ЯДРА

СЕЧЕНИЕ ПОДБАРЬЕРНОГО ДЕЛЕНИЯ ²³⁶U

© 2008 г. А. А. Алексеев¹⁾, А. А. Бергман¹⁾, А. И. Берлев¹⁾, Э. А. Коптелов¹⁾, Б. Ф. Самылин, А. М. Труфанов, Б. И. Фурсов, В. С. Шорин^{*}

Физико-энергетический институт, Обнинск, Россия Поступила в редакцию 17.09.2007 г.; после доработки 20.11.2007 г.

На нейтронном спектрометре по времени замедления в свинце СВЗ-100 ИЯИ РАН измерено сечение деления 236 U в области энергии нейтронов $E_n = 0.001-20$ кэВ. Определены величины резонансного интеграла для резонансов при энергиях 5.45 эВ и 1.28 кэВ и оценены их делительные ширины. Подтверждена известная промежуточная структура в сечении подбарьерного деления 236 U(n, f). Измерено сечение деления 238 U(n, f) и оценен порог чувствительности СВЗ-100 к малым величинам сечения деления.

PACS: 25.85.Ec

ВВЕДЕНИЕ

Интерес к изучению сечения реакции (n, f) в области энергии нейтронов ниже порога деления связан с поиском гросс-структуры делительных ширин для нейтронных резонансов. Эти структуры нашли свое объяснение в модели двугорбого барьера [1, 2], в которой деление является многоступенчатым процессом и происходит через *β*вибрационные состояния сильно деформированного ядра во второй потенциальной яме. Из-за остаточного взаимодействия с другими степенями свободы вибрационное состояние приобретает демпинговую ширину распада по состояниям более сложной природы — промежуточным уровням класса II. Последние связаны с компаундуровнями (класс I), возбуждаемыми при поглощении нейтрона в первой потенциальной яме, соответствующей равновесной форме ядра.

Сила связи уровней $\langle \lambda_{\rm II} | H_c | \lambda_{\rm I} \rangle$ определяется потенциалом взаимодействия H_c и зависит от величины потенциального барьера V_A , отделяющего уровни $|\lambda_{\rm II}\rangle$ класса II от фазового пространства уровней $|\lambda_{\rm I}\rangle$ класса I. В случае глубокой ямы демпинговая ширина вибрационного резонанса большая, и промежуточные структуры определяются состояниями класса II. Такая картина наблюдается в сечении деления $\sigma(E_n)$ для ядер ²³⁴U, ²³⁸U и ²⁴⁰Pu в области энергий нейтронов $E_n =$ = 0.1-20 кэВ. Характерный период структур составляет $D_{\rm II} = 0.7-3$ кэВ или $D_{\rm II} = (50-200) D_{\rm I}$, где $D_{\rm I}$ — расстояние между уровнями компаундядра. Анализ структур в рамках R-матричной теории [2] позволяет получить информацию о средней величине матричного элемента $|\langle \lambda_{\rm II}| H_c |\lambda_{\rm I} \rangle|$, ширине распада ($\Gamma_{\rm II}, \Gamma_{\rm II(f)}$) и параметрах барьера.

Сечение деления ²³⁶U в резонансной области энергий нейтронов ранее измерялось методом времени пролета в работах [3-6], между результатами которых существует резкое расхождение. В одних работах промежуточная структура наблюдалась [3, 5], в других – нет [4, 6]. Рекомендованная оценка сечения деления ENDF/B7 (2006 г.) [7] опирается на данные работы [4], подтвержденные в работе [6]. Для разрешения имеющихся противоречий был проведен независимый эксперимент на нейтронном спектрометре по времени замедления в свинце (СВЗ). Первый спектрометр СВЗ был предложен и создан в ФИАНе [8]; его теория, основные результаты проведенных экспериментов и перспективы исследований на CBЗ рассмотрены в работах [9, 10].

