04.04.16 HNL search in ND280 **1/24**

Search for heavy neutrinos in the ND280 near detector of the T2K experiment

Alexander Izmaylov, Sergey Suvorov

High Energy Physics Department Seminar, Troitsk

4.04.2016

04.04.16 HNL search in ND280 **2 /24**

Heavy neutral leptons

- Heavy Neutral Leptons (HNL) or heavy sterile neutrinos proposed to solve some problems of the Standard Model (SM) (i.e. vMSM <u>arXiv:050.3065</u>)
- Explain neutrino masses, baryon asymmetry, dark matter
- Different mass regions:
 - 10⁹ ÷ 10¹⁴ GeV: GUT scales, Baryon asymmetry generation
 - $10^2 \div 10^3$ GeV: can study at LHC energy scales
 - $10^{-3} \div 10^2$ GeV: masses of already known leptons and quarks This region studied in current work
 - ~ eV: neutrino oscillation anomalies

04.04.16 HNL search in ND280 3 /24

How to find HNL

- Mixing between HNL and active neutrinos leads to:
 - their production in decays of heavy mesons
 - HNL decays into SM particles

- Two ways for experimental search:
 - direct measurement of meson decays: e.g. modified kinematics w.r.t. SM decays with $m_{\vartheta}=0$
 - signal $\sim |U|^2$
 - search for decay products of HNLs originating in intense beam of "ordinary" neutrinos → T2K ND280 corresponds to this case
 - signal $\sim |U|^4$

04.04.16 HNL search in ND280 4 /24

Previous constraints

- Interested in region $100 \, MeV < M_{HNL} < 500 \, MeV$
- Best current limits:
 - <u>PS191</u> (CERN experiment, 1980-s)
 - E949 (BNL, 2015)
- Some <u>hints</u> that that T2K experiment can improve limits

04.04.16 HNL search in ND280 **5 /24**

T2K experiment

- The T2K (Tokai-to-Kamioka) accelerator long-baseline neutrino oscillation experiment
- Study (anti-)neutrino oscillations $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\mu}$,
- Neutrino and antineutrino beam from mesons' decays (π, K)

04.04.16 HNL search in ND280 6 /24

HNL in kaon decays

- Other reactions: $N \to \gamma \nu$, $N \to \nu \pi^0$, $N \to 3\nu$.
- We study products of HNL decay with ND280: Number of events $\sim |U|^4$

04.04.16 HNL search in ND280 **7 /24**

T2K near detector ND280

- Off-axis detector at 280 meters from target station
- Contains:
 - 3 Time Projection Chambers (TPC)
 - 2 Fine Grained Detectors (FGD)
 - Electromagnetic Calorimeter (ECal)
 - Side Muon Range Detector (SMRD)
 - UA1 magnet
- Optimized for tracking and PID at 1GeV

04.04.16 HNL search in ND280 **8 /24**

Analysis plan

- Look for decay in TPC filled with Ar → reduce the impact from active neutrino interactions
- Background: gas interactions and reconstruction failures
 - poor knowledge of Ar cross-section at ~1 GeV
- Optimize cuts to eliminate background
- "Zero signal strategy" assume all observed events are BG and put C.L. limits on mixing elements

04.04.16 HNL search in ND280 9 /24

HNL flux simulation

- Use flux from $K\mu 2 \ (K \to \mu \nu)$
- Reweight $K\mu 2$ flux for HNL:
 - Massive lepton kinematic
 - HNL branching ratio $\Gamma(K \to lN) = \rho(M_{HNL})\Gamma(K \to l\nu)|U|^2$

HNL decay in ND280

- Number of signal events estimated from:
 - HNL flux $\varphi(HNL/10^{21} \text{p.o.t/cm}^2)$
 - detector front area S_{det}
 - probability of HNL decay inside TPC P_{decay}^{TPC}
 - decay mode branching ratio Br_{mode}

$$N_{\text{events}} = \varphi(HNL/10^{21} \text{p.o.t/cm}^2) \cdot S_{det} \cdot P_{decay}^{TPC} \cdot Br_{mode}$$

assume HNL life time

 $\tau \gg 1\mu s$ mean free path $\Lambda = c\beta \gamma \tau \gg 280m$

From cosmology (BBN) $\tau < 0.1s$

Finally:

$$N_{\text{events}} = \varphi(HNL/10^{21} \text{p.o.t/cm}^2) \cdot S_{det} \cdot \frac{l_{TPC}}{c\beta\gamma} \cdot \Gamma_{mode}$$

