

Search for a Heavy Neutrino and Right-Handed W of The Left-Right Symmetric Model in pp Collisions at 7 TeV

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, <u>D. Tlisov</u>,
B. Dahmes, P.Dudero, J.Mans, J. Pastika and A. Gude



#### **Analisys Status**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude







Alexander Dermenev Sergei Gninenko Mikhail Kirsanov Anton Korneev Nikolai Krasnikov Alexandre Toropin Danila Tlisov

#### **UMN (Minneapolis)**



Jeremiah Mans Bryan Dahmes Phil Dudero J. Pastika A. Gude

22.04.2011

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### Outline

#### ○ Introduction

- 1 Left-right symmetric models
- 2 Heavy neutrino production and decay
- 3 Data and Monte Carlo Samples
- 4 Reconstruction of physical objects
- 5 Event Selection
- 6 Background Estimation
- 7 Cut Optimization
- 8 Systematic Errors
- 9 Results
- Conclusion



## LR Symmetry: What and Why

|                                                         | Standard Model                                                                                                                                                                                                 | Left-Right-Symmetric E                                                                      | xtension                        |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|--|
| Gauge<br>group                                          | SU(2) <sub>L</sub> X U(1) <sub>Y</sub>                                                                                                                                                                         | SU(2) <sub>L</sub> X SU(2) <sub>R</sub> X U                                                 | J(1) <sub>B-L</sub>             |  |
| Fermions                                                | LH doublets: $Q_L = (u^i, d^{i})_L$ ; $L_L = (l^i, v^i)_L$<br>RH singlets: $Q_R = u^i_R$ , $d^i_R$ ; $L_R = l^i_R$                                                                                             | LH doublets: $Q_L = (u^i, d^i)_{L_i} L_L = (l^i, v^i)_L$                                    |                                 |  |
|                                                         |                                                                                                                                                                                                                | RH doublets: $Q_R = (u^i, d^i)_R L_R$                                                       | $= (l^{i}, \mathbf{N}^{i})_{R}$ |  |
| Neutrino                                                | $v_{R}^{i}$ do not exist                                                                                                                                                                                       | $N^{i}_{R}$ are heavy partners to the                                                       | $e v_{L}^{i}$                   |  |
| S                                                       | $v_{L}^{i}$ are massless & pure chiral                                                                                                                                                                         | $N^{i}_{R}$ Majorana in the Minimal                                                         | LRSM                            |  |
| Gauge                                                   | $W^{\pm}_{L}$ , $Z^{o}$ , $\gamma$                                                                                                                                                                             | W <sup>±</sup> <sub>L</sub> , <b>W<sup>±</sup><sub>R</sub></b> Z <sup>0</sup> , <b>Z</b> ′, | γ                               |  |
| BETA RAYS<br>COBALT<br>NUCLEI<br>BETA RAYS<br>ELECTRONS | Parity Violation, SM imposes by E<br>LRSM explains by symmetry by<br>intermediate mass scaleNeutrino Oscillations $\Rightarrow$ Mass, SI<br>LRSM deploys a "see-saw med<br>$\nu_{heavy}\nu_{light} \sim   < B$ | fiat<br>preaking at an<br>M forbids<br>chanism"<br>$H >  ^2$                                |                                 |  |

5

22.04.2011

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Signature and Channels**



- > Looks like SM W-boson production with an additional decay
- > No L-R mixing means N  $\rightarrow$  off-shell W<sub>R</sub>+ l
- Cross sections depend on M(W<sub>R</sub>) and M(N), LO values above
- > Final signature is 2 leptons + 2 jets, l = e (INR) or  $\mu$  (UMN)

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Data Samples**

| Dataset                          | CMSSW version | Run range     | $\mathcal{L}_{int}$ |
|----------------------------------|---------------|---------------|---------------------|
| EG/Run2010A-Dec22ReReco_v1       | 3_9_7 < <     | 136035-144114 | 3.18                |
| Electron/Run2010B-Dec22ReReco_v1 | 3_9_7         | 145762-149294 | 32.96               |
| Mu/Run2010A-Dec22ReReco_v1       | 3_9_7         | 136035-144114 | 3.18                |
| Mu/Run2010B-Dec22ReReco_v1       | 3_9_7         | 145762-149294 | 32.96               |
| EG/Run2010A-Nov4ReReco_v1        | 3_8_6         | 136035-144114 | 3.06                |
| Photon/Run2010B-Nov4ReReco_v1    | 3_8_6         | 146428-149294 | 32.78               |
| 2,0x10 <sup>6</sup>              |               |               |                     |





22.04.2011

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## **BG MC Samples**

Table 2: MC samples: the process, the dataset name, the number of generated events, cross section and associated error, cross section order and provenance (NLO or NNLO, taken from https://twiki.cern.ch/twiki/bin/viewauth/CMS/StandardModelCrossSections, exept for  $t\bar{t}$ , taken from [30], and tW, taken from https://twiki.cern.ch/twiki/bin/viewauth/CMS/ProductionFall2010). The Z+jets and W+jets samples are generated in separate files for 0 - 5 jets in several  $p_T$  bins, NNLO k-factor 1.29 is used. All samples were reconstructed with CMSSW version 3\_8\_X series.