СВЗ второго поколения с энергетическим разрешением $\Delta E/E \cong 0.3$ успешно использовались при измерении сечений реакций (n, γ) и (n, f) для нуклидов, которые трудно или невозможно исследовать другими методами. Их высокая светосила (спектрометр RINS [11]) позволила надежно выделить промежуточные резонансы в сечении подбарьерного деления на мишенях с массой несколько микрограмм, зарегистрировать *p*-вибрационный резонанс при энергии 5 кэВ для ²³²Th и измерить сверхмалые величины сечений на уровне меньше 1 мкбн [12], что пока недоступно времяпролетным спектрометрам.

¹⁾Институт ядерных исследований РАН, Москва.

^{*}E-mail: shorin@ippe.ru

Рис. 1. Усредненное по функции Гаусса с параметром $\Delta E/E = 0.353$ сечение деления ²³⁶U(*n*, *f*). Кривые: со светлыми треугольниками — оценка ENDF/B7 [7]; с темными треугольниками, сплошная и с темными кружками — данные работ [3, 5, 6] соответственно, штрихпунктирная — вклад реакции ²³⁵U(*n*, *f*) в экспериментальные данные [3].

Имеющиеся данные (взяты из библиотеки EXFOR [13]) по сечению подбарьерного деления 236 U(n, f) приведены на рис. 1. Для сравнения с результатами измерений на CB3-100 они усреднены по функции Гаусса с параметром разброса $\Delta E/E = 0.35$. Если поправить данные эксперимента [3] на фоновую примесь реакции 235 U(n, f), что не было сделано ранее, то проявляется резкое расхождение между данными работ группы из Лос-Аламоса [3, 5] и работ [4, 6]. В работах Лос-Аламоса события деления, в других работах с помощью сцинтилляционных детекторов регистрировались нейтроны деления [4] и γ -лучи деления [6].

Наиболее сильное расхождение имеется для резонанса 5.45 эВ. В работе [5] измеренная величина Γ_f (1.3 ± 0.1 мкэВ) оказалась в ~200 раз меньше, чем в работе [4], причем для других резонансов деление не наблюдалось вплоть до энергии 1 кэВ. Данные работы [4] обнаруживают слабые флуктуации ширин Γ_f и их явную корреляцию с радиационными ширинами Γ_{γ} , что указывает на чувствительность детектора делений к γ -лучам захвата ($\Gamma_{\gamma} \gg \Gamma_{f}$). Недостаточная дискриминация γ -лучей захвата может быть причиной высокого значения сечения деления, полученного в работе Мурадяна [6].

1. МЕТОД ИЗМЕРЕНИЯ

Эксперимент проводился на спектрометре CB3-100 ИЯИ РАН [14], установленном на протонном пучке ММФ. Энергия протонного пучка — 209 МэВ, длительность импульса тока — 1 мкс, частота — 50 Гц, ток в импульсе — 8—10 мА. Для генерации нейтронов использовалась мишень из свинца с воздушным охлаждением.

Спектрометр третьего поколения CB3-100 собран в виде удлиненной призмы из блоков свинца высокой чистоты (99.996%) общей массой 100 т. Длина сборки — 3.3 м, ширина — 1.62 м, высота — 1.79 м. Сборка размещена на стальной раме на высоте 66 см от бетонного пола. Измерения проводились в рабочем канале диаметром 65 мм, ось которого расположена на расстоянии 120 см от центра генерации нейтронов.

События деления регистрировались быстрой ионизационной камерой деления с делящимися слоями ²³⁶U, ²³⁵U, ²³⁸U и ²³⁹Pu. Подобные камеры деления ранее применялись в экспериментах по измерению сечений деления на быстрых нейтронах [15].

Исследуемый слой 236 U (масса урана m = 1.30 мг, состав U_3O_8) имел высокую чистоту: 236 U – (99.845 ± 0.005)%, 235 U – (0.047 ± ± 0.002)%, 238 U – (0.107 ± 0.002)%, 234 U – 0.001% (такие же мишени использовались в работе [6], в работе [4] примесь 235 U составляла 0.3%). Слои с 235 U (m = 1.07 мг) и 239 Pu (m = 0.55 мг, состав PuO₂) использовались как мониторы потока нейтронов. Слой 238 U – (238 U – 99.999%, 234 U – 3 × 10⁻⁴%, 235 U – 3 × 10⁻⁴%, 236 U – 3 × 10⁻⁴%, m = 1.60 мг, состав U₃O₈) использовался для определения порога чувствительности CB3-100 к малым величинам сечения деления.