04.04.16 HNL search in ND280 **11 /24**

Expected sensetivity

$$|U|^2_{limit} = \sqrt{\frac{U_{C.L.}}{N_{events}}}$$
, no BG $\rightarrow U_{C.L.} = 2.44$ (Feldman Cousins)

- PS191 limits
- Asaka et al prediction (<u>arXiv:1212.1062</u>) ("theoretical estimation")
- Full MC simulation
- Assume 10²¹ POT, no background, 100% efficiency, 90% C.L.

04.04.16 HNL search in ND280 **12 /24**

HNL Selection

- Recon two-tracks' vertex in TPC FV, good quality,
- Tracks of opposite charge
- PID: $e\pi$ or $\mu\pi$
- Invariant mass cut 250 \div 700 MeV for $\mu\pi$ and 140 \div 700 MeV for $e\pi$
- At least one track use vertex TPC
- No other activity in vertex TPC
- No activity in upstream detectors
- · Kinematics cuts: tracks opening angle, HNL candidate polar angle.

Example of signal event simulation. HNL decay in TPC1.

04.04.16 HNL search in ND280 **13 /24**

HNL Time of Flight

• T2K beam 8 bunches $\sigma \sim 19 \ ns$

• Massive HNL
$$\Rightarrow$$
 $dT=\frac{d}{c}\left(\frac{1}{\beta}-1\right)$ Time cut:
$$d\approx 280~m -100ns < T_{vertex}-T_{bunch} < 300ns$$
 limited by electronic gates

04.04.16 HNL search in ND280 **14 /24**

HNL Selection Efficiency

- Limited by detector design:
 - Low efficiency at TPC edges
 - Pion interactions
 - Small relative angle between tracks → TPC tracking limitations

04.04.16 HNL search in ND280 **15/24**

Charge conjugated modes

- T2K collects data with different horn polarity $(6.2v + 2\overline{v})10^{20}POT$)
- Assume Majorana cases of HNL, look for both $K^{\pm} \rightarrow l^{\pm}N$, $N \rightarrow l^{\mp}\pi^{\pm} \rightarrow$ increase statistic for analyse

MC background study

- Use MC to estimate BG. Checks with
 - GENIE $(2.27 \cdot 10^{21} POT)$
 - NEUT $(6.5 \cdot 10^{21} POT)$
- NEUT $10^{21} POT$ equivalent
- 1. $\mu\pi$ mode 4.6
- 2. $e\pi$ mode 3.23
- GENIE
- 1. $\mu\pi$ mode 4
- $2. e\pi$ mode 1.76
- NEUT ⊽
- 1. $\mu\pi$ mode 3.4
- 2. $e\pi$ mode 1.3

MC estimation at data statistics

For $(6.2v + 2\overline{v})10^{20}POT$

2010-1015 ND280

 $\mu\pi$ 3.34

 $e\pi$ 2.83

MC background study with NEUT

 $\mu\pi$

2. $\mu\pi + X$

3. $\mu p + (X)$

4. $\pi^-\pi^+ + X$

5. $\eta \to \pi^+ \pi^- \pi^0$ 2.6%

6. $\Lambda \rightarrow \pi^- p + X$ 2.6%

7. $K^0 S \to \pi^+ \pi^-$ 5.2%

L8. $K^0L → μπ + X$ 2.6%

9. $\delta - ray$ spoils

 μ track

• BG origin for $\mu\pi$ mode: • BG origin for $e\pi$ mode:

23% 2. $\delta - ray from \mu$

7.7% 3. μπ

2.6% 4. $\delta - ray$ spoils

 μ track

41% 1. $\pi^0 \to 2\gamma \to e^-e^+ + X$ 46%

14%

14%

26%

10.3%

04.04.16 HNL search in ND280 **18 /24**

Systematics

Predicted events in ND280:

$$N_{\text{events}} = \varphi(\text{HNL}) \cdot \frac{V_{TPC}}{c\beta\gamma} \cdot \Gamma_{decay} \cdot Eff_{det}$$

