Исследование образования барионных и бозонных резонансов Δ(1232), ρ⁰(770), f₀(980), f₂(1270) в нейтрино-ядерных взаимодействиях

Поляруш Александр Юрьевич polyarush@yandex.ru

План семинара

- 1. Введение.
- 2. Эксперимент СКАТ.
- 3. Квазиупругое взаимодействие.
- 4. Барионные резонансы.
- 5. Исследование образования ρ⁰(770) мезонов.
- 6. Эксперимент NOMAD.
- 7. Изучение образования ρ⁰(770), f₀(980), f₂(1270).

Протвино. Ускоритель У-70

Нейтринный канал

Пучок протонов - (2-3) · 10¹² за сброс.

Число протонов, сброшенных на мишень ней тринного канала, 5.3 10¹⁷ для ней тринной экспозиции 4.4 10¹⁷ для антиней тринной

Нейтринные спектры

Основные источники ней трино: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $K^+ \rightarrow \mu^+ + \nu_{\mu}$ $K^+ \rightarrow \mu^+ + \nu_{\mu} + \pi$ на уровне 1%

Энергетические спектры потоков нейтрино и антинейтрино в эксперименте СКАТ.

Пузырьковая камера СКАТ

Пузырьковая камера СКАТ проектировалась и строилась с 1964г. по 1975г.

Облучалась в ней тринном канале ИФВЭ с 1975г. по 1989г.

Установка СКАТ

7

Фреон CF₃Br Плотность - 1.47г/см³ Радиационная длина - 11см Длина взаимодействия – 60см Магнитное поле 2 Тесла Размер пузырька 800мкм.

Эффективный объем

Полный фотографируемый объем ~ 7м³ Эффективный объем 1.73м³ - 2.54т В данном эффективном объеме регистрировалось 1 событие на 20 кадров в нейтринных сеансах и 1 событие на 90 кадр в антинейтринных.

Система обработки

Просмотр и измерение фильмового материала осуществлялся на приборах двух типов спиральный считыватель SAAB (цена отсчета 2мкм) и ПУОС-4 (цена отсчёта 1мкм). Измерения обрабатывались программой геометрической реконструкции H-GEOM, адаптированной для нашего эксперимента.

Нейтральные частицы ү, n, V проходили через программу кинематического анализа H-KINE.

Программа генерации искусственных событий

Процедура розыгрыша событий естественно разбивается на три стадии:

- а) генерация первичного нейтринного взаимодействия,
- б) внутриядерные взаимодействия вторичных частиц и
- в) моделирование события в условиях реальной пузырьковой камеры.

Ядро как мишень учитывалось с помощью программы внутриядерного каскада, основанной на модели, в которой ядро рассматривается как вырожденный ферми-газ свободных нуклонов, заключенный в сферическую потенциальную яму радиусом равным ядерному. Глубина потенциала одинаковая для протонов и нейтронов

Ядро	$V_N(M \mathfrak{s} B)$
С	33.7
F	35.8
BR	43.4

Квазиупругое взаимодействие

Отбирались события с одним мюоном нужного знака и 1 (или 0) быстрым протоном или нейтроном. Допускалось наличие медленных испарительных нуклонов (T_{kin} < 30 МэВ).

$$\begin{aligned} \frac{d\sigma}{dQ^2} &= \frac{G_F^2 cos^2 \theta M^2}{8\pi E_\nu^2} [A(q^2) \mp \frac{(s-u)}{M^2} B(q^2) + \frac{(s-u)^2}{M^4} C(q^2)], \\ A(Q^2) &= \frac{(Q^2 + m_\mu^2)}{4M^2} [F_V^2(Q^2/M^2 - 4) + F_M^2(1 - Q^2/M^2)Q^2/M^2 + \\ &+ 4F_A F_M(Q^2/M^2 - 4) + F_A^2(4 + Q^2/M^2)] \\ B(Q^2) &= Q^2(F_V + F_M)F_A/M^2 \\ C(Q^2) &= \frac{1}{4} (F_V^2 + Q^2 F_M/4M^2 + F_A^2) \end{aligned}$$

$$F_A(Q^2) = \frac{F_A(0)}{(1+Q^2/M_A^2)^2}$$

Квазиупругое взаимодействие (2)