Камера деления состоит из двух секций, каждая из которых является плоской цилиндрической камерой деления с общим катодом, на обеих сторонах которого размещены слои делящегося вещества. Секции экранированы заземленным электродом. Катод находится при потенциале -500 В относительно земли. Токовые сигналы (длительностью 20-25 нс) снимаются с двух других электродов (анодов), находящихся при нулевом потенциале. Радиусы катода и анода одинаковы и равны 40 мм. зазор между электродами 1.5 мм, диаметр делящегося слоя - 18 мм. Камера заполняется смесью газов Ar + 10% CO₂ под давлением 1.5 атм. Сигнал с анода камеры деления отрицательной полярности поступает на вход зарядочувствительного предусилителя (Canberra model 2003BT), усиливается и формируется (модуль Polon 1501, постоянная времени формирования 20 нс). Сформированный аналоговый сигнал по кабелю РК-50 (длиной около 100 м) поступает на вход системы регистрации событий деления для амплитудного и временного анализа. Модули электроники сбора данных выполнены в стандарте КАМАК и управляются в среде LINUX.

В основу системы анализа и регистрации сигналов положен принцип оцифровки формы импульсов с определением как временных, так и амплитудных значений. Каналы оцифровки сигналов с детекторов построены по одинаковой схеме, в которую входит управляемый усилитель с полосовым фильтром и аналого-цифровой преобразователь (ADC) с интервалом измерения 10 нс. Цифровой код, соответствующий каждому измерению ADC, поступает на программируемую логическую схему (FPGA), где в цифровом виде происходит определение момента поступления сигнала с детектора (точность 10 нс) и гистограммирование в установленном интервале времени (непосредственно в модуле сбора данных). Считывание и запись данных для передачи их с целью окончательной обработки и представления результатов производятся по окончании прямого набора.

Временной спектр регистрируемых детектором событий деления N(t) связан (в первом приближении) с измеряемым сечением деления $\sigma(E)$ соотношением

$$N(t) = Cw(t) \left\langle \sqrt{E}\sigma(E) \right\rangle_{\bar{E}(t)}, \qquad (1)$$

где C — постоянная, учитывающая толщину образца (достаточно тонкого, чтобы пренебречь эффектами блокировки); w(t) — плотность нейтронов на поверхности образца для времени замедления t; $\langle \rangle$ — знак усреднения по энергетическому разрешению спектрометра вблизи средней энергии спектра нейтронов $\bar{E}(t) = K(t)/(t+\tau)^2$, $\tau = 0.3$ мкс. Обычно функция K(t) считается постоянной, для разных спектрометров ее значения лежат в диапазоне 160—183 кэВ мкс² и зависят от размеров CB3, примесей в свинце, первичного спектра нейтронов и наличия полостей.

2. ЭКСПЕРИМЕНТ

2.1. Измерение характеристик СВЗ-100

Энергетическая градуировка CB3, т.е. определение функции K(t), связывающей энергию нейтронов с временем замедления, проводилась по известным нейтронным резонансам в сечениях деления 235 U и 239 Pu (22 калибровочные точки). Сечения для этих ядер известны с высокой точностью (0.5-2%) и относятся к классу стандартов, относительно которых измеряются сечения нейтронных реакций на других ядрах. Оказалось, что полученные величины K(t) зависят от времени как $K(t) = 165 - 15.2 \exp(-t/27.7)$ кэВ мкс². Точность калибровки -2 кэВ мкс². Такая зависимость подтверждается результатами моделирования CB3, которые также указывают на уменьшение функции K(t) со временем при t < 30 мкс.