| Process             | Dataset                                   | N events | σ, pb  | <i>δσ</i> , pb | Order/Provenance                  |
|---------------------|-------------------------------------------|----------|--------|----------------|-----------------------------------|
| $t\bar{t} \to X$    | TTJets_TuneZ2_7TeV-madgraph-tauola        | 1164732  | 167    | $\pm 24$       | Measured/TOP-10-005_v5            |
| $Z \to X$           | Z*Jets_ptZ-*to*_TuneZ2_7TeV-alpgen-tauola | 2500000  | 3160   | ± 137          | NNLO/SM Xsec twiki (recalculated) |
| $W \to X$           | W*Jets_ptW-*to*_TuneZ2_7TeV-alpgen-tauola | 7200000  | 25330  | -              | LO/Production Twiki               |
| $W \to X$           | WJets_7TeV-madgraph-tauola                | 10218854 | 31314  | $\pm$ 1558     | NLO/SM Xsec twiki                 |
| $WW \to X$          | WWtoAnything_TuneZ2_7TeV-pythia6-tauola   | 2061760  | 43     | ± 1.5          | NLO/SM Xsec twiki                 |
| $WZ \to X$          | WZtoAnything_TuneZ2_7TeV-pythia6-tauola   | 2194752  | 18.2   | $\pm 0.7$      | NLO/SM Xsec twiki                 |
| $ZZ \rightarrow X$  | ZZtoAnything_TuneZ2_7TeV-pythia6-tauola   | 2113368  | 5.9    | $\pm 0.15$     | NLO/SM Xsec twiki                 |
| $t \to W + b \to X$ | TW_dr_7TeV-mcatn lo                       | 871720   | 0.1835 | -              | NLO/SM Xsec twiki                 |

Table 3: Special MC samples: the dataset name, the version of CMSSW software used for the reconstruction, the number of generated events, and cross section. The cross-section for the  $t\bar{t}$  sample is derived from the measured CMS cross-section [30], multiplied twice by the branching fraction for  $W \rightarrow \mu\nu$ .

| Process                                       | Dataset                               | N events | <i>σ</i> , pb         | <i>δσ,</i> pb | Order/Provenance       |
|-----------------------------------------------|---------------------------------------|----------|-----------------------|---------------|------------------------|
| $t\overline{t} \rightarrow \mu\mu + jets + X$ | PYTHIA6_Tauola_TTbar_mumu_TuneZ2_7TeV | 193317   | $167 * 0.11^2 = 2.02$ | $\pm 24$      | Measured/TOP-10-005_v5 |



## **MC Signal Samples**

- ~100 mass points studied (up to M(W<sub>R</sub>)=1.6TeV)
- > 10k events per point
- Only one neutrino flavor assumed reachable
- » PYTHIA LO s's plotted
- M(W<sub>R</sub>) dependent kfactor ~1.30 used (slow dependence)





### **Electron** Reco/Selection

- PAT Framework used;
- "HEEP v3.0" electrons;
- Isolation cuts at the preliminary selection
   3 times looser than standard HEEP;
- >  $p_t > 20$  GeV;
- Default "Swiss cross" S4/S1 spike rejection applied.

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Muon Reco/Selection**

- PAT muons with VBTF loose;
- Tracker isolation < 10 GeV;</p>
- >  $\Delta R(\mu, \text{ selected jets}) > 0.3;$
- >  $p_t > 20 \text{ GeV};$

11



#### **Jet Reco/Selection**

|                                                | Electron<br>Channel            | Muon<br>Channel                | Standard?           |
|------------------------------------------------|--------------------------------|--------------------------------|---------------------|
| Jet Collection                                 | akCaloJet5                     | akCaloJet5                     | PAT default         |
| Jet ID req'mnt                                 | LOOSE PURE09                   | LOOSE PURE09                   | Yes                 |
| Jet Energy<br>Corrections                      | MC: L2L3<br>Data: L2L3Residual | MC: L2L3<br>Data: L2L3Residual | <u>Yes</u>          |
|                                                | Кіпен                          | n a ti c s                     |                     |
| Final p <sub>t</sub><br>threshold <sup>1</sup> | > 40 GeV                       | > 40GeV                        | N/A                 |
| <i>η</i>   acceptance                          | < 2.5                          | < 2.5                          | In tracker coverage |
|                                                | Special Co                     | nsiderations                   |                     |
| Lepton<br>Overlap                              | Reject the jet                 | Reject the muon                | N/A                 |

<sup>1</sup>Looser jet thresholds used only for QCD background / efficiency studies

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



### **Event Selection**

#### **Preliminary Selection:**

At least 1 lepton and 1 jet

#### **Primary Selection:**

- At least 2 leptons
- At least 2 jets  $p_t > 40$  GeV (two hardest used)
- Vertex of 2 leptons and 2 jets within 0.03 cm

#### **Final Selection:**

- > One muon with VBTF Tight, trigger matched in  $|\eta| < 2.1$
- **One electron in the barrel**
- One lepton  $p_t > 60 \text{ GeV}$
- **"LOOSE PURE 09" Jet ID applied**

