

Физический институт им. П.Н. Лебедева РАН

НОВЫЕ МЕТОДЫ ИЗМЕРЕНИЯ КОМПЛЕКСНЫХ ФАЗ В РАСПАДАХ ТЯЖЕЛЫХ АДРОНОВ В НЕЙТРАЛЬНЫЕ КАОНЫ

Попов Виталий Евгеньевич

Научный руководитель: д.ф.-м.н., чл.-корр. РАН, Пахлов Павел Николаевич

Семинар ОФВЭ ИЯИ РАН

08.11.2021

ПЛАН ДОКЛАДА

- Основные положения;
- Мотивация;
- Статус измерений сильной фазы в в распаде $D^0 o K^- \pi^+$;
- Метод 1: измерение сильных фаз с использованием полулептонных распадов каонов;
- Метод 2: измерение сильных фаз с использованием распада $K_S^0 \to \pi^+ \pi^-;$
- Оценка потенциальной точности предложенных методов для эксперимента Belle II и эксперимента на Супер *c* – *τ*-фабрике;
- Измерение сильных фаз в распадах $D^+ \to K^0_S \pi^+, D^+_S \to K^0_S K^+,$ $D^0 \to K^0_S \pi^0$ в эксперименте Belle;
- Настройка работы системы регистрации мюонов и долгоживущих нейтральных каонов (EKLM) эксперимента Belle II.

ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ

- Новый метод измерения разности сильных фаз в распадах очарованных адронов с использованием полулептонных распадов нейтральных каонов.
 Феноменологический анализ эволюции суперпозиции странности нейтральных каонов, рожденных в распадах очарованных адронов, в собственные состояния аромата;
- Разработка метода экспериментального восстановления полулептонных распадов нейтральных каонов с потерянным нейтрино в конечном состоянии и оценка его эффективности и выбор критериев подавления фона;
- Новый метод измерения разности сильных фаз в распадах очарованных адронов с использованием распада K⁰ → π⁺π⁻. Феноменологический анализ эволюции суперпозиции нейтральных каонов, рожденных в распадах тяжелых адронов, в CP собственные состояния

ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ

- Теоретические предсказания для значений разностей сильных фаз в распадах $D_s^{\pm} \to K_S K^{\pm}$, $D^+ \to K_S \pi^+$ и $D^{*+} \to (K_S \pi^0)_D \pi^+$, полученные на основе $SU(3)_f$ симметрии ароматов;
- Обоснование требований для перспективных экспериментальных установок для достижения максимальной точности, используя предложенные методы;
- Оценка потенциальной точности для обоих методов в эксперименте Belle II и эксперименте на Супер с – т фабрике (СЧТФ);
- Оценка систематической погрешности, вносимой регенерацией нейтральных каонов на веществе детектора, в измерение разности сильных фаз. Оценка значения неопределенности, связанной со смешиванием в системе D⁰-D̄⁰;
- Разработка и автоматизация метода калибровки кремниевых фотоумножителей для системы регистрации мюонов и долгоживущих нейтральных каонов эксперимента Belle II. Оценка фонов ускорителя Super КЕКВ в мюонной системе.

ЛИЧНЫЙ ВКЛАД

Выполнил феноменологический анализ эволюции суперпозиции странности нейтральных каонов, рожденных в распадах очарованных адронов, и показал возможность измерения разности сильных фаз рождения с помощью анализа зависящей от времени вероятности распада каонов как в полулептонном конечном состоянии, так и в конечном состоянии $\pi^+\pi^-$. Автор подготовил публикации по результатам работы, представил несколько докладов.

Выполнил анализ данных эксперимента Belle и показал применимость разработанного им метода в реальном эксперименте.

Производил настройку считывающей электроники для системы сбора данных системы регистрации мюонов и долгоживущих нейтральных каонов эксперимента Belle II, в котором будут осуществлены предложенные измерения.

ПУБЛИКАЦИИ

- P. Pakhlov, <u>V. Popov</u>, "Measurement of D^0 - \overline{D}^0 mixing parameters using semileptonic decays of neutral kaon", JHEP 02, 160 (2020);
- <u>V. Popov</u>, "Strong-Phase Measurement in Charmed-Hadron Decays in Belle II Experiment and $c \tau$ Factory", Phys. Atom. Nucl. 83, no.6, 980-983 (2020);
- E. Kou, ..., <u>V. Popov</u>, et al. Belle II, "The Belle II Physics Book", PTEP 2019, no.12, 123C01 (2019);
- P. Pakhlov, <u>V. Popov</u>, "Time-dependent study of $K_S \rightarrow \pi^+ \pi^-$ decays for flavour physics measurements", JHEP 09, 092 (2021)

Попов Виталий Лаборатория тяжёлых кварков и лептонов ФИАН

МОТИВАЦИЯ

Нарушение *СР* в Кабиббо-подавленных (CS) распадах:

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$ Phys. Rev. Lett. **122**, no.21,211803(2019) Зависящее от времени *CP*-нарушение <u>отсутствует</u>:

$$\Delta Y_{KK} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{\pi\pi} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$$
Phys. Rev. D **104** 072010(2021)

Древесные и пингвинные диаграммы

 $D^0 \rightarrow K^+ K^- (\pi^+ \pi^-)$

Оценка *CP*-нарушения в рамках CM —
$$\mathcal{O}(\alpha_s/\pi) \frac{\mathbf{V_{ub}V_{cb}^*}}{\mathbf{V_{us}V_{cs}^*}} \sim 10^{-4}.$$

Является ли это проявлением Новой физики (НФ) или такой эффект может быть объяснен в рамках Стандартной модели (СМ)?