В процедуре калибровки использовались усредненные по функции Гаусса величины $\langle \sigma \nu \rangle =$ $= \langle \sqrt{E}\sigma(E) \rangle$ для ядер ²³⁵U и ²³⁹Pu в области энергии нейтронов $E_n > 0.1$ эВ из библиотеки ENDF/B7 (рис. 2). В процедуре усреднения величин $\langle \sigma \nu \rangle$ разрешение изменялось с энергией как $\Delta E/E = (a^2 + bE + c/E)^{1/2}$, где $E \equiv \bar{E}(t)$ [12]. Для идеального спектрометра величина разрешения имеет вид [9]

$$\Delta E/E = \left[a_0^2 + (kT/E)\right]^{1/2},$$

Рис. 2. Приведенный экспериментальный спектр $R(E) = N(E)/\langle \sigma \nu \rangle$ (точки \circ), плотность нейтронов $w_n(E)$ (сплошная кривая) и сечение деления $\langle \sigma \nu \rangle^{235}$ U(n, f), усредненное по функции разрешения спектрометра (штрихпунктирная кривая), в функции энергии нейтронов.

где $a_0 = 0.274$; kT = 0.0253 эВ — тепловая энергия замедлителя, т.е. параметр с учитывает эффекты термализации нейтронов. В области t < 10 мкс разрешение ухудшается из-за влияния первичного спектра нейтронов, конечной ширины импульса протонов и ширины канала временного анализатора. В первом приближении этот вклад в дисперсию линейно зависит от энергии. Сравнивая экспериментальные спектры N(E) с усредненными библиотечными данными ($\sigma \nu$) с помощью соотношения (1) и варьируя параметры a, b, c,можно получить оптимальные параметры функции разрешения СВЗ и плотность нейтронов в измерительном канале $w_n(t)$. Оптимальные значения параметров оказались равными: $a = 0.30, b = 3 \times$ $\times 10^{-5}$ эВ⁻¹, c = 0.025 эВ. Наилучшее разрешение, которое составляет 31%, спектрометр имеет в области энергии 40-120 эВ.

Добиться идеального описания (в статистическом смысле) резонансной структуры в экспериментальных спектрах CB3 — достаточно трудная задача [10]. Величины $R = N(E)/\langle \sigma \nu \rangle$, рассчитанные для оптимальных параметров функции разрешения, имеют флуктуации нестатистического характера. Поскольку функция $w_n(E)$ должна быть плавной функцией энергии [8–10], она находилась сглаживанием полученных величин R с помощью полинома 4-го порядка в координатах $\{\lg(w_n), \lg(E)\}$. Функция $w_n(E)$ и величины R(E) для ²³⁵U в области энергий 10^{-4} -20 кэВ показаны на рис. 2.

Для оценки порога чувствительности CB3-100 к малым величинам сечения было измерено сечение деления 238 U(n, f), которое сравнивалось с данными, полученными на спектрометре RINS [11] с камерой деления, содержащей m = 0.80 г урана. В настоящей работе использовался слой 238 U, масса которого в 500 раз меньше. Наибольшая величина сечения соответствует резонансу класса II при энергии 0.72 кэВ и равна 1.45 мбн.

События деления регистрировались в двух временных окнах: первое (основное) имело ширину 2 мс при "цене" канала 0.5 мкс, второе (фоновое) имело ширину 2–18 мс с "ценой" канала 4 мкс. Временные спектры регистрируемых событий деления ²³⁸U(n, f) и ²³⁵U(n, f) в основном окне показаны на рис. 3. Полное время набора спектра ~11 ч. В спектре для ²³⁸U существенную долю составляют сигналы от ²³⁵U(n, f), в области $t \ge 17$ мкс эта примесь доминирует. Теоретическая оценка вклада ²³⁵U(n, f) равна 4.5×10^{-6} , наблюдаемый вклад составляет 2.5×10^{-4} . Причина

Рис. 3. Временные спектры регистрируемых событий деления 238 U(n, f) (темные квадраты, соединенные точечной линией), 235 U(n, f) (кривая из темных кружков) и суммарных событий (точки \circ) в основном временном окне.

расхождения — попадание части электронных сигналов из 235 U-канала в 238 U-канал. Зарегистрированного числа полезных событий оказалось достаточным, чтобы увидеть резонансную структуру в сечении деления 238 U(n, f) вблизи 1 кэВ.