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Primary Selection Efficiency**

 Defines the shape of the lower part of the sensitivity region
 Triangles – muons
 Squares - electrons



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## Backgrounds

- Expected from the SM processes with 2 or more leptons
- Some contribution from the QCD processes with fake leptons
- Most important backgrounds: <u>tt production</u>, <u>Z+jets</u> <u>Renormalized from data, only shape from MC partly</u> <u>used (due to small statistics in data)</u>
- ➢ QCD from data
- Other, small (sum < 10%) backgrounds: W+jets, ZZ, ZW, WW, tW from MC

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov,<br/>B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude15



#### **TTbar BG**

#### Checks of the tt BG with $e-\mu$ signature:

- **Require:** 
  - > 1 HEEP electron, 1 isolated muon, both with  $p_t > 20$  GeV

16

- > At least 2 jets with  $p_t > 20$  GeV, > Vertex  $\Delta z(e_1, e_2, j_1, j_2) < 0.03$  cm
- "jetProbabilityBJetTag" middle threshold 0.459
- Electron dataset, no additional events from muon dataset
- Good agreement for this process, which is our most important BG, so no need to renormalize
- > We use the statistical error of possible normalization

#### Compare with S.Choi, J.Goh, M.S.Kim et al., AN-2010-380: > Good agreement in spite of different ID



## TTbar BG, e-µ channel



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov,<br/>B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude17



#### TTbar BG, e-µ channel



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **TTbar BG**

Sufficient MC statistics to fit exponential slope.



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude 19



## **Z+jets BG and Data**

#### Normalize MC Alpgen binned samples to data:

- Apply 4-object selection, subsequently assume leptons in narrow window around the Z-peak are pure;
- Weight MC sample via χ<sup>2</sup> minimization to peak in data
- Use the new MC normalization to estimate Z+Jets BG



## Z+jets BG, *Electron* Channel



B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



### Z+jets BG, Muon Channel

#### **Requirements:**

2 muons, at least 1 tight muons,  $p_t > 20$  GeV; 2 PAT jets,  $p_t > 40$  GeV,  $|\eta| < 2.5$ .



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Z+jets BG**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



**Z+jets BG** 

#### **Exponential fit**

#### ee channel

#### μμ channel



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

24



#### **Isolation cut check**

# 2 Electrons from the Z peak Electrons with a jet within 0.5 < R < 0.8</li>



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## QCD BG, *Electron* Channel

#### <u>1<sup>st</sup> Step:</u>

- Fake rates determined using events with isolated cluster jet back-to-back (  $\Delta \phi > 2.7$  ),  $p_t^{miss} < 20$  GeV, any number of jets;
- >  $p_t \sim 20 40$  GeV: linear interpolation from 0.004 and 0.012;
- >  $p_t > 40$  GeV compatible with flat: 0.0075 barrel, 0.033 endcap 1 and 0.04 in endcap 2.



B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## QCD BG, *Electron* Channel

#### <u>**2**nd</u> **Step:**

- Produce QCD BG sample
- > Take events with at least 2 isolated superclusters
- Calculate probability as a product of the two fake rates, use it as a weight
- > Use this sample in the analysis, adding it to other samples



## QCD BG, *Electron* Channel

#### <u>**3**rd</u> **Step:**

- Closure test
- > Using fake rate and ccj events predict number of ecj;
- Require < 2 electrons and  $p_t^{miss}$  < 20 GeV;
- Take 2\*σ as uncertainty of the method: 18%

Fake rate barrel

Fake rate endcap 1

Fake rate endcap 2

22.04.2011



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

28



## QCD BG, *Electron* Channel

#### **Comparison with data:**

- BG, selection *ee* same sign (reduces other SM background)
- >  $p_t > 20$  GeV,
- Requirement of one in the barrel removed;
- >  $M_{ll} > 120 \text{ GeV}$
- MC: dominated by QCD, other SM < 0.5. Within uncertainty</li>





## **Cuts Optimization**

• Optimization of significance function:

• At least one electron in barrel for electron channel to suppress QCD;

- M<sub>II</sub> > 200 GeV common for all mass points significantly reduce Z+jets;
- M<sub>w</sub> cut selected individually for each W<sub>R</sub> mass, but common for neutrino masses reduce all BG.



#### **Cuts Optimization**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 31 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Cuts Optimization**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

32



#### **Cuts Optimization**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## **Optimization of M<sub>w</sub> cut**

| $M_{W_R}$ hypothesis | $M_{eejj} >$ | $M_{\mu\mu jj} >$ |
|----------------------|--------------|-------------------|
| 700                  | 520          | 560               |
| 800                  | 560          | 640               |
| 900                  | 600          | 720               |
| 1000                 | 750          | 760               |
| 1100                 | 800          | 800               |
| 1200                 | 840          | 840               |
| 1300                 | 950          | 920               |
| 1400                 | 1010         | 1000              |
| 1500                 | 1070         | 1000              |
| 1600                 | 1110         | 1000              |

