

Physics at DAΦNE and KLOE-2

M. Martemyanov, ITEP, Moscow

- \geq e⁺e⁻– collider at ϕ –meson peak (1020 MeV)
- ➢ 2 interaction regions
- Trajectory length : 97.69 m
- ➢ Number of stored bunches: up to 120
- $\rightarrow \phi$ momentum : ~ 13 MeV/c

First data taking period : **1999 – 2006** Best result :

> $L = 1.4 \times 10^{32} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ /Ldt = 8.5 pb⁻¹/ per day

In 2008 DA Φ NE has implemented a new interaction scheme based of a large Piwinski angle (ψ) and crab-waist compensation induced by properly designed sextupoles $*^{\dagger}$

$DA\Phi NE$ / future plans

➢ New director (U. Doselli since June 2011) stated that LNF is committed to running DAΦNE and to delivering the luminosity to make KLOE–2 a successful experiment

- ▶ Recent time (2009 2011 years) AD had too much problem to start upgraded collider
- ▶ Now the planned time to begin KLOE-2 operations is Novermber 2001
- Time reserved for KLOE–2 data –taking is around 2 or 3 years
- \triangleright As SuperB construction begins, DA Φ NE running should be winding down.
- SuperB will be funded separately from INFN base budget

➢ Now (April 2011) the site of new project was chosen : campus of the Tor Vergata University (Roma 2)

SuperB / recent news

➢ In SuperB is inserted in April 2010 among the Italian National Research Program (PNR) as a flagship project

- ➤ In April 2011 PNR approved 250M for next four years
- ➢ Special Russian–Italian agreement for SuperB and funding managed through "Kurchatov Institute" (70M)

SuperB project

e+e⁻ – asymmetrical collider

- Max. energy up to 4 and 7 GeV
- Flexible running energy
- Starting luminosity at large Piwinski angle

 $L = 1 \times 10^{36} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

> Luminosity upgrade to 2.5×10^{36} cm⁻² s⁻¹

after 5 years of running

- > Two distinct modes of operation:
 - ✓ 4S region $\Upsilon(1S) \Upsilon(6S)$
 - ✓ Charm threshold region: $\psi(3770)$ and nearby thresholds
- Super Flavour Factory at large data sample
- Alternative way to search for new physics beyond the LHC scale

KLOE – detector

Drift chamber

- \blacktriangleright Large volume : $\varnothing = 4m$, L = 3.3 m
- Solve Gas mixture : 90 % He + 10% C_4H_{10}
- > Resolutions : $\sigma xy = 0.15 \text{ mm}$, $\sigma z = 2 \text{ mm}$ $\delta p/p = 0.4 \%$, $\sigma_{vertex} \sim 1 \text{ mm}$

Calorimeter

- Construction : lead / scintillating fibers
- Solid angle coverage: 98%
- $\blacktriangleright \text{ Resolutions : } \sigma E/E = 5.7 \% / \sqrt{E(GeV)}$ $\sigma t = 55 \text{ ps} / \sqrt{E(GeV)} \oplus 100 \text{ ps}$
- PID capabilites

Physics at KLOE/KLOE-2

From 2001 to 2005 KLOE collected $\sim 2.5 \text{ fb}^{-1} (8 \times 10^9 \phi - \text{meson decays})$

Decay channel	Events (2.5 fb⁻¹)
<i>K</i> + <i>K</i> ⁻	3.7×10 ⁹
$K_S K_L$	2.5×10 ⁹
$ ho\pi$ + $\pi^+\pi^-\pi^0$	1.1×10 ⁹
ηγ	9.7×10 ⁷
$\pi^{0}\gamma$	9.4×10 ⁶
η' γ	4.6×10 ⁵
ππγ	2.2×10 ⁶
$\eta\pi^{0}\gamma$	5.2×10 ⁵

KLOE–2 Step 0

Minimal detector upgrade for the first KLOE–2 run (~ 5 fb⁻¹ for one year data taking): taggers to detect electron and positrons from

 $e^+e^- {\rightarrow} e^+e^- \gamma^*\gamma^* {\rightarrow} e^+e^- X$

Two type of taggers are installed :

LET – calorimeter detector

➢ It installed inside KLOE−2

➢ Size : 6 cm × 7.5 cm ×12 cm

LET constructed from 20 LYSO

crystals (X₀ ~1 cm) and coupled to

the SiPM

Solution was obtained on small prototype : $\sigma E/E < 10\%$ at E < 100 MeV

HET tagger

➢ HET – position detector (hodoscope) and provides a measurement of the scattered leptons with respect to nominal orbit

> There is a strong correlation between energies and displacement in the horizontal plane

> Detector position can be moved between 30 - 50 mm from beam

- > Hodoscope made by two rows of 15 scintillators $(3 \times 5 \times 6 \text{ mm}^3)$
- > Spatial resolution: 5mm; time resolution: ~200 ps

Active part of the detector has been assembled with their mechanical structure. Installation is planned to be within September 2011