Сечение деления 238 U(n, f) определялось относительно сечения деления 235 U по формуле

$$\sigma_x (E) = (N_x/N_5)_{E=E(t)} (n_5/n_x) (\varepsilon_5/\varepsilon_x) \sigma_5 (E),$$
(2)

где *x* – индекс измеряемого нуклида; *N_x* – счет камеры со слоем x для времени замедления t (энергии нейтронов E); n_x – число ядер в слое x; $\varepsilon_x - э \phi$ фективность регистрации осколков деления в камере со слоем $x; \sigma_5(E)$ — усредненное сечение деления 235 U (оценка ENDF/B7) по функции разрешения спектрометра ($\Delta E/E = 0.424$). Эффективность регистрации событий деления в обеих камерах деления была одинаковой с 5%-ной точностью. Результаты измерения сечения деления 238 U(n, f)приведены на рис. 4. Полученная величина усредненного сечения в максимуме резонанса при $E_n =$ = 0.72 кэВ равна 1.78 ± 0.24 мбн (в работе [11] -1.446 мбн при статистической ошибке 0.012 мбн и систематической ошибке 5-10%). Для наблюдения резонансной структуры в области энергии 20.4 эВ

ЯДЕРНАЯ ФИЗИКА том 71 № 8 2008

(~0.4 мбн) и 11.1 кэВ (~0.106 мбн по данным [11]) уже не хватает статистической точности. Достигнутый порог чувствительности СВЗ-100 при данных параметрах пучка ускорителя (за время облучения 11 ч) близок к полученной на спектрометре RINS величине $m\sigma_f \cong 1$ мг мбн [11, 12].

2.2. Результаты измерения сечения деления ${}^{236}U(n, f)$

Временные спектры регистрируемых событий 236 U(n, f) и 235 U(n, f) показаны на рис. 5. Полное время набора спектра ~ 17.5 ч. В 236 U-спектре существенную долю составляют сигналы от реакции 235 U(*n*, *f*), в области $t \ge 250$ мкс эта примесь доминирует. Одновременно измерялся спектр для ²³⁵U, была определена его доля в ²³⁶U-спектре, которая оказалась равной $\alpha = 0.00082 \pm 0.00001$. Если эффективность регистрации событий деления в камерах с 236 U и 235 U одинакова, то величина α должна быть 0.00057 ± 0.00003 , с учетом изотопного состава и толщины слоев. Различие в оценках величины α связано с прохождением электронных сигналов из ²³⁵U-канала в ²³⁶U-канал. Для слоя 238 U этот эффект составляет 0.00024 ± 0.00001 , что может объяснить расхождение в оценках.

Рис. 4. Сечение деления 238 U(n, f). Точки — настоящая работа; сплошная кривая — усредненные данные ENDF/B7.

Рис. 5. Временные спектры событий деления для мишени ²³⁶U: полный спектр (точки \circ), вклад реакции ²³⁶U(n, f) (темные треугольники, соединенные точечными линиями) и вклад реакции ²³⁵U(n, f) (сплошная кривая).

Рис. 6. Сечение деления 236 U(*n*, *f*) в области энергии нейтронов ниже 100 эВ. Точки о — настоящая работа. Кривые: с темными точками и сплошная — результаты усреднения данных по резонансным интегралам [5] и оценка ENDF/B7 (уменьшена в 200 раз) соответственно.

В спектре событий деления 236 U(n, f) (после вычитания фона) хорошо проявляется резонансная структура в области 5.45 эВ и в области 1—10 кэВ. В пиках статистическая точность измерений составляет 13 и 5% соответственно. В остальных областях энергии нейтронов возможные эффекты меньше ошибок измерений.

Сечение деления ²³⁶U(n, f) определялось относительно сечения деления ²³⁵U по формуле (2). Коэффициенты усиления и пороги дискриминации в спектрометрических каналах для камер со слоями ²³⁵U и ²³⁶U подбирались так, чтобы амплитудные спектры осколков деления были практически одинаковыми. Поэтому эффективности регистрации осколков равны (с точностью 3%). Ошибка измеренного сечения определяется статистической ошибкой величины N_6 и ошибкой нормировки (6%). Результаты измерения сечения деления ²³⁶U(n, f) приведены на рис. 6 и 7. Там же показаны усредненные (по функции разрешения CB3) сечения из библиотеки ENDF/B7 и средние сечения, рассчитанные на основе данных по резонансным интегралам [5].