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



### Signal Efficiency for *Electron* Channel

| Table 8: Ex | pected num | ber of recon | structed W <sub>R</sub> | $\rightarrow eN_e \rightarrow ee$ | ij events (and | l associated e    | fficiencies) in | 36 pb <sup>-1</sup> for e | $ach(W_R, N_e)$ | mass point. |
|-------------|------------|--------------|-------------------------|-----------------------------------|----------------|-------------------|-----------------|---------------------------|-----------------|-------------|
| $M(W_R) =$  | 0.7 TeV    | 0.8 TeV      | 0.9 TeV                 | 1.0 TeV                           | 1.1 TeV        | 1.2 TeV           | 1.3 TeV         | 1.4 TeV                   | 1.5 TeV         | 1.6 TeV     |
| M(N)        |            |              |                         | $\langle \rangle$                 |                |                   |                 |                           |                 |             |
| (GeV)       |            |              |                         |                                   |                |                   |                 |                           |                 |             |
| 100         | 12 (6.5%)  | 5.5 (5.6%)   | 2.6 (4.5%)              | 1.4 (4.0%)                        | 0.69 (3.0%)    | 0.27 (1.9%)       | 0.21 (2.0%)     | 0.11 (2.1%)               | 0.06 (1.2%)     | 0.03 (0.9%) |
| 200         | 34 (21%)   | 20 (21%)     | 12 (22%)                | 6.9 (21%)                         | 4.2 (21%)      | <b>2</b> .6 (19%) | 1.5 (18%)       | 0.92 (15%)                | 0.51 (14%)      | 0.32 (13%)  |
| 300         | 37 (28%)   | 25 (31%)     | 15 (32%)                | 9.9 (32%)                         | 6.5 (34%) /    | 4.2 (34%)         | 2.6 (32%)       | 1.6 (30%)                 | 1.05 (30%)      | 0.64 (27%)  |
| 400         | 29 (30%)   | 23 (35%)     | 16 (37%)                | 10 (38%)                          | 7.1 (41%)      | 4.7 (42%)         | 3.0 (41%)       | 2.0 (40%)                 | 1.26 (39%)      | 0.85 (38%)  |
| 500         | 16 (27%)   | 17 (36%)     | 13 (40%)                | 9.1 (41%)                         | 6.8 (45%)      | 4.7 (46%)         | /3.1 (46%)      | 2.1 (46%)                 | 1.41 (46%)      | 0.92 (45%)  |
| 600         | 3.6 (19%)  | 8.4 (33%)    | 8.8 (40%)               | 7.1 (42%)                         | 5.7 (46%)      | 4.2 (48%)         | 2.9 (48%)       | 2.0 (49%)                 | 1.36 (49%)      | 0.94 (49%)  |
| 700         | _          | 2.0 (24%)    | 4.5 (37%)               | 4.6 (40%)                         | 4.3 (47%)      | 3.4 (50%) /       | 2.5 (51%)       | 1.8 (52%)                 | 1.29 (52%)      | 0.93 (53%)  |
| 800         | _          | <u> </u>     | 1.1 (28%)               | 1.9 (38%)                         | 2.8 (45%)      | 2.6 (50%)         | 2.0 (50%)       | 1.5 (53%)                 | 1.13 (53%)      | 0.82 (54%)  |
| 900         | _          | _            | _                       | 0.59 (30%)                        | 1.3 (41%)      | 1.6 (47%)         | 1.5 (50%)       | 1.2 (52%)                 | 0.95 (55%)      | 0.71 (55%)  |
| 1000        | —          | —            | -                       | _                                 | 0.28 (32%)     | 0.8 (43%)         | 0.91 (48%)      | 0.94 (52%)                | 0.73 (53%)      | 0.58 (55%)  |
| 1100        | -          | _            | -                       | _                                 | -              | 0.19 (35%)        | 0.42 (45%)      | 0.47 (50%)                | 0.51 (53%)      | 0.45 (55%)  |
| 1200        | —          | —            | -                       | -                                 | -              | -                 | 0.13 (38%)      | 0.30 (46%)                | 0.31 (50%)      | 0.31 (53%)  |
| 1300        | _          | _            | _                       | _                                 | _              | - (               | - \             | 0.09 (39%)                | 0.15 (48%)      | 0.19 (52%)  |
| 1400        | _          | _            | -                       | _                                 | -              | - ( (             | _               | $\langle - / \rangle$     | 0.04 (41%)      | 0.09 (49%)  |
| 1500        | -          | _            | -                       | _                                 | -              | -                 | - /             |                           | _               | 0.02 (43%)  |
|             |            |              |                         |                                   |                |                   |                 |                           |                 | ()          |