Полное сечение

Квазиупругое взаимодействие (3)

Пучок	Ускоритель	Эксперимент	Мишень	$M_A(\Gamma \mathfrak{sB})$	ссылка
$ u_{\mu} $	АНЛ	ИК	Al	1.05 ± 0.20	[117]
$ u_{\mu} $		12'ПK	D_2	1.00 ± 0.05	[131]
$ u_{\mu}$	БНЛ	7'ПК	D_2	1.07 ± 0.06	[127]
$ u_{\mu}$	ЦЕРН ПС	ПК	фреон	$0.75 \begin{array}{c} +0.24 \\ -0.20 \end{array}$	[118]
$ u_{\mu} $		ПК	пропан	0.7 ± 0.2	[124]
$ u_{\mu}$		ИК	Al	$0.65 \begin{array}{c} +0.45 \\ -0.40 \end{array}$	[120]
$ u_{\mu}$		ΠΚ ΓΓΜ	фреон	0.96 ± 0.16	[125]
$ u_{\mu}$		ΠΚ ΓΓΜ	пропан	$0.87 \pm 0.05 \pm 0.17$	[126]
$ u_{\mu}$	ИФВЭ У70	ИК	Al	1.00 ± 0.04	[128]
$ u_{\mu}$	ИФВЭ У70	ПК СКАТ	фреон	$1.06 \pm 0.05 \pm 0.14$	Этот эксп.
$ u_{\mu}$	ЦЕРН СПС	BEBC	D_2	1.29 ± 0.09	[121]
$ u_{\mu}$	ФНАЛ	15'ПК	Ne/H_2	1.08 ± 0.08	[123]
$ u_{\mu}$	ФНАЛ	15'ПК	D_2	$1.05 \begin{array}{c} +0.12 \\ -0.16 \end{array}$	[132]
$\bar{ u}_{\mu}$	БНЛ	7'ПК	H_2	$0.9 \ ^{+0.4}_{-0.3}$	[133]
$\bar{ u}_{\mu}$	ЦЕРН ПС	ΠΚ ΓΓΜ	фреон	0.69 ± 0.44	[125]
$\bar{ u}_{\mu}$	ИФВЭ У70	ИК	Al	1.00 ± 0.04	[128]
$\bar{ u}_{\mu}$	ИФВЭ У70	ПК СКАТ	фреон	$0.71 \pm 0.10 \pm 0.20$	Этот эксп.
$\bar{ u}_{\mu}$	ЦЕРН СПС	ΠΚ ΓΓΜ	пропан	0.91 ± 0.40	[134]
$ u_{\mu}$	ФНАЛ	15'ПК	Ne/H_2	0.99 ± 0.11	[135]

Барионные резонансы

Модель Фейнмана, Кизлингера, Равндала является четырехмерным обобщением нерелятивистской модели трехмерного осциллятора

$$\frac{d\sigma(\nu N \to \mu \Delta)}{dq^2 dW} = \frac{G^2}{4\pi} (\frac{-q^2}{Q^2}) \frac{W}{M_p} (u^2 \sigma_L + v^2 \sigma_R + 2uv\sigma_S)$$

здесь $u = (E + E' - Q)/2E, v = (E + E' + Q)/2E,$ а
 $\sigma_{L/R} = \frac{W}{2M_p} \sum_{j_Z} | < N, j_Z \mp 1 | F_{\mp} | N^*, j_Z > |^2 \eta_{BW}$
 $\sigma_S = \frac{W}{2M_p} (\frac{Q^2}{-q^2}) \sum_{j_Z} | < N, j_Z | F_0 | N^*, j_Z > |^2 \eta_{BW},$

Мы сравниваем свои экспериментальные данные по барионным резонансам с релятивистской кварковой моделью ФКР в обобщении Рейна, Сегала. Ими была учтена интерференция, нерезонансный фон.