Наши данные в области $E_n < 100$ эВ (рис. 6) резко расходятся с данными [4] и согласуются с

ЯДЕРНАЯ ФИЗИКА том 71 № 8 2008

выводами работы [5], в которой обнаружен только один резонанс при энергии 5.45 эВ с очень малой величиной Γ_f , но сильной резонансной структуры в области 40 эВ не наблюдалось. В табл. 1 приведены величины резонансного интеграла $A_f =$ $= (\pi/2) \sigma_0 \Gamma_f$, где $\sigma_0 = 4\pi \lambda_0^2 g \Gamma_n / \Gamma$, и вычисленные ширины Γ_f , которые несколько меньше, чем в работе [5]. При расчете величины σ_0 использовались резонансные параметры из оценки ENDF/B7: $\Gamma_n = 2.24$ мэВ, $\Gamma_{\gamma} = 24.5$ мэВ, т.е. такие же, как и в работе [4].

Похожая ситуация обнаруживается и в области энергий выше 100 эВ (рис. 7). Данные работы [4] резко расходятся с оценкой ENDF/B7. Наблюда-

Таблица 1. Параметры резонанса при энергии 5.45 эВ

Эксперимент	Резонансные параметры		
	Γ_f , мкэ ${ m B}$	A_f , мбн э ${ m B}$	$\sigma_0,$ бн
Teobald <i>et al</i> . [4]	290 ± 7	18 200	39870
Parker <i>et al</i> . [5]	1.3 ± 0.1	82 ± 8	40 300
ИЯИ + ФЭИ	1.05 ± 0.1	66 ± 6	39870

Рис. 7. Сечение деления 236 U(n, f) в области энергии нейтронов выше 100 эВ. Точки о — настоящая работа. Кривые: с темными точками и сплошная — результаты усреднения данных по резонансным интегралам [5] и оценка ENDF/B7 (уменьшена в 20 раз) соответственно. На вставке — распределение величин Γ_f для резонанса 1282 эВ [5].

ются только триплет при энергии 1282 эВ ($A_f = 5.8$ бн эВ) и резонансы при энергиях 2959 ($A_f = 1.1$ бн эВ), 6300 ($A_f = 5.7$ бн эВ) и 10400 эВ ($A_f = 1.5$ бн эВ). Все эти резонансы отнесены в работе [5] к состояниям класса II. Разрешение CB3-100 позволяет видеть лишь резонансы при $E_n = 1.28$ и 2.96 кэВ. Определена величина A_f для первого резонанса – 4.9 ± 0.6 бн эВ, т.е. ниже данных работы [5] на 14%. Если вычислить величину σ_0 на основе резонансых параметров ENDF/B7: $\Gamma_n^0 = 0.00197(23)$ эВ^{1/2}, $\overline{\Gamma}_{\gamma} = 0.01983(44)$ эВ, $\Gamma_n = 70.5(82)$ мэВ, то получим среднее значение делительной ширины $\Gamma_f = 2.0 \pm 0.32$ мэВ. Это в 4 раза

Таблица 2. Параметры состояний класса II, возбуждаемых в подбарьерном делении 236 U(n, f)

	$\Gamma_{\mathrm{II}(c)},$ эВ	$\langle H_c \rangle^2$, э B^2	$\Gamma_{\mathrm{II}(f)}$, мэ B
$V_{A,B}$	10.8	31.6	35.9
$V_{A,B}^+$	4.9	14.3	10.7
$V_{A,B}^-$	23.4	68.5	120
[5]	5	12	9.5

Примечание. $V_{A,B}^{+,-} = V_{A,B} \pm 0.1 \text{ МэВ.}$

меньше, чем в работе [5], что связано с разными базовыми оценками величин Γ_n . Отметим, что данный резонанс впервые наблюдался в "бомбовом" эксперименте [3], его резонансный интеграл равен $A_f \approx 2$ бн эВ.

3. АНАЛИЗ РЕЗУЛЬТАТОВ И ОБСУЖДЕНИЕ

Полученные результаты позволяют уточнить теоретические оценки, сделанные в работе [5], используя ряд новых данных по реакции 236 U(n, f). На рис. 8 показано сечение деления 236 U(n, f) для быстрых нейтронов: экспериментальные данные, оценка ENDF/B7 и результаты теоретического анализа [17] в рамках статистической теории деления.

