,95                                                               | $2,0.10^{-3}$                                                         | $0,103\pm0,006$<br>$(7.0*10^{-8} \text{ rTh/r})$                       |
| <sup>214</sup> Bi | 609,3                    | 2,36                                    | ±3           | 0,38                                                               | $9,1 \cdot 10^{-2}$                                                   | $0,024\pm0,004$<br>$(1.9*10^{-9} \text{ rU/r})$                        |
| <sup>228</sup> Ac | 911,2                    | 1,83                                    | ±3           | 1,40                                                               | ≤5,7· 10 <sup>-3</sup>                                                | 0,26±0,01                                                              |



*Рис. 3.* Зависимость (красные квадратики) числа событий распада <sup>238</sup>U от зарегистрированного энерговыделения Е детектором с объёмом больше 10 л. Сплошная кривая иллюстрирует распределение вероятности зарегистрировать энерговыделение в 3367 кэВ с разрешением 3%. Число событий на один распад <sup>238</sup>U в области энерговыделение ний от событий 0v2β распада <sup>150</sup>Nd равно 2.1\*10<sup>-5</sup>



*Рис.* 4. .Зависимость (красные квадратики) числа событий распада <sup>232</sup>Th от зарегистрированного энерговыделения Е детектором с объёмом больше 0.1 кт. Сплошная кривая иллюстрирует распределение вероятности зарегистрировать энерговыделение в 3367 кэВ с разрешением 3%. Число событий на один распад <sup>232</sup>Th в области энерговыделений от событий 0v2β распада <sup>150</sup>Nd равно 2.5\*10<sup>-2</sup>



Рис. 5. Зависимость (красные квадратики) числа событий распада <sup>238</sup>U от зарегистрированного энерговыделения Е детектором с объёмом больше 0.1 кт. Сплошная кривая иллюстрирует распределение вероятности зарегистрировать энерговыделение в 3367 кэВ с разрешением 3%. Число событий на один распад <sup>238</sup>Uв области энерговыделений от событий 0v2β распада <sup>150</sup>Nd равно 8.5\*10<sup>-4</sup>

Из приведенных данных следует, что наибольшую опасность для детектора представляет примесь  $^{232}$ Th. Для планируемого модуля объема 10 л с 300 г обогащенного Nd фон в области  $0v2\beta$  распада связан с примесью Th в образце Nd соотношением:

 $N(Th) = C(Th) \cdot M \cdot 1,81 \cdot 10^6 /$ сутки,

где C(Th) — примесь Th(г/г) в образце Nd , M — масса введенного в сцинтиллятор Nd.

 $N(U) = C(U) \cdot M \cdot 2,26 \cdot 10^4 / сутки,$ 

где C(U)—примесь U(г/г) в образце Nd, M—масса введенного в сцинтиллятор Nd.

# Измерения содержания радиоактивных примесей в образцах Nd

Для измерения содержания радиоактивных примесей в образцах Nd была разработана методика измерения с помощью полупроводникового

детектора. Поскольку у коллектива в настоящий момент не было образцов обогащенного Nd метод был опробован на образцах Nd естественного состава с чистотой 99,9% и 99,99%.

#### Измерение образца ниодима чистотой 99,9%

Измерения проведены на Баксанской нейтринной обсерватории в низкофоновой камере (3, 4). Использовался низкофоновый германиевый полупроводниковый детектор массой 1 кг. Порошок оксида неодима Nd<sub>2</sub>O<sub>3</sub> весом 307 г в двух целлофановых пакетах сконфигурирован в виде параллелепипеда размерами (13\*13\*1.4) см<sup>3</sup> и расположен под кристаллом детектора симметрично его оси. Полное время измерения 135.5 часа. На рис.6. представлен измеренный спектр (с вычетом фона детектора), который использовался для вычисления активности изотопов: <sup>40</sup>K, <sup>214</sup>Bi, <sup>208</sup>Tl и <sup>228</sup>Ac, представленных в таблице 3.

#### 2. Измерение образца чистотой 99,99%

Измерения проведены на Баксанской нейтринной обсерватории в низкофоновой камере [3, 4]. Использовался низкофоновый германиевый полупроводниковый детектор массой 1 кг. Порошок оксида ниодима  $Nd_2O_3$  весом 308 г в целлофановом пакете сконфигурирован в виде пояса размерами (24.0\*10.0\*1.0) см<sup>3</sup>. Этот пояс закольцован вокруг детектора, так что нижний край пояса совпадал с нижним краем цилиндра кожуха детектора. Полное время измерения 279 часов. На рис.7. представлен измеренный спектр (с вычетом фона детектора), который использовался для вычисления активности изотопов: <sup>40</sup>K, <sup>214</sup>Bi, <sup>208</sup>Tl и <sup>228</sup>Ac, представленных в таблице 3.