Барионные резонансы (3)

νр -> μ⁻Δ⁺⁺(1232) -> μ⁺ рπ⁺ 197 кандидатов

Барионные резонансы (4)

Сплошная кривая V_π=0 Точечная кривая V_π=25МэВ Сплошная кривая $V_N = 33.7$ МэВ и др Точечная кривая $V_{\pi} = 0$ МэВ

Барионные резонансы (5)

B/c) ²]	10°	
[10 ³⁸ cm ² /(F3		
d6/dQ ²		5
	10^{-2}	

Пучок	Ускоритель	коритель Эксперимент Мишень $M_A(\Gamma \mathfrak{sB})$		ссылка	
$ u_{\mu}$	АНЛ	12'ПK	D_2	$0.98^{+0.06}_{-0.03}$	[139]
$ u_{\mu}$			H_2/D_2	0.93 ± 0.11	[149]
$ u_{\mu}$	БНЛ	$7'\Pi K$	D_2	1.28 ± 0.11	[140]
$ u_{\mu}$	ИФВЭ	$\Pi K \ C K A T$	CF_3Br	$1.01\pm0.09\pm0.15$	Этот эксп.
$ u_{\mu}$	ФНАЛ	$15'\Pi K$	Ne/H_2	$1.25_{-0.13}^{+0.15}$	[147]
$ u_{\mu}$	ЦЕРН ПС	ПК БЕБС	D_2	0.85 ± 0.10	[141]
$ u_{\mu}$			H_2/D_2	1.03 ± 0.07	[151]

Барионные резонансы (6)

Барионные резонансы (7)

 $\overline{\nu}n \rightarrow \mu^+ n\pi^-$

• - данные СКАТ

Исследование образования ρ⁰(770) мезонов

Резонанс $\rho^{0}(770)$ мы ищем как пик распределении по массе ($\pi^{+} \pi^{-}$)-пар.

$$\frac{dN}{dm} = [1 + a_1 B W_\rho(m)] B G(m)$$

$$BW = \frac{m}{k} \frac{m_R \Gamma'_R}{(m^2 - m_R^2)^2 + m_R^2 \Gamma'_R^2},$$

$$\Gamma_R' = \Gamma_R (\frac{k}{k_R})^{2L+1} \frac{m_R}{m}$$

$$BG = \alpha_1 exp(\alpha_2 M + \alpha_3 M^2).$$

Учет отражений

Кроме $\rho^0(770)$ -мезонов на форму dN/dM($\pi^+ \pi^-$) -распределения влияет вклад и от других резонансов, среди продуктов распада которых имеются $\pi^+ \pi^-$ -пары. Такие вклады обычно называют отражениями.

Испытаны два метода учета отражений.

$$\frac{dF(\omega)}{dM(\pi^+\pi^-)} = KM[-\frac{1}{12}M^2[x_{max}^3 - x_{min}^3] + \frac{1}{4}M^2(m_\pi^2 - \nu)[x_{max}^2 - x_{min}^2] - \frac{1}{4}m_\pi^2(m_\omega^2 - m_\pi^2)^2[x_{max}^2 - x_{min}^2]]$$

где $\nu = (m_{\omega}^2 + m_{\pi}^2 - M^2)/2$, К - нормировочный множитель.

Для подавления отражения ω -мезона нижней границей фита выбрано значение М($\pi^+ \pi^-$) = 0.5 ГэВ, которое выше максимума распределения отражения ω -мезона.

Учет экспериментального разрешения

Искажение формы резонансного пика в распределении dN/dM за счет экспериментальных погрешностей при восстановлении эффективной массы $\pi^+ \pi^-$ пары учитывалось добавлением экспериментального разрешения по массе в области массы $\rho^0(770)$ -мезона $\Delta\Gamma = 47$ МэВ к табличной ширине резонанса.

В массовом распределении пар одинакового знака резонансов быть не должно.

Что у конкурентов? Что в адронных экспериментах?

ВЕВС 1986г.

пучок π p = 8ГэВ/с

Распределение по W^2

∆ – данные СКАТ

 $x_{\rm F} = 2p_{\rm L}^{*}/W$

Δ – данные СКАТ

Распределение по P_T^2

При $P_T^{2>}$ 0.2 наклоны совпадают.

