Поиск тяжёлых нейтрино в распадах положительных каонов

А.Т. ШайхиевИЯИ РАН27 июня 2011

План

Нейтрино

- Предыдущие эксперименты
- Эксперимент Е949
- Отбор событий
- Изучение фоновых процессов
- Измерение аксептанса
- Анализ ~5% данных Е949

Заключение

27 июня 2011г.

Осцилляции нейтрино

Слабые состояния | V_I> линейные комбинации собственных массовых состояний | V_i>

$$V_l = \sum U_{li} V_i, \ l = e, \mu, \tau; \ i = 1, 2, 3$$

7.4 x 10⁻⁵ eV² < $\Delta m_{sol}^2 < 7.8 x 10^{-5} eV^2$ 0.84 < $\sin^2\theta_{sol} < 0.9$ SK, SNO, KamLAND

$$2.3 \times 10^{-3} \,\text{eV}^2 < \Delta m^2_{atm} < 2.56 \times 10^{-3} \,\text{eV}^2$$
$$0.92 < \sin^2 \theta_{atm} < 1.0$$

K2K, MINOS

See-saw механизм

$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\bar{N}_a\partial N_a - y_{\alpha a}H^{\dagger}\bar{L}_{\alpha}N_a - \frac{M_a}{2}\bar{N}_a^cN_a + h.c.$$

$$\mathcal{M}^{(n+3)} = \begin{pmatrix} 0 & y_{\alpha a} \langle H \rangle \\ y_{a \alpha} \langle H \rangle \operatorname{diag}\{M_1, ..., M_n\} \end{pmatrix}$$

$$m(\nu_{1,2,3}^{(m)}) \sim \frac{y^2 \langle H \rangle^2}{M} \qquad m(\nu_a^{(m)}) \sim M \quad (a > 3)$$

active neutrinos

sterile neutrinos

Стерильные нейтрино с массой ниже 100 ГэВ

- Темная материя
- Барионная асимметрия
- Движение пульсаров
- Осцилляции нейтрино

arXiv:0804.4542v2 [hep-ph] arXiv:0901.0011v2 [hep-ph]

СМ + 3 нейтральных правых тяжелых лептона

 $M_{_{N_1}}\in \mathrm{O}(10)$ кэВ

кандидат в темную материю

 $M_{N2,3} \in \mathcal{O}(1)$ ГэВ

барионная асимметрия

 θ_1 и θ_2 - углы смешивания с частицами СМ

Как искать тяжелые нейтрино?

Распады мезонов

Поиск дополнительного пика, лежащего ниже основного

$$\Gamma(M^+ \to l^+ \nu_h) \sim \Gamma(M^+ \to l^+ \nu_l) |U_{lh}|^2$$

Распады тяжелых нейтрино

"Ничего" → лептоны и адроны

$$N \rightarrow e^+ e^- v_{\alpha}, N \rightarrow \mu^{\pm} e^{\mp} v_{\alpha}, N \rightarrow \mu^+ \mu^- v_{\alpha}$$

 $N \rightarrow \pi^0 v, \pi e, \pi \mu, K e, K \mu \dots$

Результаты предыдущих экспериментов и космологическое ограничение

Для исследования области масс от 150 МэВ до 270 МэВ было предложено использовать данные эксперимента Е949 для поиска распада

$$K^+ \rightarrow \mu^+ \nu_H$$

Эксперимент BNL E787/E949

$$K^+ \rightarrow \pi^+ v v$$

Предсказание СМ

$$\mathcal{B}_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.85 \pm 0.07) \times 10^{-10}$$

Результат Е787/Е949

Standard

Model

PNN1

Only

E787/E949

Детектор Е949

- Пучок ~700 MeV/с входящих каонов замедляется BeO и AD
- *K*⁺ останавливаются и распадаются в сцинтилляционной мишени
- Импульс вылетающего π⁺ измеряется в UTC, энергия и глубина проникновения - в RS и мишени
- *π*⁺ останавливается и распадается в RS
 детектируется цепочка распада