- $\phi(\text{HNL})$ HNL flux, affected by kaon flux systematics V_{TPC} fiducial volume of TPC Γ_{decay} HNL decay width for current mode
- Eff_{det} detector efficiency, affected by detector systematics

04.04.16 HNL search in ND280 **19 /24**

Flux systematics

- Largest impact from K⁺ multiplicity measurements (NA61)
 - also affects from focusing, target position etc.
- Expect uncertainties ≤30%

Detector systematics

	μπ	еπ
Variation-Like		
Distortions of magnetic field	0.17%	0.13%
TPC momentum scale	0.1%	0.1%
TPC momentum resolution	0.99%	0.74%
TPC dE/dx particle ID	0.43%	1.67%
Efficiency-like		
TPC cluster efficiency	<<1%	<<1%
TPC tracking efficiency	0.3%	3%
TPC charge ID efficiency	5.95%	6.22%
TPC-FGD matching efficiency	0.69%	0.82%
Pion secondary interactions	2.67%	2.43%
Global Vertexing	0.87%	0.79%
Total	7.48%	8.11%

04.04.16 HNL search in ND280 **21 /24**

$|U|^2$ limits with ND280

- MC efficiency, background, systematics $\rightarrow |U|^2$ limits
- $(6.2v + 2\overline{v})10^{20}POT$ statistics (2010-2015 ND280 data)
- $|U|^2$ limits estimated from observed events (Feldman Cousins):

$$U = U_n \left(1 + E \frac{\sigma^2}{2} \right) \left(1 + \left(E \frac{\sigma}{2} \right)^2 \right)$$

where k_n is CL limit for observed n events (no syst), $E = k_n - n$,

 σ - acceptance RMS

$|U|^2$ limits based on MC

 Red - previous PS191 limit, scaled to HNL Majorana nature
 Green – 90% CL ND280 estimation

 $(6.2v + 2\overline{v})10^{20}POT$ statistics (2010-2015 ND280 data)

23 /24 04.04.16 HNL search in ND280

Conclusion

- MC study of HNL production and decays in ND280
- Developed HNL selection → study efficiency and BG with MC
- Studied detector systematics
- |U|² expected limits estimated with MC
- Ready for data analysis

Able to improve previous limits in high mass region

We are here

Signal samples generation

Systematics

$|U\tau|$ limits

- $|U\tau|$ element is poor studied
- Reaction $N \to l^- l^+ v_{e,\tau}$ through NC provide study $|Ue| \sqrt{|Ue|^2 + |U\tau|^2}$, assume $|U\mu| \ll |Ue|$

Expected sensitivity to $|Ue|\sqrt{|Ue|^2 + |U\tau|^2}$

BackUP

04.04.16 HNL search in ND280 **26 /24**

Pile up

- Possible pile up sources:
 - No activity in upstream detector
 - No activity in TPC with HNL candidate vertex

- Study real data for pile up value
- Chose the maximum pile up from all runs for each TPC
 - 3.3% TPC1
 - 3.2% TPC2
 - 2.8% TPC3

04.04.16 HNL search in ND280 **27**

Invariant mass resolution

BG

HNL decay

2-body decay:

$$N \rightarrow e^- \pi^+$$

 $N \rightarrow \mu^- \pi^+$

3-body decay:

$$\begin{array}{c|c}
N & \nu_{e,\mu} & e, \mu \\
\hline
U_{e,\mu} & W^+ & e, \mu \\
\hline
V_{e,\mu} & V_{e,\mu}
\end{array}$$

$$N \to \mu^{\mp} e^{\pm} \nu_{e,\mu}$$
$$N \to l^{-} l^{+} \nu_{l}$$

$$\begin{array}{c|c}
N & v_{e,\mu,\tau} \\
\hline
U_{e,\mu,\tau} & Z^0 \\
e,\mu
\end{array}$$

NC

$$N \rightarrow l^- l^+ v_{e,\mu,\tau}$$

04.04.16 HNL search in ND280 **30**

3-body mods

Assume 10²¹ POT, no background, 100% efficiency, 90% C.L

04.04.16 HNL search in ND280 **31**

Angle cuts

PID cuts

04.04.16 HNL search in ND280 **33**

Vertex spatial reconstruction resolution