Особенностью анализа было описание в рамках одного подхода шансовой структуры сечений эмиссионного деления нейтронами всей цепочки ядер от ²³³U до ²³⁸U. При этом для описания плотности уровней возбужденных ядер использовались реалистические спектры одночастичных состояний в сверхтекучей модели ядра. Нейтронный канал описывался с помощью несферической оптической модели. В результате анализа были получены параметры барьера деления — высота V_{A,B} горбов A

Рис. 8. Сечение деления 236 U(n, f) для быстрых нейтронов. Точки: \blacktriangle , \circ – экспериментальные данные [15] и [16] соответственно. Кривые: сплошная – результат теоретического анализа [17]; точечная – оценка ENDF/B7 [7].

и *B*; для ²³⁶U эти величины равны: $V_A = 5.7 \text{ МэB}$, $V_B = 5.9 \text{ МэB}$. Для сравнения, в работе [5] использовались оценки [2] $V_A = 6.1 \text{ МэB}$, $V_B = 5.9 \text{ МэB}$.

Зная параметры V_A и кривизну $\hbar \omega_A$ барьера A, можно вычислить силовую функцию смешивания состояний класса II:

$$2\pi \left(\Gamma_{\mathrm{II}(c)} / D_{\mathrm{II}} \right) = N_{\mathrm{eff}} T_A =$$
$$= N_{\mathrm{eff}} \left[1 + \exp\left(2\pi \Delta V_A / \hbar \omega_A \right) \right]^{-1},$$

где $\Gamma_{II(c)}$ — ширина смешивания; T_A — проницаемость барьера A; N_{eff} — эффективное число каналов деления; $\Delta V_A = V_A - B_n$, B_n — энергия связи нейтрона в компаунд-ядре (5.126 МэВ). Величина $\Gamma_{II(c)}$ непосредственно определяется матричным элементом связи:

$$\Gamma_{\mathrm{II}(c)} = \Gamma_{\mathrm{II}} - \Gamma_{\mathrm{II}(f)} = 2\pi \left[\langle \lambda_{\mathrm{I}} | H_c | \lambda_{\mathrm{II}} \rangle^2 / D_{\mathrm{I}} \right].$$

Проницаемость T_B барьера B определяет делительную силовую функцию состояний класса II:

$$2\pi \left(\Gamma_{\mathrm{II}(f)} / D_{\mathrm{II}} \right) = T_B = \left[1 + \exp \left(2\pi \Delta V_B / \hbar \omega_B \right) \right]^{-1}.$$

В табл. 2 приведены новые оценки параметров $\Gamma_{II(c)}$, $\langle H_c \rangle^2$ и $\Gamma_{II(f)}$ с учетом неопределенности величин $V_{A,B}$ (0.1 МэВ).

ЯДЕРНАЯ ФИЗИКА том 71 № 8 2008

Результаты работы [5], полученные из анализа фрагментации резонанса класса II при энергии 1280 эВ, согласуются с нашими оценками в случае варианта $V_A = 5.8$ МэВ, $V_B = 6.0$ МэВ ($\hbar\omega_A =$ = 0.8 МэВ, $\hbar\omega_B = 0.52$ МэВ, $D_{\rm II} = 2.6$ кэВ, $D_{\rm I} =$ = 18.4 эВ). Обращает на себя внимание высокая чувствительность характеристик состояний класса II к параметрам барьера. В то же время возникают трудности анализа при нахождении средних значений параметров состояний класса II, поскольку число таких состояний, наблюдаемых в эксперименте, не велико, а $\Gamma_{\rm II}(f)$, $\langle H_c \rangle^2$ и $D_{\rm II}$ являются случайными, сильно флуктуирующими величинами.

В заключение отметим, что настоящая работа не только позволила получить новые данные по нейтронному сечению подбарьерного деления 236 U на основе другой методики эксперимента, но и понять причину имеющихся расхождений в его поведении. Прямой метод детектирования событий деления посредством регистрации осколков деления, использованный в настоящей работе и работах [3, 5], а не метод с регистрацией сопутствующих нейтронов или γ -лучей, как в работах [4, 6], позволил измерить малые сечения деления для 236 U и обнаружить промежуточную структуру в сечении.