CERN

Нейтринный пучок WANF CERN

Нейтрино	Поте	эк	СС взаимодействия в NOMAD		
флейвор	$< E_{\nu} > [\Gamma \Im B]$ отн. вклад		$< E_{\nu} > [\Gamma \Im B]$	отн. вклад	
$ u_{\mu} $	23.5	1	43.8	1	
$\bar{ u}_{\mu}$	19.2	0.0612	42.8	0.0255	
$ u_e $	37.1	0.0094	58.3	0.0148	
$\bar{ u}_e$	31.3	0.0024	54.5	0.0016	

Отрицательная фокусировка ->

Нейтрино	СС взаимодействия в NOMAD			
флейвор	$< E_{\nu} > [\Gamma \Im B]$	отн. вклад		
$ u_{\mu}$	58.2	0.384		
$ar u_\mu$	34.	1.		
$ u_e$	56.6	0.0165		
$\overline{ u}_e$	47.9	0.013		

Нейтринные спектры

Установка NOMAD

Типичное событие заряженного тока

Эксперимент NOMAD

Установка NOMAD создавалась для поиска осцилляций v_{μ} -> v_{τ} v_{τ} CC взаимодействия идентифицируются по распадам τ^{-} . Наблюдение v_{τ} в детекторе несомненно свидетельствует об осцилляции.

Монте-Карло симуляция основана на программах LEPTO6.1 - JETSET7.4 - Geant3.

Распределение по массе ($\pi^+ \pi^-$)-пар в сырой выборке.

Выделение сигнала

m

$$\frac{dN}{dm} = [1 + a_1 B W_{\rho}(m) + a_2 B W_{f_0}(m) + a_3 B W_{f_2}(m)] B G(m).$$

$$BW = \frac{m}{k} \frac{m_R \Gamma'_R}{(m^2 - m_R^2)^2 + m_R^2 \Gamma'_R^2}$$
$$\Gamma'_R = \Gamma_R (\frac{k}{k_R})^{2L+1} \frac{m_R}{m}$$

 $BG = a_4(m - 2m_\pi)^{a_5} exp(a_6m + a_7m^2 + a_8m^3),$

Учет отражений

После вычитания отражений

В массовом распределении пар одинакового знака резонансов быть не должно.

После вычитания комбинаторного фона

45

Что у предшественников?

Отражения у них не вычитались.

Функция разрешения не учитывалась.

Значения масс и ширин резонансов не измеряли.

Массы и ширины резонансов

Наши результаты:

Резонанс	Брэнчинг	Полное число	Средняя	Macca	Г(МэВ)
	в $\pi^+\pi^-$ [212]	мезонов	множественность	МэВ	
$\rho^0(770)$	1.000	130368 ± 4336	$0.195 {\pm} 0.007$	768 ± 2	151 ± 7
$f_0(980)$	0.666	11809 ± 1965	$0.018 {\pm} 0.003$	963 ± 5	35 ± 10
$f_2(1270)$	0.564	25189 ± 3958	$0.038 {\pm} 0.006$	1286 ± 9	198 ± 30

Источники систематики	$ \rho^0((770)) $	$f_0(980)$	$f_2(1270)$	Резонанс	Macca	$\Gamma(M \Rightarrow B)$
Вычитание отражений	13 МэВ	3 МэВ	11 МэВ		МэВ	
Ширина бины	5 МэВ	3 МэВ	1 МэВ	$ \rho^{0}(770) $	$769.3 {\pm} 0.8$	$152 {\pm} 0.8$
Модель фитирования	12 МэВ	5 МэВ	6 МэВ	$f_0(980)$	$980{\pm}10$	40 to 100
Суммарная	18 МэВ	7 МэВ	13 МэВ	$f_2(1270)$	1275 ± 1.2	184.3 ± 3.4

Систематика (ширины)

PDG

Распределение по W²

Что у предшественников?

Предсказания модели Лунда на 60-70% выше их экспериментальных данных.

Распределение по Е,

Распределение по Q²

Распределение по X_F

Распределение по Z

Распределение по P_T^2

Сплошная линия – предсказание модели Лунда. Пунктирная прямая – фит экспонентой.