KLOE – 2 Step 1

IT (Inner Tracker) installation (between beam pipe and drift chamber) to improve tracking and vertex reconstruction of the charged particles decaying near IP

▶ QCALT (Quadrupole tile calorimeter) : detection of the γ's coming from K_L – decays in the drift chamber

CCALT (Crystal calorimeter): increase acceptance for γ 's from IP (polar angle from 21⁰ down to 10⁰)

Inner Tracker

Main physics goals : vertex reconstruction in the K_S , η , η' – decays and in $K_S - K_L$ interference measurement Cylindrical GEM (CGEM) detector was proposed and built for the first time ever

✓ XV strips – pads readout

✓ 4 CGEM layers with radii from 13 to 23 cm from IP and before DC wall

Spatial resolution :

 $\sigma_{r\phi} \sim 200 \ \mu m$, $\sigma_z \sim 500 \ \mu m$

700 mm active length

✓ Radiation length in the active volume is 1.5% X₀

LNF Note 10/3(P), 2010

✓ CGEM design requirements, performance and XV readout scheme validated with exhaustive R&D phase

The construction of the Inner Tracker was started and planned to be completed next summer

QCALT and CCALT – calorimeters

QCALT located along beam-line
 Two dodecagonal structures (1 m length)
 5 layers with tungsten (thick = 3.5 mm) + tiles (5mm) + air gap (1mm) for a total 5.5 X0

- 20 cells / row for a total of 2400 readout channels
- \checkmark Fast timing resolution < 1ns
- Readout was performed with 400 pixels SiPM (MPPC)

- CCALT composed of two small barrels of 24 LYSO crystals each
 Each crystal has a length of 10 –13 cm and transverse area from 1.5×1.5 cm² to 2 ×2 cm²
 Time resolution : 300–500 ps for 20 MeV photons
- Readout was done with SiPM

Main purpose : collect 20 fb^{-1} at the DA Φ NE upgraded luminosity using the crab—waist scheme

✓ Kaon physics

- \bullet Test of CPT in correlated kaon decays and Ks semileptonic decays
- Test of SM (CKM unitarity and lepton universality)
- Test of ChPT in Ks decays
- ✓ Spectroscopy of the light mesons
 - η , η' , a_0 , f_0 , σ from ϕ radiative decays
- \checkmark $\gamma\gamma$ physics
 - Scalar resonances in two photon collisions ($e^+e^- \rightarrow e^+e^- \pi^+\pi^-$)
 - Single pseudoscalar final state
- ✓ Dark matter searches
 - Light U boson (low energy region)

KLOE–2 physics program : G. Amelino-Camelia et al., Eur.Phys.J. C68, 619 (2010)

CPT-symmetry test in Ke3 decays

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ v) - \Gamma(K_{S,L} \to \pi^+ e^- \overline{v})}{\Gamma(K_{S,L} \to \pi^- e^+ v) + \Gamma(K_{S,L} \to \pi^+ e^- \overline{v})}$$

CPT invariance : $A_S = A_L = 2Re\varepsilon \sim 3 \times 10^{-3}$

KLOE result: $A_S = (1.5 \pm 9.6_{\text{stat}} \pm 2.9_{\text{syst}}) \times 10^{-3}$

KTEV(02): $A_L = (3.32 \pm 0.06_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-3}$ ✓ Result based on *Lint* = 410 pb⁻¹ sample and statistical error gives a main contribution ✓ With IT installation and KLOE (KLOE–2)

statistics it's expected 0.3 % on $BR(Ks \rightarrow \pi e \nu)$

F. Ambrosino et al., Phys. Lett. B636, 173(2006)

M. Martemyanov - INR, Troitsk - 31.10.2011

Quantum decoherence

Interference between two kaons in the entangled state has been observed in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ by the KLOE (2005). $\Delta t = t1 - t2$ $K_{S,L}$ $I(\pi^{+}\pi^{-}, \pi^{+}\pi^{-}; \Delta t) \infty e^{-\Gamma_{L}\Delta t} + e^{-\Gamma_{S}\Delta t} - 2(1 - \zeta_{SL})e^{-(\Gamma_{S} + \Gamma_{L})/2\Delta t}\cos(\Delta m\Delta t)$ $K_{L, S}$ ζ_{SL} – decoherence parameter (in the $\{K^0 \overline{K^0}\}$ basic defined as ζ_{00}) $K_{\rm S}K_{\rm L} \rightarrow \pi^+\pi^-\pi^+\pi^-$ KLOE result based on 1.5 fb^{-1} $\rightarrow \pi^+\pi^-\pi^+\pi$ 1200 $\zeta_{SL} = (0.3 \pm 1.8_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-2}$ 1000 $\zeta_{00} = (1.4 \pm 9.5_{\text{stat}} \pm 3.8_{\text{syst}}) \times 10^{-7}$ 800 600 Compatible with the prediction: $\zeta_{SL} = \zeta_{00} = 0$ 400 (no decoherence effect and good test of CPT 200 coservation) 6 10 8 $\Delta t/\tau_{c}$ A. Di Domenico et al., J.Phys.Conf.Ser. 171, 012008 (2009)