Из сравнения полученных результатов с расчетами следует, что на предварительном этапе с использованием 300 г обогащенного Nd для достижения предела для  $0v2\beta$  распада на уровне  $10^{22}$  лет (84 распада/год) примесь Th в обогащенном Nd должна быть снижена в 500 раз (при фоне 10%). В дальнейшем с использованием большего количества обогащенного Nd для достижения предела на современном уровне  $10^{25}$ – $10^{26}$  лет потребуется разработка методики снижения примеси Th и методики его измерения до значений на 3-4 порядка ниже выше приведенного. Примесь Th в обогащенном Nd в настоящее время не известна, но



Рис. 6. Измеренный спектр оксида неодима чистотой 99.9 %



Рис. 7. Измеренный спектр оксида неодима чистотой 99.99 %

в любом случае необходима разработка эффективной методики очистки Nd от Th. Допустимое содержание U на два порядка выше по сравнению с Th. Кроме того, как видно из рис.3 и рис.5 дальнейшая существенная дискриминация фона от распада <sup>214</sup>Ві возможна сужением области регистрации  $0v2\beta$  распада. Для удаления U и Th требуется специальная химическая методика, которая будет изложена в следующей статье.

| Энергетическое              | Эффектив-    | Доля событий   |  |
|-----------------------------|--------------|----------------|--|
| окно регистрации            | ность реги-  | 002р в энерге- |  |
| 002p                        | страции 002р | тическом окне  |  |
| >0< (>3367 кэВ)             | 0.5          | 2,5E-8         |  |
| $> -0.5 \sigma$ (>3342 кэВ) | 0.69         | 1E-7           |  |
| >-1.0σ (>3320 kəB)          | 0.84         | 1,8E-7         |  |
| $> -1.5 \sigma$ (>3300 кэВ) | 0.94         | 2,9E-7         |  |
| >-2.0σ (>3281 κэB)          | 0.98         | 4,2E-7         |  |

Таблица 4. Энергетическое разрешение

детектора 3 %

Таблица 5. Энергетическое разрешение детектора 5 %

| Энергетическое<br>окно регистрации<br>0ν2β | Эффектив-<br>ность реги-<br>страции 0v2β | Доля событий<br>0ν2β в энерге-<br>тическом окне |
|--------------------------------------------|------------------------------------------|-------------------------------------------------|
| >0 (>3367 кэВ)                             | 0.5                                      | 4,8E-8                                          |
| >-0.5 (>3328 кэВ)                          | 0.69                                     | 2,9E-7                                          |
| >-1.0 (>3292 кэВ)                          | 0.84                                     | 7,8E-7                                          |
| > -1.5 (>3261 кэВ)                         | 0.94                                     | 1,5E-6                                          |
| > -2.0 (>3235 кэВ)                         | 0.98                                     | 2,4E-6                                          |

## Внутренний фон от $2\nu 2\beta$ распада $^{150}$ Nd

Принципиально не устранимым источником фона является вклад событий от двухнейтринной моды  $2\nu 2\beta$  распада Nd-150 в область безнейтринного двойного бета распада  $0\nu 2\beta$  с учетом конечного энергетического разрешения детектора. Спектр суммарной энергии двух электронов описывается зависимостью [5]

$$\rho(\varepsilon) = \varepsilon(\varepsilon^4 + 10\varepsilon^3 + 40\varepsilon^2 + 60\varepsilon + 30) (\varepsilon_0 - \varepsilon)^5, \quad \varepsilon = (\varepsilon_1 + \varepsilon_2)$$

где є — суммарная энергия двух электронов,  $\varepsilon_0$  — полная энергия распада, энергии в единицах массы электрона. Влияние кулоновского взаимодействия ядра учитывалось согласно [6] и табличных значений [7]. Полученный таким образом спектр представлен на рис. 8. Часть спектра, определяющая вклад в область  $0v2\beta$  распада приведена на рисунках 9 и 10 для энергетического разрешения детектора 3% и 5%.

Последние результаты эксперимента NEMO [8] дают для периода полураспада  $2\nu 2\beta$  значение  $7\cdot 10^{18}$  лет. При энергетическом разрешении детектора 3% в эксперименте с 300 г Nd-150 вклад в фон составляет  $\sim 2\cdot 10^{-2}$  /год, что является пренебрежимо малой величиной, а при энергетическом разрешении детектора 5%  $\sim 0,1$  /год, что также пренебрежимо мало.