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



### Signal Efficiency for Muon Channel

| Table 9: Exp | pected num | ber of recons | tructed W <sub>R</sub> | $\rightarrow \mu N_{\mu} \rightarrow \mu p$ | <i>ujj</i> events (ar | nd associated      | efficiencies) ii | n 36 pb <sup>-1</sup> for e | each $(W_R, N_\mu)$ | mass point.  |
|--------------|------------|---------------|------------------------|---------------------------------------------|-----------------------|--------------------|------------------|-----------------------------|---------------------|--------------|
| $M(W_R) =$   | 0.7 TeV    | 0.8 TeV       | 0.9 TeV                | 1.0 TeV                                     | 1.1 TeV               | 1.2 TeV            | 1.3 TeV          | 1.4 TeV                     | 1.5 TeV             | 1.6 TeV      |
| M(N)         |            |               |                        |                                             | -                     |                    |                  |                             |                     |              |
| (GeV)        |            |               |                        |                                             |                       |                    |                  |                             |                     |              |
| 100          | 17 (9.3%)  | 7.8 (7.7%)    | 3.9 (6.6%)             | 2.2 (6.2%)                                  | 1.1 (5.2%)            | 0.63 (4.5%)        | 0.30 (3.4%)      | 0.16 (2.8%)                 | 0.11 (2.8%)         | 0.057 (2.2%) |
| 200          | 44 (28%)   | 27 (29%)      | 16 (28%)               | 9.1 (27%)                                   | 5.3 (26%)             | 3.3 (25%)          | 1.9 (22%)        | 1.1 (19%)                   | 0.63 (17%)          | 0.40 (16%)   |
| 300          | 49 (36%)   | 31 (39%)      | 20 (40%)               | 12 (41%)                                    | 8.0 (42%)             | 5.0 (40%)          | 3.1 (38%)        | 2.0 (37%)                   | 1.3 (36%)           | 0.80 (34%)   |
| 400          | 36 (38%)   | 28 (43%)      | 19 (46%)               | 13 (48%)                                    | 8.5 (49%)             | 5.6 (49%)          | 3.6 (48%)        | 2.4 (48%)                   | 1.5 (47%)           | 1.0 (46%)    |
| 500          | 20 (35%)   | 20 (44%)      | 16 (48%)               | 11 (51%)                                    | 8.2 (54%)             | 5.6 (56%)          | 3.7 (54%)        | 2.4 (54%)                   | 1.7 (54%)           | 1.1 (55%)    |
| 600          | 4.7 (25%)  | 9.9 (39%)     | 11 (47%)               | 9.0 (53%)                                   | 7.0 (57%)             | 5.0 (58%)          | 3.5 (59%)        | 2.3 (59%)                   | 1.6 (59%)           | 1.1 (59%)    |
| 700          | _          | 2.4 (29%)     | 5.2 (43%)              | 5.8 (51%)-                                  | 5.2 (56%)             | 4.1 (60%)          | 3.0 (61%)        | 2.2 (62%)                   | 1.5 (63%)           | 1.1 (63%)    |
| 800          | -          | _             | 1.3 (33%)              | 2.9 (48%)                                   | 3.3 (55%)             | 3.1 (60%)          | 2.4 (61%)        | 1.8 (63%)                   | 1.4 (64%)           | 0.99 (64%)   |
| 900          | -          | _             | _                      | 0.75 (38%)                                  | 1.6 (51%)             | 1.9 (57%)          | 1.7 (61%)        | 1.4 (63%)                   | 1.1 (65%)           | 0.86 (66%)   |
| 1000         | -          | -             | -                      | _                                           | 0.41 (41%)            | 0.95 (54%)         | 1.1 (59%)        | 1.0 (62%)                   | 0.89 (65%)          | 0.70 (67%)   |
| 1100         | -          | _             | _                      | _                                           | / /                   | 0.25 (46%)         | 0.53 (55%)       | 0.63 (59%)                  | 0.63 (64%)          | 0.55 (67%)   |
| 1200         | -          | -             | -                      | - (                                         |                       | -                  | 0.14 (47%)       | 0.30 (56%)                  | 0.39 (63%)          | 0.39 (67%)   |
| 1300         | _          | _             | _                      | _ \                                         |                       | //- /              | _                | 0.082 (49%)                 | 0.18 (59%)          | 0.23 (65%)   |
| 1400         | -          | -             | _                      | -                                           | < \                   | 1 - 1              | -                | _                           | 0.052 (53%)         | 0.11 (61%)   |
| 1500         | -          | -             | _                      | -                                           | -                     | $\vee - \setminus$ | - /              | _                           | -                   | 0.031 (54%)  |

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## Events Flow for *Electron* Channel

|          | Data     | Signal | Tot.Bg | tī      | Z+jets  | QCD   | W+jets   | VV      | tW     |
|----------|----------|--------|--------|---------|---------|-------|----------|---------|--------|
| E0 (Raw) | 68340422 | 10000  |        | 1164732 | 2859343 | n/a   | 10218854 | 6369880 | 871720 |
| E0       | 68340422 | 22.05  | n/a    | 5964    | 141218  | n/a   | 1131844  | 2422    | 6.5    |
| E1       | 219      | 12.04  | 235    | 20.71   | 197     | 13.58 | 1.00     | 2.99    | 0.76   |
| E2       | 192      | 11.48  | 212    | 19.12   | 174     | 13.58 | 0.66     | 2.71    | 0.72   |
| E3       | 117      | 11.39  | 121    | 10.32   | 105     | 3.51  | 0.66     | 1.74    | 0.49   |
| E4       | 105      | 11.25  | 111    | 10.18   | 96.6    | 1.44  | 0.66     | 1.62    | 0.48   |
| E5       | 2        | 9.97   | 3.31   | 1.45    | 0.80    | 0.46  | 0.11     | 0.04    | 0.09   |
| E6       | 2        | 9.96   | 1.56   | 0.72    | 0.47    | 0.28  | -        | 0.03    | 0.06   |
| E6 (Raw) | 2        | 4505   |        | 142     | 1005    | 1686  | 0        | 97      | 7830   |