Рекомендованные данные по реакции 236 U(n, f) в резонансной области энергий (из библиотеки ENDF/B7) являются явно неудовлетворительными и должны быть пересмотрены.

Авторы выражают благодарность В.А. Матвееву и Л.В. Кравчуку за поддержку данной работы, а также коллективам ОУК и ОЭК ИЯИ РАН за обеспечение работы ускорителя и проводки пучка с заданными параметрами.

СПИСОК ЛИТЕРАТУРЫ

- 1. О. Бор, Б. Моттельсон, *Структура атомного ядра* (Мир, Москва, 1977), т. 2, гл. 6.
- 2. S. Bjørnholm and J. E. Lynn, Rev. Mod. Phys. **52**, 725 (1980).
- 3. J. W. Cramer and D.W. Bergen, Report No. LA-4420, Los Alamos Scientific Laboratory (1970), p. 74.
- J. P. Teobald, J. A. Wartena, H.Weigmann, and F. Poortmans, Nucl. Phys. A 181, 639 (1972).
- W. E. Parker, J. E. Lynn, G. L. Morgan, *et al.*, Phys. Rev. C 49, 672 (1994).
- G. V. Muradyan, M. A. Voskanyan, L. P. Yastrebova, et al., Preprint No. E3-98-212, JINR (Dubna, 1999), p. 287.
- M. B. Chadwick, P. Oblozinsky, M. Herman, et al., Nuclear Data Sheets 107, 2931 (2006); http://www.nndc.bnl.gov

- А. А. Бергман, А. И. Исаков, И. Д. Мурин и др., в сб.: Материалы Международной конференции по мирному использованию атомной энергии, Женева, 8–20 августа, 1955 (Изд-во АН СССР, Москва, 1968), т. 4, с. 135.
- А. И. Исаков, М. В. Казарновский, Ю. А. Медведев, Е. В. Метелкин, Нестационарное замедление нейтронов. Основные закономерности и некоторые приложения (Наука, Москва, 1984).
- 10. Ю. П. Попов, ЭЧАЯ **26**, 1503 (1995).
- 11. R. E. Slovacek, D. S. Cramer, E. B. Bean, *et al.*, Nucl. Sci. Eng. **62**, 455 (1977).
- 12. Y. Nakagome, R. C. Block, R. E. Slovacek, and E. B. Bean, Phys. Rev. C 43, 1824 (1991).
- 13. Experimental Nuclear Reaction Data (EXFOR/CSISRS) (IAEA–NDS, Vienna, 2007), http://www.nndc.bnl.gov
- A. A. Alekseev, A. A. Bergman, O. N. Goncharenko, et al., in Proceedings of the XII International Seminar on Interaction of Neutrons with Nuclei (ISINN-12), Dubna, May 26-29, 2004 (Dubna, 2004), p. 237.
- 15. Б. И. Фурсов, М. П. Клемышев, Б. Ф. Самылин и др., Атом. энергия **59**, 284 (1985).
- 16. J. W. Behrens and G. W. Carlson, Nucl. Sci. Eng. **62**, 250 (1977).
- Г. А. Кудяев, Ю. Б. Остапенко, В. В. Пашкевич и др., ЯФ 56 (1), 51 (1993).

²³⁶U SUBTHRESHOLD FISSION CROSS SECTION

A. A. Alekseev, A. A. Bergman, A. I. Berlev, E. A. Koptelov, B. F. Samylin, A. M. Trufanov, B. I. Fursov, V. S. Shorin

 236 U (n, f) cross section has been measured from 1 eV to 20 keV with the INR RAS lead slowing down spectrometer (LSDS-100). The resonance fission areas of 5.45-eV and 1.28-keV resonances are obtained and their fission widths are evaluated. 238 U(n, f) cross section has been also measured and LSDS-100 threshold sensitivity to small cross section values is evaluated. The well-known intermediate structure in the neutron-induced fission cross section of 236 U has been confirmed.