 $\pi^+ \rightarrow \mu^+ \rightarrow e^+$

 Вето система фотонов: BV – BVL, RS, EC, CO, USPV, DSPV

Отбор событий

Критерии отбора pnn1, pnn2 триггеров

pnn1 триггер	pnn2 триггер
 Временная задержка на	 Временная задержка на
вылет частицы из мишени,	вылет частицы из мишени,
2 нс Остановка частицы между	2 нс Остановка частицы между
11 и 18 слоями RS Фотонное вето	6 и 12 слоями RS Фотонное вето
 Идентификация π⁺:	 Идентификация π⁺:
поиск цепочки распада	поиск цепочки распада
π ⁺ →μ ⁺ в остановленном	π ⁺ →μ ⁺ в остановленном
счетчике (L1n)	счетчике (L1n)

Эффективность pnn12 триггера

Монте-Карло моделирование $\,K^{\scriptscriptstyle +}
ightarrow \mu^{\scriptscriptstyle +}
u_{\scriptscriptstyle H}$

Моделирование не учитывает идентификацию пиона онлайн

Оптимальная для анализа область масс нейтрино: 160 МэВ – 260 МэВ

Источники фона

 Muon band: В основном К_{µ2γ}, К_{µ3} распады
 Pion band: К_{π2γ}, К_{π2} распады или пионы из пучка

Моделирование основных источников фона

Process	Trigger+cuts rej	BR	Total rejection
$K_{\mu\nu\gamma}$	$\sim 10^4$	6.2×10^{-3}	$\sim 10^7$
$K_{\mu 3}$	$\sim 10^7$	3.35×10^{-2}	$\sim 10^9$
Only $\pi\nu\nu(1+2)$ trigger			
$K_{\pi 2\gamma}$	$\sim 5 \times 10^4$	2.75×10^{-4}	$\sim 2 \times 10^9$

 $K_{\pi 2\gamma}$ не дает вклад в фон из-за наличия 3 фотонов в конечном состоянии и подавления пионов при идентификации частиц в детекторе

А.Т. Шайхиев, ИЯИ РАН

1/20 данных Е949

А.Т. Шайхиев, ИЯИ РАН

Сравнение Монте-Карло моделирования с экспериментальными данными

1/20 данных Е949 после некоторых критериев отбора

Смоделированный *К_{µvγ}+К_{µ2}* распад после некоторых критериев отбора

Измерение аксептанса Триггер **Offline cuts** Kin cuts – MC Остановка частицы между 6 и 18 Beam слоями RS – MC Target L1n Data **Photon veto Refined Range** Data **Others** Photon veto

Acceptance vs Momentum

$$K^+ \to \mu^+ \nu_H$$

Наибольший вклад в потерю аксептанса вносит L1n – онлайн идентификация пиона. Это условие убрать <u>нельзя</u>.

Проверка измерений аксептанса

Для проверки измерений аксептанса используем два хорошо известных распада:

 $K^{\scriptscriptstyle +}
ightarrow \mu^{\scriptscriptstyle +} {
m
u}_{\mu}$ высокий импульс

 $K^+
ightarrow \mu^+ v_\mu \gamma$ низкий импульс

$$BR(K^{+} \to \mu^{+} \nu_{\mu}, K^{+} \to \mu^{+} \nu_{\mu} \gamma) = \frac{N_{candidates}}{(KBlive)_{pnn12} \times A_{tot} \times Correction}$$

 $Correction = \varepsilon_{T \bullet 2} \times f_s$, $f_s - эффективность остановки каонов в мишени$