JHEP 04(2012), 060

МОТИВАЦИЯ

"С другой стороны столь же обилен поток теоретических работ, посвященных описанию двухчастичных нелептонных распадов. Как всегда, это означает, что ни в одной из работ не было дано полное решение проблемы, которая оказалась весьма сложной."

М. Шифман, УФН **151** 193–227 (1987)

 $SU(3)_f$ подход позволяет обойтись без прямого вычисления адронного матричного элемента и значительно упрощает описание. При таком подходе диаграммы, соответствующие вкладам различных токов, организуются в топологические группы и вкладов различных топологий определяются на основании $SU(3)_f$ -симметрии ароматов

Кабиббо-разрешенные распады (CF):Дважды Кабиббо-подавленные распады (DCS: $A_{D^0 \to K^- \pi^+} = \frac{1}{5}(3T - 2C - K)e^{i\delta_{1/2}} + \frac{2}{5}(T + C + \kappa)$ $A_{D^0 \to K^+ \pi^-} = -\frac{1}{5}(3T - 2C + K)e^{i\delta_{1/2}} - \frac{2}{5}(T + C + \kappa')$ $A_{D^0 \to \bar{K}^0 \pi^0} = -\frac{1}{5\sqrt{2}}(3T - 2C - K)e^{i\delta_{1/2}} + \frac{3}{5\sqrt{2}}(T + C + \kappa)$ $A_{D^0 \to K^+ \pi^-} = -\frac{1}{5}(3T - 2C + K)e^{i\delta_{1/2}} - \frac{2}{5}(T + C + \kappa')$ $A_{D^+ \to \bar{K}^0 \pi^0} = (T + C + \kappa)$ $A_{D^+ \to \bar{K}^0 \pi^+} = -\frac{1}{5}(2T - 3C + \Delta)e^{i\delta_{1/2}} - \frac{2}{5}(T + C + \kappa')$ $A_{D^+ \to \bar{K}^0 K^+} = -\frac{1}{5}(2T - 3C + \Delta)e^{i\delta_{1/2}} + \frac{2}{5}(T + C + \kappa),$ $A_{D^+ \to K^0 \pi^+} = -(T + C + \kappa')$

Для модели объясняющей СР-нарушение взаимодействиями в конечном состоянии: $\delta_s^{0+} = (108 \pm 4)^\circ$ $\delta^{0+} = (-76 \pm 4)^\circ$ $\delta^{00} = (-3 \pm 6)^\circ$

ПРИМЕНИМОСТИ СИММЕТРИИ АРОМАТОВ

Проверку адекватности подхода, основанного на симметрии ароматов можно выполнить с использованием правил сумм для распадов очарованных адронов.

МОТИВАЦИЯ: СМЕШИВАНИЕ ОЧАРОВАННЫХ АДРОНОВ

Вероятность распада D^0 -мезонов для распадов неправильного знака:

$$R^{+}(t) = \left(r_{D} + \left|\frac{q}{p}\right| \sqrt{r_{D}}(y'\cos\phi_{D} - x'\sin\phi_{D})\Gamma t + \left|\frac{q}{p}\right|^{2} \frac{(\Gamma t)^{2}}{4}(x^{2} + y^{2})\right) e^{-\Gamma t},$$
$$R^{-}(t) = \left(\overline{r}_{D} + \left|\frac{p}{q}\right| \sqrt{\overline{r}_{D}}(y'\cos\phi_{D} + x'\sin\phi_{D})\Gamma t + \left|\frac{p}{q}\right|^{2} \frac{(\Gamma t)^{2}}{4}(x^{2} + y^{2})\right) e^{-\Gamma t},$$

1

 $D^{*\pm} \to D^0 (\to K^{\mp} \pi^{\pm}) \pi_s^{\pm}$ $x' \equiv x \cos(\delta_{K\pi}) + y \sin(\delta_{K\pi});$

Для измерения и тинных параметров смешивания необходимо независимое измерение параметров DCS ^и распадов.

СТАТУС ИЗМЕРЕНИЙ

Измерение разности сильных фаз возможно в условиях экспериментов CLEO-с и BESIII, где D^0 -мезоны рождаются в квантово-запутанном состоянии.

$$\psi(3770) \to D\overline{D}: \qquad \Psi_{D\overline{D}} = \frac{1}{\sqrt{2}} [|D^0_{phys}(t)\rangle |\bar{D}^0_{phys}(t)\rangle - |\bar{D}^0_{phys}(t)\rangle |D^0_{phys}(t)\rangle]$$

ПОЛУЛЕПТОННЫЕ РАСПАДЫ КАОНОВ

СТАТУС ИЗМЕРЕНИЙ

Для начальной суперпозиции $a | K^0 \rangle + b | \overline{K}^0 \rangle$ зависящие от времени вероятности распада

Третий член в выражениях представляет собой интерференцию полулептонных распадов, рожденных в начальный момент времени K^0 - и \overline{K}^0 -мезонов. Сильная фаза, δ , входит в оба выражения и благодаря интерференции K^0 - \overline{K}^0 -амплитуд такое измерение можно выполнить без тригонометрической неопределенности.