Проверка модели Грибова

Мы сравнили зависимость от адронной множественности в нашем интервале для f₀(980) с предсказаниями теории Грибова. Клоуз и др. заметили, что сигнатурой грибовского вакуумного состояния должен быть повышенный выход событий с малыми множественностями адронов.

Заключение

 Разработана методика выделения эксклюзивных каналов: квазиупругих реакций нейтрино, реакции vp -> µΔ⁺⁺ (1232), однопионных каналов.

2) Разработана методика выделения инклюзивного образования адронных резонансов.

3) Определены полные и дифференциальные do/dQ² сечения квазиупругих взаимодействий нейтрино и антинейтрино с нуклонами ядер CF3Br в области энергий 3-30ГэВ. Из анализа полного и дифференциального сечения получено значение параметра M_A в рамках V-A - теории квазиупругих взаимодействий нейтрино и антинейтрино.

4) Определены полное и дифференциальное сечения эксклюзивного процесса vp $\rightarrow \mu \Delta^{++}$ (1232) в нейтринных взаимодействиях заряженного тока. Из фита сечений получено значение параметра релятивистской кварковой модели $M_A = 1,01 \pm 0,09\Gamma$ эB/c2. Исследованы все однопионные каналы взаимодействия нейтрино и антинейтрино, построены их полные сечения, получены значения M_A .

5) В рамках модели внутриядерного каскада установлено, что пион от распада $\Delta(1232)$, не теряет энергию на преодоление ядерного потенциала.

6) Исследовано инклюзивное образование ρ⁰(770) в нейтринных взаимодействиях заряженного тока в области энергий 3 ÷30ГэВ. Определен средний выход ρ⁰(770) мезонов в нейтринных взаимодействиях на ядрах CF₃Br. Показано, что 10±2% отрицательных пионов в эксперименте CKAT происходят от ρ⁰(770) мезонов.

7) Исследована зависимость ρ⁰(770) мезонов от эффективной массы адронной системы. Показано, что средний выход ρ⁰(770) мезонов растет логарифмически с W², что согласуется с другими нейтринными экспериментами.

8) Анализ дифференциальных распределений по X_F и Z для $\rho^0(770)$ мезонов показывает, что большая часть $\rho^0(770)$ -мезонов в эксперименте СКАТ образуется в области фрагментации тока.

9) Из сравнения наших данных с данными других экспериментов видно, что при больших W² (>9ГэВ² и Z (>0.3-0.4) ядро слабо влияет на средний выход ρ⁰(770) -мезонов.

10) В эксперименте NOMAD инклюзивное образование мезонного резонанса ρ⁰(770) в нейтрино-ядерных взаимодействиях было изучено со статистической точностью существенно лучшей, чем в предыдущих экспериментах.

11) Был осуществлен поиск других резонансов, распадающихся на $\pi^+ \pi^-$ -пары. Впервые в нейтринных взаимодействиях был наблюден $f_0(980)$ -мезон (на уровне 6.0 стандартных отклонений).

12) Наблюден явный сигнал от резонанса f₂(1270). Его наличие в нейтринных взаимодействиях твердо установлено (на уровне 6.4 стандартных отклонений).

15) Глобальный фит распределения по массе $\pi^+ \pi^-$ -пар позволил определить массы и ширины резонансов $\rho^0(770)$, $f_0(980)$, $f_2(1270)$ с высокой точностью.

16) Были измерены средние множественности резонансов $\rho^0(770)$, $f_0(980)$, $f_2(1270)$ как функции W², Q² и других кинематических переменных. Полученные результаты сравнивались с Монте-Карло симуляцией, основанной на программах LEPTO6.1 - JETSET7.4. Хорошее согласие наблюдалось в большинстве распределений. Измерение выходов резонансов $f_0(980)$ и $f_2(1270)$ позволило установить новые значения параметров модели, которые качественно улучшили описание экспериментальных данных.

17) Проведено сравнение с предсказаниями модели Грибова зависимость от адронной множественности в нашем интервале W выходов $f_0(980)$. Показано, что ожидаемый в данной модели повышенный выход $f_0(980)$ -мезонов в событиях с малыми множественностями адронов не наблюдается.