 $\mathcal{E}_{T ullet 2}$ - эффективность запуска триггера

BR(Km2) calculation

 $BR(K_{\mu 2}) = \frac{1}{\varepsilon_{T \bullet 2} \times f_s \times (KBlive)_{1/20} \times A_{K_{\mu 2}, trig}^{UMC} \times A_{K_{\mu 2}, kin}^{UMC} \times A_{L1n} \times A_{\overline{19}_{ct}} \times A_{L0rr1} \times A_{offline_cuts}}$ $A_{offline_cuts} = A_{PRRF} \times A_{OPSVETO} \times A_{UTCQUAL} \times A_{beam\&tg} \times A_{tgkin} \times A_{PV} \times A_{box}$ $A_{K_{u2},trig}^{UMC} = 0.4551 \pm 0.0016$ $A_{L0RR1} = 0.0023 \pm 0.0002$ $A_{K_{u2},kin}^{UMC} = 0.6165 \pm 0.0027$ $A_{\overline{19}} = 0.0914 \pm 0.0005$ $BR(K_{\mu 2}) = 0.5649 \pm 0.0543$ $A_{PV} = 0.7189 \pm 0.0012$ $A_{PRRF} = 0.6570 \pm 0.0030$ $A_{tgkin} = 0.9799 \pm 0.0003$ $A_{L1n} = 0.0206 \pm 0.0006$ $BR^{PDG}(K_{u2}) = 0.6355 \pm 0.0011$ $(KBlive)_{1/20} = 9.1 \times 10^{10}$ $A_{beam\&tg} = 0.4195 \pm 0.0016$ $A_{box} = 0.3255 \pm 0.0082$ $f_{\rm s} = 0.7558 \pm 0.0075$ $A_{UTCQUAL} = 0.9503 \pm 0.0007$ $\varepsilon_{T\bullet2} = 0.9505 \pm 0.0012$ $A_{OPSVETO} = 0.9742 \pm 0.0006$ $N_{K_{u2}} = 2625 \pm 51$

BR(Km2g) calculation

	pnn1 trigger	pnn2 trigger
$A_{trigger}^{UMC}$	0.2676 ± 0.0006	0.0544 ± 0.0003
$A_{RefinedRange}$	0.5189 ± 0.0251	0.9852 ± 0.0066
A_{L1n}	0.0392 ± 0.0016	0.0413 ± 0.0021
$A_{beam\⌖}$	0.4195 ± 0.0003	0.4195 ± 0.0003
A_{tgkin}	0.9799 ± 0.0012	0.9799 ± 0.0012
A_{kin}	0.9053 ± 0.0016	0.9107 ± 0.0020
$A_{UTCQUAL}$	0.9503 ± 0.0007	0.9503 ± 0.0007
$A_{OPSVETO}$	0.9742 ± 0.0006	0.9742 ± 0.0006
A_{RNGMOM}	0.9739 ± 0.0012	0.9739 ± 0.0012
A_{PRRF}	0.9520 ± 0.0007	0.9520 ± 0.0007
A_{box}	0.5460 ± 0.0035	0.8972 ± 0.0034
A_{PV}	0.0077 ± 0.0003	0.0049 ± 0.0004
A_{f_s}	0.7558 ± 0.0075	0.7558 ± 0.0075
$A_{\epsilon_{T\bullet 2}}$	0.9505 ± 0.0012	0.9505 ± 0.0012
$(KB_{live})1/20$	9.1×10^{10}	9.1×10^{10}
$N_{K\mu\nu\gamma}$	710 ± 27	414 ± 21
$\mathcal{B}(K_{\mu\nu\gamma})$	$(1.5 \pm 0.1) \times 10^{-3}$	$(2.0 \pm 0.2) \times 10^{-3}$

Для диапазона импульса мюона от 155 до 205 МэВ/с

PDG BR(Km2g)

PDG value for p<231.5: $BR^{PDG} = (6.2 \pm 0.8) \times 10^{-3}$

Use MC simulation of the Km2g decay to measure ratio

Extract signal

Fit histogram by Exp+Gauss (red line), green line – background (Km2g), blue line – signal

Upper limit from ~5% data

PRELIMINARY

This analysis

M (M₃B) Previous experiments

Заключение

- Разработана методика поиска тяжелых нейтрино в распаде K⁺ → µ⁺V_H, используя данные эксперимента E949
- Проанализированы ~5% всех данных
- Получено ограничение на |U_{µH}|² на уровне ~10⁻⁸ для масс тяжелого нейтрино от 200 до 280 МэВ, что лучше чувствительности предыдущих экспериментов
- Окончательный результат на основе всех данных ожидается осенью 2011

Спасибо за внимание!

PRELIMINARY