12

РЕКОНСТРУКЦИЯ

Из закона сохранения 4-импульса:

 $(P_{K^0} - P_{\pi l})^2 = P_{\nu}^2$

Можно получить два решения для импульса каона:

$$|\mathbf{p}_{K}|_{(1,2)} = -\frac{p_{\pi l} \cos \theta (m_{K}^{2} + m_{\pi l}^{2}) \pm \sqrt{t}}{2(p_{\pi l}^{2} \cos^{2} \theta - E_{\pi l}^{2})},$$

$$t = E_{\pi l}^2 \left(4m_K^2 p_{\pi l}^2 \cos^2 \theta - 4E_{\pi l}^2 m_K^2 + m_{\pi l}^2 (m_K^2 + m_{\pi l}^2) \right)$$

Импульсное разрешение K^0

 $t = E_{\pi l}^2$

ПОТЕНЦИАЛЬНЫЕ ИСТОЧНИКИ ФОНА

Фон из первичной вершины;

На малых времен жизни нет чувствительности к измерению разности сильных фаз и фон из первичной вершины можно эффективно подавить .

Истинные вторичные вершины: $K_S \to \pi^+ \pi^-, K_L \to \pi^+ \pi^- \pi^0.$

Требование идентификации (misID ~1..2%) и вето на K_S позволяют эффективно подавить фон от истинных вторичных вершин.

СР-НАРУШЕНИЕ В СМЕШИВАНИИ НЕЙТРАЛЬНЫХ КАОНОВ

Амплитуды:

$$|K^{0}(t)\rangle = \frac{1-\varepsilon}{\sqrt{2}}e^{-i\lambda_{S}t}|K_{S}\rangle + \frac{1-\varepsilon}{\sqrt{2}}e^{-i\lambda_{L}t}|K_{L}\rangle$$
$$|\overline{K}^{0}(t)\rangle = \frac{1+\varepsilon}{\sqrt{2}}e^{-i\lambda_{S}t}|K_{S}\rangle - \frac{1+\varepsilon}{\sqrt{2}}e^{-i\lambda_{L}t}|K_{L}\rangle$$

Зависящая от времени вероятность распада:

$$\overline{\mathcal{R}}(\mathcal{R}) \equiv \frac{1 \pm 2\text{Re}(\varepsilon)}{2} |A_{fS}|^2 \Big[e^{-\Gamma_S t} + |\eta_{+-}|^2 e^{-\Gamma_L t} - \\ \mp 2 |\eta_{+-}| e^{-\frac{1}{2}(\Gamma_L + \Gamma_S)t} \cos\left(\Delta mt - \varphi_{+-}\right) \Big]$$

ИЗМЕРЕНИЕ СИЛЬНЫХ ФАЗ С ИСПОЛЬЗОВАНИЕМ $K_S ightarrow \pi^+\pi^-$

Для процесса $D \to K_S X$ амплитуды:

$$\langle f|H_{wk}|D^0\rangle = \langle f|H_{wk}|\overline{K}^0\rangle + \sqrt{r_D}e^{i\delta}\langle f|H_{wk}|K^0\rangle$$

 $\langle f|H_{wk}|\overline{D}^0\rangle = \sqrt{r_D}e^{i\delta}\langle f|H_{wk}|\overline{K}^0\rangle + \langle f|H_{wk}|K^0\rangle$

Зависящие от времени вероятности распада $K_S \to \pi^+ \pi^-$:

$$\begin{aligned} \mathcal{R}^{+}(t) &\equiv |\Psi^{+}(t)|^{2} = \overline{\mathcal{R}}(t) + r_{f}\mathcal{R}(t) \\ &+ \sqrt{r_{f}}\left(\cos\delta + 2|\eta_{+-}|\sin\delta\sin\phi_{+-}\right) \times \left(e^{-\Gamma_{S}t} - |\eta_{+-}|^{2}e^{-\Gamma_{L}t}\right) \\ &+ 2\sqrt{r_{f}}|\eta_{+-}|\left(\sin\delta + 2|\eta_{+-}|\cos\delta\sin\phi_{+-}\right)e^{-\frac{1}{2}(\Gamma_{L}+\Gamma_{S})t}\sin\left(\Delta mt - \phi_{+-}\right) \end{aligned}$$

$$\begin{aligned} \mathcal{R}^{-}(t) &\equiv |\Psi^{-}(t)|^{2} = \mathcal{R}(t) + r_{f}\overline{\mathcal{R}}(t) \\ &+ \sqrt{r_{f}}\left(\cos\delta - 2|\eta_{+-}|\sin\delta\sin\phi_{+-}\right) \times \left(e^{-\Gamma_{S}t} - |\eta_{+-}|^{2}e^{-\Gamma_{L}t}\right) \\ &- 2\sqrt{r_{f}}|\eta_{+-}|\left(\sin\delta - 2|\eta_{+-}|\cos\delta\sin\phi_{+-}\right)e^{-\frac{1}{2}(\Gamma_{L}+\Gamma_{S})t}\sin\left(\Delta mt - \phi_{+-}\right). \end{aligned}$$

Разность сильных фаз и отношение модулей амплитуд могут быть измерены без тригонометрической неопределенности.