Key:

| Designator | Meaning                                                                     |
|------------|-----------------------------------------------------------------------------|
| E0         | All available events and statistics                                         |
| E1         | Two electrons and two jets with object requirements applied                 |
| E2         | Vertex Z component of all four objects ; 0.03 cm to avoid the pileup mixing |
| E3         | Transverse momentum cut of the first electron increased $P_t > 60 GeV$      |
| E4         | At least one electron must be in a barrel                                   |
| E5         | $M_{ee} > 200 \text{ GeV}$                                                  |
| E6         | $M_{eejj} > 520 \mathrm{GeV}$                                               |



## Events Flow for *Muon* Channel

|          | Data | Signal | Tot.Bg      | $t\overline{t}$ | Z+jets  | QCD  | W+jets  | VV      | tW     |
|----------|------|--------|-------------|-----------------|---------|------|---------|---------|--------|
| M0 (Raw) |      | 10000  |             | 1165716         | 2859343 |      | 5021554 | 6369880 | 494961 |
| M0       |      | 22.4   |             | 6036            | 131165  |      | 952579  | 2425    | 381    |
| M1       | 329  | 13.8   | $303\pm54$  | 26              | 271     | 1.11 | 0.14    | 3.8     | 0.68   |
| M2       | 326  | 13.7   | $301\pm54$  | 26              | 269     | 1.08 | 0.14    | 3.8     | 0.67   |
| M3       | 182  | 13.7   | $180\pm32$  | 14              | 163     | 0.33 | 0.12    | 2.4     | 0.41   |
| M4       | 3    | 12.1   | $3.4\pm0.6$ | 1.96            | 1.31    | 0.03 | 0.022   | 0.062   | 0.06   |
| M5       | 1    | 12.1   | $1.9\pm0.3$ | 1.03            | 0.85    | _    | 0.022   | 0.037   | 0.03   |
| M5 (Raw) | 1    | 5397   |             | 198             | 1230    | 0    | 2       | 137     | 37     |

#### Key:

| Designator | Meaning                                                             |
|------------|---------------------------------------------------------------------|
| M0         | All available events and statistics                                 |
| M1         | Two muons and two jets with object requirements applied             |
| M2         | Vertex Z component of all four objects < 0.03 cm to suppress pileup |
| M3         | One muon with $p_{\rm T} > 60  {\rm GeV}/c$                         |
| M4         | $M_{\mu\mu} > 200 \text{ GeV}$                                      |
| M5         | $M_{\mu\mu jj} > 520 \text{ GeV}$                                   |



#### **Events Flow for Final Cuts**

#### **Electron** channel

| $M_{W_R}({ m GeV})$ | M <sub>eejj</sub> cut (GeV) | Data | Signal       | Tot.Bg        | tī   | Z+jets | Other |
|---------------------|-----------------------------|------|--------------|---------------|------|--------|-------|
| 700                 | 520                         | 2    | 16.29 (3014) | $1.35\pm0.36$ | 0.69 | 0.43   | 0.23  |
| 800                 | 560                         | 0    | 16.45 (3806) | $1.17\pm0.31$ | 0.55 | 0.41   | 0.21  |
| 900                 | 600                         | 0    | 13.01 (4221) | $1.01\pm0.26$ | 0.45 | 0.37   | 0.19  |
| 1000                | 750                         | 0    | 9.05 (4334)  | $0.49\pm0.13$ | 0.17 | 0.20   | 0.12  |
| 1100                | 800                         | 0    | 6.42 (4516)  | $0.36\pm0.09$ | 0.10 | 0.15   | 0.11  |
| 1200                | 840                         | 0    | 4.44 (4605)  | $0.24\pm0.07$ | 0.08 | 0.13   | 0.03  |
| 1300                | 950                         | 0    | 2.92 (4603)  | $0.12\pm0.03$ | 0.02 | 0.08   | 0.02  |
| 1400                | 1010                        | 0    | 1.96 (4583)  | $0.07\pm0.03$ | 0.01 | 0.06   | 0.00  |
| 1500                | 1070                        | 0    | 1.32 (4583)  | $0.06\pm0.02$ | 0.01 | 0.05   | 0.00  |
| 1600                | 1110                        | 0    | 0.87 (4466)  | $0.05\pm0.02$ | 0.01 | 0.04   | 0.00  |