Однако при дальнейшем развитии эксперимента с большими массами мишени этот вклад будет возрастать. При этом возможно дальнейшее снижение фона  $2v2\beta$ , используя ассиметричную область для регистрации  $2v2\beta$  распада при некотором уменьшении эффективности её ре-



*Puc.* 8. Суммарный спектр энерговыделения Е двух электронов двухнейтринного двойного бета-распада <sup>150</sup>Nd. Полная площадь нормирована на единицу



Рис. 9. Число событий с энерговыделением E от 2v2β распада в области 2v2β распада. 1— спектр энерговыделений двойного 2β2v распада без учета энргетического разрешения. 2— спектр двойного 2β2v распада с учётом энергетического разрешения детектора равного 3% при энергии 3367 кэВ. 3 -сплошная кривая иллюстрирует распределение в в 3367 кэВ с разрешением 3%. Число событий от 2β2v распада в области 0v2β распада равно  $1.8*10^{-7}$  на один 2β2v распад

гистрации. Улучшение отношения сигнала к фону при ассиметричной области для регистрации 2v2β распада иллюстрируется в таблицах 4 и 5 для энергетического разрешения детектора 3% и 5% соответственно.

#### Заключение

Анализируются источники внутреннего фона сцинтилляционного детектора на основе Nd-содержащего жидкого органического сцинтиллятора (Nd-ЖC), предназначенного для измерения безнейтриного двойного бета распада <sup>150</sup>Nd. Такими источниками фона являются распады внутри детектора <sup>208</sup>Tl (продукт <sup>232</sup>Th) и <sup>214</sup>Bi (продукт <sup>238</sup>U), а также распады двухнейтринной моды <sup>150</sup>Nd (2v2 $\beta$ ) попадающие в область(0v2 $\beta$ ).

Показано, что:

1) Распад <sup>208</sup>Tl (продукт <sup>232</sup>Th) создает энерговыделение, попадающее в область  $0v2\beta$  распада <sup>150</sup>Nd с вероятностью  $5.2*10^{-3}$  при разрешении детектора 3% при объеме детектора ~10 л. При увеличении объема детектора это значение увеличивается вплоть до 5 раз. Для распада <sup>214</sup>Bi (продукт <sup>238</sup>U) это значение меньше и составляет  $2.1*10^{-5}$ и также увеличивается при увеличении объема детектора ~ 40 раз.

2) Примесь U и Th в образцах неодима естественного состава чистотой 99,9% и 99,99% была измерена в низкофоновой установке полупроводниковым детектором. Даже для Nd высокой чистоты активность Th ( $^{208}$ Tl) равная 0.1 Бк/кг ( $7.0*10^{-8}$  гTh/г) оказалась сравнительно высокой. На предварительном этапе с использованием 300 г обогащенного Nd для достижения предела для  $0v2\beta$  распада на уровне  $10^{22}$  лет примесь Th должна быть снижена до концентрации  $1.4*10^{-10}$  (при фоне 10%). Примесь Th в обогащенном Nd в настоящее время не известна. Поэтому, если она окажется на уровне, измеренном нами для Nd естественного состава, то концентрация Th должна быть снижена в 500 раз.

3) Принципиально не устранимым источником фона является вклад событий от двухнейтринной моды (2v2 $\beta$ ) распада <sup>150</sup>Nd в область безнейтринного двойного бета распада с учетом конечного энергетического разрешения детектора. Показано, что скорость подобных событий даже при разрешении 5% составляет ~0,1 /год, что также пренебрежимо мало.

Работа поддержана грантом РНФ № 16-12-10322

#### Литература

- 1. Сторм Э., Исраэль Х. Сечения взаимодействия гамма-излучения. Справочник. Перев. с англ. М.: Атомиздат, 1973. 256 с.
- 2. Richard B., et all. Table of Isotopes. Version 1.0. March, 1996.
- Зацепин Г.Т., Ковальчук Е.Л., Кузьминов В.В., Поманский А.А. Подземная низкофоновая камера // Краткие сообщения по физике. Сб. ФИАН. 1975, N6, М. С. 20–23.
- 4. Гаврилюк Ю.М., Гангапшев А.М., Гежаев А.М., Казалов В.В., Клименко А.А., Кузьминов В.В., Панасенко С.И., Раткевич С.С., Смольников А.А., Эфендиев К.В., Якименко С.П. Содержание радиоактивных изотопов в конструкционных материалах по данным подземного низкофонового полупроводникового спектрометра (глубина – 660 м в.э.)». Препринт ИЯИ РАН 1236/2009, М., 2009
- 5. Doi M., Kotani T., et al. Progress of Theoretical Physics. Vol.66, N 5. p. 1739–1788, 1981
- 6. Щепкин М.Г. «Двойной бета-распад и масса нейтрино». УФН. 1984. Т. 143, вып. 4, стр. 513–551,
- 7. 7) ДжелеповБ. С., Зырянова Л. Н., Суслов Ю. П.—Бета-спектры. Функции для анализа бета-спектров и электронного захвата, Л.: Наука, 1972
- 8. 8) arXiv:1606.08494v2 [hep-ex] 120kt 2016

Для заметок