ЭКСПЕРИМЕНТЫ

Супер Чарм-Тау фабрика (СЧТФ)

Belle II

ОЦЕНКА ПОТЕНЦИАЛЬНОЙ ТОЧНОСТИ: $K^0 \to \pi \ell \nu_\ell$

Ожидаемая статистика распадов:

выполнялась с помощью моделирования $D^0 \to K_S \pi^0$ 9 6 12 15 $D^+ \to K_S \pi^+$

Оценка потенциальной точности

Подгонка (χ^2) осуществлялась

одновременно для RS и WS

методом Монте-Карло.

распределений.

Разность сильных фаз

ОЦЕНКА ПОТЕНЦИАЛЬНОЙ ТОЧНОСТИ: $K_S \to \pi^+ \pi^-$

Параметр отношения амплитуд не был измерен ни для одной из мод с K_S^0 в конечном состоянии. В связи с этим было выполнено сканирование по r_f, δ .

Оценка потенциальной точности выполнена при помощи МС. Тригонометрическая неопределенность в измерении отсутствует.

Скан по параметрам DCS распадов (20М, 40М)

ВЗАИМОДЕЙСТВИЕ K^0 -МЕЗОНОВ С ВЕЩЕСТВОМ ДЕТЕКТОРА

Сохранение странности в сильном взаимодействии приводит к неравенству амплитуд рассеяния для K^0 и \overline{K}^0 на веществе детектора — $\Delta f \neq 0$. Эффекты регенерации нейтральных каонов могут имитировать СР-нарушение и вносить неопределенность в измерение разности сильных фаз.

Для учета регенерации уравнения эволюции должны быть модифицированы:

$$i\partial_t \begin{pmatrix} K^0(t) \\ \bar{K}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \begin{pmatrix} K^0(t) \\ \bar{K}^0(t) \end{pmatrix} - \begin{pmatrix} \chi & 0 \\ 0 & \overline{\chi} \end{pmatrix} \begin{pmatrix} K^0(t) \\ \bar{K}^0(t) \end{pmatrix}$$
, где $\chi(\overline{\chi}) = \frac{2\pi N}{m} f(\overline{f})$

С учетом этого уравнения эволюции примут вид:

$$\alpha_{S,L} = e^{-i\Sigma t} \Big[\alpha_{S,L}^0 \cos\left(\frac{\Delta\lambda}{2}\sqrt{1+4r^2}t\right) \pm i\frac{\alpha_{S,L}^0 \mp 2r\alpha_{L,S}^0}{\sqrt{1+4r^2}} \sin\left(\frac{\Delta\lambda}{2}\sqrt{1+4r^2}t\right) \Big] \quad \text{, fge} \quad r = \frac{1}{2}\frac{\Delta\chi}{\Delta\lambda}$$

Используя разложение по параметру регенерации:

$$\begin{array}{lll} \alpha_{S}(t) &=& e^{\frac{1}{2}(\chi+\overline{\chi})t}e^{-i\lambda_{S}t}(\alpha_{S}^{0}+\zeta\alpha_{L}^{0}e^{-i\Delta\lambda t}) & \text{где геометрический параметр} \\ \alpha_{L}(t) &=& e^{\frac{1}{2}(\chi+\overline{\chi})t}e^{-i\lambda_{L}t}(\alpha_{L}^{0}+\zeta\alpha_{S}^{0}). & \text{регенерации определен, как} & \zeta = r\left(1-e^{i\Delta\lambda\frac{Lm}{p}}\right) \\ \end{array}$$

ВЗАИМОДЕЙСТВИЕ K^0 -МЕЗОНОВ С ВЕЩЕСТВОМ ДЕТЕКТОРА

Оценка вклада регенерации была выполнена для Belle II. Be — 1 мм, Si — $L_{1,2} = 50$ мкм, $L_{3-6} = 300$ мкм

Материал	σ_{tot} , (mb)	$\operatorname{Re}\Delta f$, fm	$\mathrm{Im}\Delta f,\mathrm{fm}$
Si	553.0	-7.5	-12.9
Be	219.1	-3.9	-6.2

120

100

80

60

40

20

0.04

Семинар ОФВЭ ИЯИ РАН (08.11.2021)