#### **Events Flow for Final Cuts**

#### Muon channel

| $M_{W_R}(\text{GeV})$ | $M_{\mu\mu jj}$ cut (GeV) | Data | Signal | Tot.Bg        | tt   | Z+jets | Other |
|-----------------------|---------------------------|------|--------|---------------|------|--------|-------|
| 700                   | 560                       | 1    | 20     | $1.45\pm0.26$ | 0.77 | 0.61   | 0.07  |
| 800                   | 640                       | 1    | 20     | $1.00\pm0.18$ | 0.52 | 0.45   | 0.04  |
| 900                   | 720                       | 0    | 16     | $0.70\pm0.13$ | 0.35 | 0.33   | 0.02  |
| 1000                  | 760                       | 0    | 11     | $0.58\pm0.10$ | 0.28 | 0.28   | 0.02  |
| 1100                  | 800                       | 0    | 8.2    | $0.49\pm0.09$ | 0.23 | 0.24   | 0.02  |
| 1200                  | 840                       | 0    | 5.6    | $0.41\pm0.07$ | 0.19 | 0.21   | 0.01  |
| 1300                  | 920                       | 0    | 3.7    | $0.28\pm0.05$ | 0.13 | 0.15   | 0.01  |
| 1400                  | 1000                      | 0    | 2.4    | $0.20\pm0.04$ | 0.08 | 0.11   | _     |
| 1500                  | 1000                      | 0    | 1.7    | $0.20\pm0.04$ | 0.08 | 0.11   | -     |
| 1600                  | 1000                      | 0    | 1.1    | $0.20\pm0.04$ | 0.08 | 0.11   | -     |

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### CMS Heavy Right Handed W-boson and Neutrino Search **Distributions for** *Electron* **Channel after M**<sub>w</sub>=520 GeV



B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## Systematic uncertainties for Electron Channel

Electron Channel

| Systematic            | Signal         |            |            |            |            |             |
|-----------------------|----------------|------------|------------|------------|------------|-------------|
| Uncertainty           | eff.           | tĒ         | Z+jets     | QCD        | Other bkgd | All bkgd    |
| Jet Energy Scale      | $\pm 2 - 10\%$ | $\pm 11\%$ | ±3%        | —          | ±12%       | $>\pm7\%$   |
| Electron Energy Scale | $\pm 1-2\%$    | $\pm4\%$   | $\pm 3\%$  | -          | ±9%        | $\pm 4\%$   |
| MC Statistics         | $\pm 1-6\%$    | $\pm 2\%$  | $\pm4\%$   | _          | ±19%       | $\pm 5\%$   |
| Electron Reco/ID/Iso  | $\pm 5\%$      | $\pm 5\%$  | $\pm 5\%$  |            | ±5%        | ±5%         |
| MC normalization      | —              | $\pm 15\%$ | $\pm 17\%$ | -          | ±7%        | ±16%        |
| ISR/FSR               | $\pm 3\%$      | $\pm 6\%$  | -          |            | ~_         | <u>+</u> 3% |
| PDF                   | $\pm4\%$       | $\pm 6\%$  | _±9%       | - + /      |            | $\pm 8\%$   |
| Fact./Ren. scale      | $\pm 0\%$      | $\pm 8\%$  | $\pm 15\%$ | _\`        | -          | $\pm 12\%$  |
| QCD estimate          | —              | -          |            | $\pm 18\%$ | -          | $\pm 11\%$  |
| Total                 | $\pm 8 - 14\%$ | ±23%       | ±26%       | ±18%       | ±26%       | $\pm 25\%$  |



## Systematic uncertainties for Muon Channel

Muon Channel

| Systematic         | Signal         |             |             |             |             |             |
|--------------------|----------------|-------------|-------------|-------------|-------------|-------------|
| Uncertainty        | eff.           | tŦ          | Z+jets      | QCD         | Other bkgd  | All bkgd    |
| Jet Energy Scale   | $\pm 0.3-10\%$ | ±11%        | ±4%         | _           | $\pm 11\%$  | $\pm 8\%$   |
| Muon Energy Scale  | ±0-2%          | ±5%         | $\pm 2\%$   | —           | $\pm4\%$    | $\pm4\%$    |
| MC Statistics      | ±1-6%          | ±2%         | $\pm 3\%$   | _           | $\pm 17\%$  | $\pm 2\%$   |
| Trigger Efficiency | $\pm 0.5\%$    | $\pm 0.5\%$ | $\pm 0.5\%$ | _           | $\pm 0.5\%$ | $\pm 0.5\%$ |
| Muon Reco/ID/Iso   | ±2%            | $\pm 2\%$   | $\pm 2\%$   | —           | $\pm 2\%$   | $\pm 2\%$   |
| MC Normalization   | _              | $\pm 15\%$  | $\pm 9\%$   | _           | $\pm 6\%$   | $\pm 8\%$   |
| ISR/FSR            | $\pm$ 3%       | $\pm 8\%$   | _           | _           | _           | $\pm4\%$    |
| PDF                | $\pm 4\%$      | $\pm 6\%$   | $\pm 9\%$   | _           | _           | $\pm7\%$    |
| Fact./Ren. scale   | $\pm 0\%$      | $\pm 9\%$   | $\pm 14\%$  | —           | _           | $\pm 11\%$  |
| QCD estimate       | —              | -           | —           | $\pm 100\%$ | —           | $\pm 0\%$   |
| Total              | ±6-13%         | $\pm 23\%$  | $\pm 20\%$  | ±100%       | ±22%        | $\pm 18\%$  |

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Limits setting**

#### O Bayesian approach

 Signal efficiency and luminosity uncertainties are nuisance parameters with Lognormal distribution

 Number of BG events uncertainties are nuisance parameters with Lognormal distribution

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### Upper Limits for *Electron* Channel



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

22.04.2011

45



#### Upper Limits for *Muon* Channel



46

22.04.2011

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



## 95% Exclusion mass region

#### *Electron* channel *Muon* channel



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov,<br/>B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude47



#### Summary

- O 36.1/pb of data analysed;
- BGs have been investigated;
- Selection cuts have been optimized;
- Systematic has been estimated;
- No candidates after all selections have been observed;
- Upper limits have been obtained;
- New mass region has been excluded.