0.06

0.08

 $\sqrt{r_{\rm f}}$

0.10

0.12

ОЦЕНКА ПОТЕНЦИАЛЬНОЙ ТОЧНОСТИ

Наличие D^0 - \overline{D}^0 смешивания может внести неопределенность в измерение разности сильных фаз в распаде $D^0 \to K^0_S \pi^0$. Для оценки вклада смешивания в системе очарованных адронов необходимо рассмотреть одновременно эволюцию K^0_S и D^0 -мезонов.

$$a^{+}(t') \equiv \langle \bar{K}^{0} \pi^{0} | H | D^{0}_{phys}(t') \rangle = A_{D^{0}} \left[f_{+}(t') - \sqrt{r_{f}} e^{i(\delta + \phi)} f_{-}(t') \right]$$

$$b^{+}(t') \equiv \langle K^{0} \pi^{0} | H | D^{0}_{phys}(t') \rangle = A_{D^{0}} \left[\sqrt{r_{f}} e^{i(\delta - \phi)} f_{+}(t') - f_{-}(t') \right]$$

 $x = (0.43^{+0.10}_{-0.11}) \%$ World average: $y = (0.60 \pm 0.06) \%$ $\phi = (0.08 \pm 0.31)^{\circ}$

Параметры смешивания в системе $D^0 - \overline{D}^0$ малы, а экспериментально разрешение по времени жизни D скорее всего не позволит выполнить анализ с учетом t_D . В работе была исследована возможность проинтегрировать по t_D .

ОЦЕНКА ПОТЕНЦИАЛЬНОЙ ТОЧНОСТИ

$$\Psi_{D\overline{D}} = \frac{1}{\sqrt{2}} [|D^0_{phys}(t)\rangle |\bar{D}^0_{phys}(t)\rangle - |\bar{D}^0_{phys}(t)\rangle |D^0_{phys}(t)\rangle]$$

	J/ψ	$\psi(2S)$	$\psi(3770)$	b(4040)	$\psi(4160)$	$\psi(4415)$
M, GeV	3.097	3.686	3.773	4.039	4.191	4.421
Γ, MeV	0.093	0.286	27.2	80	70	62
σ , nb	${\sim}3400$	~ 640	~ 6	~ 10	~ 6	~ 4
L, fb ⁻¹	300	150	300	10	100	25
N	10^{12}	10^{11}	2×10^9	10^{8}	$6 imes 10^8$	10^{8}

Для скоррелированной пары D^0 -мезонов

зависящая от времени вероятность распада в конечные состояния f_1, f_2 дается выражением:

$$\begin{split} R(f_1, t_1, f_2, t_2) \propto |A_{f_1}|^2 |A_{f_2}|^2 e^{-\Gamma(t_1 + t_2)} \Big[\frac{1}{2} |\xi + \zeta|^2 e^{-\Delta \Gamma/2(t_2 - t_1)} + \\ &+ \frac{1}{2} |\xi - \zeta|^2 e^{\Delta \Gamma/2(t_2 - t_1)} - (|\xi|^2 - |\zeta|^2) \cos\left(\Delta m(t_2 - t_1)\right) + 2Im(\xi^*\zeta) \sin\left(\Delta m(t_2 - t_1)\right) \Big] \\ \end{split}$$
ГДе
$$\zeta = \frac{\overline{A}_{f_2}}{A_{f_2}} - \frac{\overline{A}_{f_1}}{A_{f_1}} \quad , \quad \xi = \left(\frac{p}{q}\right)_D - \left(\frac{q}{p}\right)_D \frac{\overline{A}_{f_1}}{A_{f_1}} \frac{\overline{A}_{f_2}}{A_{f_2}} \end{split}$$

Тогда для пары конечных состояний:

$$\left\{ \mathbf{D} \to \mathbf{K}^{-} \pi^{+}; \mathbf{D} \to \overline{\mathbf{K}}^{0} \pi^{0} \right\}$$

$$\begin{aligned} R(t_1, t_2) \propto e^{-\Gamma(t_1 + t_2)} \left[\left(\left| \frac{p}{q} \right|^2 + \left| \frac{q}{p} \right|^2 r_D^{00} r_D^{-+} - 2\sqrt{r_D^{00}} \sqrt{r_D^{-+}} \cos\left(\delta^{00} + \delta^{-+}\right) \right) + \right. \\ \left. + \left(r_D^{00} + r_D^{-+} - 2\sqrt{r_D^{00}} \sqrt{r_D^{-+}} \cos\left(\delta^{00} - \delta^{-+}\right) \right) \frac{(\Gamma t)^2}{2} \left(y^2 - x^2 \right) + \right. \\ \left. + 2\sqrt{r_D^{00}} \left(\frac{p}{q} y'' - \frac{q}{p} r_D^{-+} y' \right) + 2\sqrt{r_D^{-+}} \left(\frac{q}{p} r_D^{00} y' - \frac{p}{q} y'' \right) \end{aligned}$$

ПЕРСПЕКТИВЫ МЕТОДОВ

Пимерение $\sin 2\beta \, \mu \cos 2\beta$

$$\begin{aligned} |B^{0}(t)\rangle &= e^{-i\frac{M_{1}+M_{2}}{2}t}e^{-\frac{\Gamma}{2}t}\left[\cos\left(\frac{\Delta mt}{2}\right)|B^{0}\rangle + i\left(\frac{q}{p}\right)_{B}\sin\left(\frac{\Delta mt}{2}\right)|\bar{B}^{0}\rangle\right] \\ |\bar{B}^{0}(t)\rangle &= e^{-i\frac{M_{1}+M_{2}}{2}t}e^{-\frac{\Gamma}{2}t}\left[i\left(\frac{p}{q}\right)_{B}\cos\left(\frac{\Delta mt}{2}\right)|B^{0}\rangle + \sin\left(\frac{\Delta mt}{2}\right)|\bar{B}^{0}\rangle\right] \end{aligned}$$

$$a_{CP} = \frac{P(\bar{B}^0 \to f) - P(B^0 \to f)}{P(\bar{B}^0 \to f) + P(B^0 \to f)} = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \cos\left(\Delta mt\right) + \frac{\mathrm{Im}\lambda}{|\lambda|^2 + 1} \sin\left(\Delta mt\right) \equiv \\ \equiv -C_f \cos\left(\Delta mt\right) + S_f \sin\left(\Delta mt\right),$$

Измерение α

$$\begin{split} A_{B\to\pi\pi} &\sim s_{12}^3 T + s_{12}^3 P \\ A_{B\to K\pi} &\sim s_{12}^4 T + s_{12}^2 P \end{split} \qquad \lambda = \begin{bmatrix} e^{2i\alpha} \frac{1 + |P/T| e^{i(\delta + \gamma)}}{1 + |P/T| e^{i(\delta - \gamma)}} \end{bmatrix} \end{split}$$

Поиск Новой физики в КП распадах в нейтральные каоны.

1.5T SC solenoid

Resonance	On-peak luminosity (fb ⁻¹)	Off-peak luminosity (fb ⁻¹)	Number of resonances
$\Upsilon(1S)$	5.7	1.8	102×10^{6}
$\Upsilon(2S)$	24.9	1.7	158×10^{6}
$\Upsilon(3S)$	2.9	0.25	11×10^{6}
$\Upsilon(4S)$ SVD1	140.0	15.6	$152 \times 10^6 B\bar{B}$
$\Upsilon(4S)$ SVD2	571.0	73.8	$620 \times 10^6 B\bar{B}$
$\Upsilon(5S)$	121.4	1.7	$7.1 \times 10^6 B_s \bar{B}_s$
Scan		27.6	а с

отбор событий $D_s^{\pm} \to K_S K^{\pm}$, $D^+ \to K_S \pi^+$ и $D^0 \to K_S \pi^0$

Данные: $\Upsilon(4S) + \Upsilon(5S) + Scan, 951 \text{ fb}^{-1}$

Предварительный отбор:

- Заряженные треки должны происходить из первичной вершины dr<0.5, dz<2 для K+;
- Идентификация заряженных адронов : $K/\pi > 0.6$, $\pi/K > 0.1$;
- Фит в вершину и массу для K_S и фит в вершину для очарованных адронов;

ОТБОР СОБЫТИЙ

Для данного анализа особенно важны низкоэнергетические каоны и поэтому нельзя пренебречь событиями $B \rightarrow DX.$ $D_s: P_{cms} > 1.4/1.9$ $D^+: P_{cms} > 1.3/2.0$ $D^0: P_{cms} > 0.7/1.3$

Угол между направлением вылета каона в системе покоя D-мезона и обратным направлением D-мезона в с.ц.м.

 $D_s: \cos \theta_{hel} < 0.85$ $D^+: \cos \theta_{hel} < 0.8$ $D^0: \cos \theta_{hel} < 0.9$

ПАРАМЕТРЫ ДЛЯ МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ (BDT)

Переменные для отбора:

dr, $\mathscr{L}(\pi/\mu)$ и χ^2 для π^+, π^- , $\cos \theta_{D_s}^{hel}$, $\mathscr{L}(K/\pi)$ и $\mathscr{L}(K/p)$, l_{D_s} , угол между импульсом и

направлением на первичную вершину для *D*-мезона.

Параметры BDT выбирались при помощи кривой характеристической функции приемника. Такой метод позволяет повысить эффективность работы модели.

Попов Виталий Лаборатория тяжёлых кварков и лептонов ФИАН

ИССЛЕДОВАНИЕ ФОНОВ НА МОДЕЛИРОВАНИИ

Модель машинного обучения показала способность с высокой эффективностью подавлять фоны от неправильно реконструированного K_S -кандидата.

Основные источники фона комбинаторика и неправильная идентификация заряженных адронов.

Для распада $D_s^+ \to K_s K^+$ источником фоновых событий является процесс $D^+ \to K_s \pi^+$.