#### Backup

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

49



## QCD BG, Muon Channel

#### <u>**1**</u><sup>st</sup> <u>Step:</u> Extract a di-jet sample from data...

- With a back-to-back jet / muon pair in each event;
- Muon must pass either VBTF loose or tight;
- > Jet must pass LOOSE PURE09 ID,  $p_t > 10$  GeV;
- To purify the sample, reject events if any of these apply:
   (Calo) MET > 20 GeV;
  - Less than 10 GeV in ECAL in the muon's vicinity;
  - > Any jet with  $p_t > 20$  GeV outside  $\mu$ -jet axis;
  - > 2<sup>nd</sup> loose quality muon found that:
    - ➢ Has relative isolation < 0.15;</p>
    - **Forms dimuon invariant mass within Z-peak or**
    - > Is found inside the selected jet with at least 75% of jet  $p_t$ .



## QCD BG, Muon Channel

#### 2<sup>nd</sup> Step: determine a fake rate

determine rate at which these muons pass the absolute track isolation criterion as a function of muon quality (loose or tight)





## QCD BG, Muon Channel

#### **3rd Step:** determine a background rate

- Duplicate the μμjj object selection, except require both μ's to be inside a jet;
- Weight the muon according to rate determined previously;
- > Generate  $M_{\mu\mu jj}$  distribution;
- M<sub>11</sub> > 200 GeV removes 99% of QCD background;
- Plot shows events before mass cut.





22.04.2011

52



## QCD BG, Muon Channel

#### **Closure Test** using three jet sample:

- Require MET < 20 GeV to reduce contribution from W+jets
- Find muon (in jet) of tight or loose quality
- Apply usual requirements on other two jets, compute N<sub>R</sub> mass
- Scale distribution by muon weight
- **Compare expectations to isolated muon + 2 jet sample**
- Loose muon: <u>1266</u> expected from 3 jet sample, <u>964</u> seen
- Tight muon: <u>4412</u> expected, <u>6442</u> seen
- Assume 100% uncertainty on QCD estimate
- Roughly double the discrepancy seen for tight muon



22.04.2011

53



#### **Cuts Optimization via Exp. Limit**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

54



## **M<sub>II</sub> Cut Optimization**



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

55



## **M**<sub>w</sub> Cut Optimization



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

56



#### **PDF uncertainties**

Table 9: Signal PDF systematic uncertainties,  $M_{lljj}$  cut 800 GeV.

| $W_R$ mass | N <sub>l</sub> mass | $\sigma$ unc. | $\sigma \times$ acceptance unc. |
|------------|---------------------|---------------|---------------------------------|
| 1200       | 500                 | 7.82%         | 8.15%                           |
| 1000       | 400                 | 7.15%         | 7.64%                           |

Table 10: Backgrounds PDF systematic uncertainties.

| BG process      | $M_{lljj}$ cut, GeV | $\sigma$ unc. | $\sigma \times$ acceptance unc. |
|-----------------|---------------------|---------------|---------------------------------|
| $t\overline{t}$ | 800                 | 7%            | 9%                              |
| Z + jets        | 800                 | 5%            | 10%                             |

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude



#### **Bayesian Approach**

$$0.95 = \int_0^{\sigma_{\text{UL}}} d\sigma \int_0^\infty dL \int_0^\infty db \int_0^1 d\epsilon \ g(\epsilon) h(L) f(b) \left( \frac{e^{-(b + L\sigma\epsilon)}(b + L\sigma\epsilon)^k}{k!} \right)$$
$$e^{-(b + L\sigma\epsilon)(b + L\sigma\epsilon)^k}$$

$$P = \frac{e^{-(c+L\sigma\epsilon)}(b+L\sigma\epsilon)^{\kappa}}{k!}$$

A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

58



## **Muon** Trigger Efficiency

- > Trigger efficiency studied within Z-peak window in data
- **Tag-and-probe** to determine rate of trigger matching for the probe muon as a function of  $p_i$ , "trigineff( $p_i$ )"
- trigineff(p) simulated for all MC samples

Trigger efficiency uncertainty systematic determined by varying the probability of failing trigger match up and down by 1-sigma.



A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude





A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude





A. Dermenev, S. Gninenko, M. Kirsanov, A. Korneev, N. Krasnikov, A. Toropin, D. Tlisov, 22.04.2011 B. Dahmes, P.Dudero, J.Mans, J. Pastika, A. Gude

61