Попов Виталий Лаборатория тяжёлых кварков и лептонов ФИАН

ВОССТАНОВЛЕНИЕ РАСПАДА $D_s^{\pm} \to K_S K^{\pm}$

ВОССТАНОВЛЕНИЕ РАСПАДА $D^+ \to K_S \pi^+$

Сигнальная область: $|m(K_S \pi^+) - M_{D_s}| < 11 \text{ MeV/c}^2$ Контрольные интервалы: $1.807 < m(K_S \pi) < 1.840;$ $1.900 < m(K_S \pi) < 1.933$

	N _{sig}	Purity
$\overline{D^+}$	$(893 \pm 4) \times 10^3$	88 %
D^{-}	$(906 \pm 4) \times 10^3$	88%

$$F = G_1(\mu_1, \sigma_1, N) + G_2(\mu_1, \sigma_2, N) + G_3(\mu_3, \sigma_3, N) + P_2$$

Попов Виталий Лаборатория тяжёлых кварков и лептонов ФИАН

ВОССТАНОВЛЕНИЕ РАСПАДА $D^{*+} \rightarrow (K_S \pi^0)_D \pi^+$

N_{sig} Purity $|m(D^0\pi) - M_{D^*}| < 1.5 \text{ MeV/c}^2$ Сигнальная область: D^{*+} Контрольный интервал: $2.015 < m(D^*) < 2.020$ $(302 \pm 2) \times 10^3$ 90 % $(301 \pm 2) \times 10^3$ D^{*-} $90\,\%$ $F = G_1(\mu_1, \sigma_1, N) + G_2(\mu_1, \sigma_2, N) + G_3(\mu_3, \sigma_3, N) + P_{2(1/2)}$ 6×10^4 6×10^4 5 5 $\mathbf{N/0.2}$ MeV/c² 5 5 $\mathbf{N/0.2}$ $\mathbf{MeV/c^2}$ Pull Pull 2.005 2.010 2.015 2.005 2.010 2.015 2.020 2.020 2.0252.025 $m(D^0\pi^-), [GeV/c^2]$ $m(D^0\pi^+), [GeV/c^2]$

РАЗРЕШЕНИЕ И ЭФФЕКТИВНОСТЬ

- Эффективность восстановления была получена с помощью моделирования методом Монте-Карло.
- Разрешение по времени жизни нейтрального каона для большинства событий находится на уровне 1..2%, а в общем случае не превышает 5%.

Эффективность восстановления

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Фитирование выполнялось методом наибольшего правдоподобия одновременно распределений по времени жизни для D-мезонов обоих знаков. В результате получены значения:

Мода распада	$\sqrt{r_f}$	$\delta,~^{\circ}$
$D^+ \to K_S \pi^+$	0.07 ± 0.10	-56 ± 61
$D_s^+ \to K_S K^+$	0.09 ± 0.12	-132 ± 103
$D^0 \to K_S \pi^0$	0.20 ± 0.15	-7 ± 40

$$D_s^{\pm} \to K_S K^{\pm}$$

 $D^{*+} \rightarrow (K_S \pi^0)_D \pi^+$

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Выполнено восстановление распадов на данных Belle;

Несмотря на отсутствие значимости измерения параметров DCS распадов нарушение *CP*-инвариантности в распадах каонов наблюдается на уровне значимости более 5*σ* для всех исследуемых распадов;

KLM BELLE II

Основной задачей фабрики прелестных адронов следующего поколения является поиск Новой физики в прецизионном измерении параметров редких процессов и повышение точности измерений фундаментальных параметров Стандартной модели.

Светимость SuperKEKB выше в 40 раз: RPC →Сцинтиллятор

УСТАНОВКА И ПОДКЛЮЧЕНИЕ EKLM

Число рабочих стрипов в мюонной системе.

EB0	150	150	150	150	150	150	150	150	149	150	150	150
d EB1	150	150	150	150	149	150	150	150	150	150	149	150
$\overset{\mathrm{M}_{\mathrm{B}}}{\mathrm{O}}_{\mathrm{EB2}}$	150	150	150	150	150	150	150	150	150	150	149	150
EB3	149	150	150	150	135	148	150	150	150	150	150	150
	1	2	3	4	5	б Номе	7 0 CJIOS	8	9	10	11	12
						1101110	o outon					

EKLM Backward

EKLM Forward

УСКОРИТЕЛЬНЫЕ ФОНЫ В ЕКLM Конфигурации работы ускорителя

Для оценки ускорительных фонов были произведены специальные заходы набора данных, когда в рабочем состоянии находилось только одно из накопительных колец. Основная задача таких заходов — поиск оптимальной конфигурации работы ускорителя.

Частота событий в EKLM

KLM BELLE II

Максимальная загрузка одного стрипа — 22 kHz; Допустимо DAQ — 160 kHz. Оптимизация сигнального окна; Установка дополнительной защиты; Повышение порога.

КАЛИБРОВКА КФУ EKLM

Для поддержания эффективности работы EKLM была разработана процедура калибровки подстроечного напряжения.

Оптимальная точка на 1.2В выше напряжения пробоя. Для определения напряжения пробоя выполняется сканирование по 3 точкам.

Эффективность модулей ЕКLМ находится на уровне (90..95)%.

ЗАКЛЮЧЕНИЕ

- Новый метод измерения разности сильных фаз в распадах очарованных адронов с использованием полулептонных распадов нейтральных каонов.
 Феноменологический анализ эволюции суперпозиции странности нейтральных каонов, рожденных в распадах очарованных адронов, в собственные состояния аромата;
- Разработка метода экспериментального восстановления полулептонных распадов нейтральных каонов с потерянным нейтрино в конечном состоянии и оценка его эффективности и выбор критериев подавления фона;
- Новый метод измерения разности сильных фаз в распадах очарованных адронов с использованием распада K⁰ → π⁺π⁻. Феноменологический анализ эволюции суперпозиции нейтральных каонов, рожденных в распадах тяжелых адронов, в *CP* собственные состояния

ЗАКЛЮЧЕНИЕ

- Теоретические предсказания для значений разностей сильных фаз в распадах $D_s^{\pm} \to K_S K^{\pm}$, $D^+ \to K_S \pi^+$ и $D^{*+} \to (K_S \pi^0)_D \pi^+$, полученные на основе $SU(3)_f$ симметрии ароматов;
- Обоснование требований для перспективных экспериментальных установок для достижения максимальной точности, используя предложенные методы;
- Оценка потенциальной точности для обоих методов в эксперименте Belle II и эксперименте на Супер с – т фабрике (СЧТФ);
- Оценка систематической погрешности, вносимой регенерацией нейтральных каонов на веществе детектора, в измерение разности сильных фаз. Оценка значения неопределенности, связанной со смешиванием в системе D⁰-D̄⁰;
- Разработка и автоматизация метода калибровки кремниевых фотоумножителей для системы регистрации мюонов и долгоживущих нейтральных каонов эксперимента Belle II. Оценка фонов ускорителя Super КЕКВ в мюонной системе.

Попов Виталий Лаборатория тяжёлых кварков и лептонов ФИАН

BACKUP SLIDES

ПОДАВЛЕНИЕ ФОНА ОТ

Left and right D_s sidebands before and after BDT selection.

НЕРАБОЧИЕ СТРИПЫ В ЕКLM

Низкая эффективность в одном из слоев EKLM связана с нерабочим сегментом в 5 слое.

10⁵

10⁴

10³

10²

10

ПРОВЕРКА СТАБИЛЬНОСТИ КАЛИБРОВОК

ВЗАИМОДЕЙСТВИЕ K^0 -МЕЗОНОВ С ВЕЩЕСТВОМ ДЕТЕКТОРА

Оценка вклада регенерации была выполнена для Belle II. Be — 1 мм, Si — $L_{1,2} = 50$ мкм, $L_{3-6} = 300$ мкм

Материал	σ_{tot} , (mb)	$\operatorname{Re}\Delta f$, fm	$\mathrm{Im}\Delta f$, fm
Si	553.0	-7.5	-12.9
Be	219.1	-3.9	-6.2

0.10

0.04

0.06

0.08

 $\sqrt{r_{f}}$

120

100

80

60

40

20

 $\left(\right)$

 $m N_{ps.ex.}/~0.002$

КРИТЕРИИ ОТБОРА

Примененные критерии отбора для распадов очарованных адронов.

Критерий отбора	$D^+ \to K^0_S \pi^+$	$D_s^+ \to K_S^0 K^+$	$D^0 \to K^0_S \pi^0$			
Прицельные параметры	dr < 1 $dr < 4$					
заряженных треков	$u_1 < 1, u_2 < 4$					
Масса K_S^0 -кандидата	$ m(\pi^{+}\pi^{-})$	$ -M_{K_S^0} < 0.00$	8 GeV/c^2			
Отбор K_S^0 (NeuroBias)	nb.vlike	> 0.85, nb.nd	plam > 0.9			
Илентификация	$B_{\mu\nu} > 0.6$	$R_{K/\pi} > 0.75$				
	$n t_{\pi/K} > 0.0$	$R_{K/p} > 0.01$				
$\mathbf{P}^{*},(\mathrm{cont}/Bar{B}),$	>20/13	<u>>10/1</u> /	<u>13/07</u>			
${ m GeV/c}$	/2.0/1.5	>1.9/1.4	>1.0/0.1			
$\cos heta^{hel}$	< 0.8	< 0.85	< 0.9			
$\theta_{K_S^0}$		$\theta_{K_S^0} < 20 \text{ mrad}$				
χ^2_D	<20	<15				
$\cos \theta_D$	>0.8					
$E_{\gamma}^{min}, \text{ MeV}$			<u>~60/190</u>			
(barrel/endcap)		_	≥00/ 120			

ТОЧНОСТЬ ИЗМЕРЕНИЯ ДЛЯ СТАТИСТИКИ BELLE2*10

80

60

ТОЧНОСТЬ ИЗМЕРЕНИЯ ДЛЯ СТАТИСТИКИ BELLE2*10

20

0

 r_{D}^{gen}

40

ИЗМЕРЕНИЯ В ЭКСПЕРИМЕНТЕ LHCb

Эксперимент LHCb удовлетворяет большинству требований, предъявляемых к экспериментам для выполнения измерения разности сильных фаз. Однако при типичных импульсах *K*_S-мезона ~ 5 GeV/c только каоны с малыми временами жизни распадутся внутри чувствительного объема детектора.

Попов Виталий Лаборатория тяжёлых кварков и лептонов ФИАН