✓ $K_S \rightarrow 3\pi^0$ is a pure CP – violating process ✓ CP – violation is parameterized as : $\eta_{000} = \frac{A(K_S \rightarrow \pi^0 \pi^0 \pi^0)}{A(K_L \rightarrow \pi^0 \pi^0 \pi^0)} = \varepsilon + \varepsilon'_{000}$ where ε and ε'_{000} quantify indirect and direct CP – violation. Assuming that $\eta_{000} \sim \varepsilon$ one can estimate BR $(K_S \rightarrow 3\pi^0) \sim 1.9 \times 10^{-9}$ ✓ Search of the decay was performed by KLOE with a pure K_S beam obtained by K_L interaction in the calorimeter $(K_L - \text{crash})$ and detecting six photons for $Lint = 450 \text{ pb}^{-1}$

```
BR(K_S \rightarrow 3\pi^0) < 1.2 ×10<sup>-7</sup> and |\eta_{000}| < 0.018
```

F. Ambrosino *et al.*, Phys.Lett. B619, 61(2005)

> New procedure to refine cluster reconstruction has been obtained

> KLOE–2 expectation: an upper limit lower than 10^{-8}

Mo	ode	Parameter	Present best measurement	KLOE-2 (25 fb ⁻¹)
$K_S \rightarrow$	πev	A_S	$(1.5 \pm 11) \times 10^{-3}$	$\pm 1 imes 10^{-3}$
$\pi^+\pi^-$	$\pi l v$	A_L	$(332.2 \pm 5.8 \pm 4.7) \times 10^{-5}$	$\pm 4 \times 10^{-5}$
$\pi^+\pi^-$	$\pi^{0}\pi^{0}$	R e(<i>\varepsilon'\varepsilon</i>)	$(1.65 \pm 0.26) \times 10^{-3}$	\pm 0.3 × 10 ⁻³
$\pi^+\pi^-$	$\pi^{0}\pi^{0}$	Im(\varepsilon \langle \varepsilon \varepsilon \vee)	$(-1.2 \pm 2.3) \times 10^{-3}$	$\pm 4 \times 10^{-3}$
$\pi^+\pi^-$	$\pi^+\pi^-$	∆m	$(5.288 \pm 0.043) \times 10^9 \text{ s}^{-1}$	$\pm 0.05 imes 10^9 m s^{-1}$
$\pi^+\pi^-$	$\pi^+\pi^-$	ζ_{SL}	$(0.3 \pm 1.9) \times 10^{-2}$	\pm 0.2 $ imes$ 10 ⁻²
$\pi^+\pi^-$	$\pi^+\pi^-$	ζ_{00}^{-}	$(0.1 \pm 1.0) \times 10^{-6}$	\pm 0.1 $ imes$ 10 ⁻⁶
$\pi^+\pi^-$	$\pi^+\pi^-$	α	$(-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$	$\pm 2 \times 10^{-17} \text{ GeV}$
$\pi^+\pi^-$	$\pi^+\pi^-$	β	$(2.5 \pm 2.3) \times 10^{-19} \mathrm{GeV}$	\pm 0.2 × 10 ⁻¹⁹ GeV
$\pi^+\pi^-$	$\pi^+\pi^-$	γ	$(1.1 \pm 2.5) \times 10^{-21} \text{GeV}$	\pm 0.3 × 10 ⁻²¹ GeV
$\pi^+\pi^-$	$\pi^+\pi^-$	Re(w)	$(-1.6 + 3.0 \pm 0.4) \times 10^{-4}$	$\pm 3 \times 10^{-5}$

KLOE current resolution : $\sigma(\Delta t) \sim \tau_{S}$, IT installation gives $\sigma(\Delta t) \sim 0.3\tau_{S}$

 $e^+e^- \rightarrow e^+e^- \gamma^* \gamma^* \rightarrow e^+e^- X$

Taggers are essential to reduce background from ϕ -decays and close kinematics

$\gamma\gamma \rightarrow \sigma \rightarrow \pi\pi$

➤ IInd region (450-850 MeV) contains peak of scalar resonance σ, or $f_0(600)$

> Structure of σ (q \bar{q} or qq $\bar{q}\bar{q}$) is under discussion

Values of mass and width are known with large uncertainties

 \sqrt{s} (GeV)

 $\sigma(e^+e^- \rightarrow e^+e^- \pi^0)$ nb

1.02

271

45

4.9

1.2

371

66

20

1.4

364

90

40

Final states :
$$X = P = \pi^0, \eta, \eta'$$

 $\sigma(e^+e^- \rightarrow e^+e^- \eta)$ nb Measurement of two-photons $\sigma(e^+e^- \rightarrow e^+e^- \eta')$ nb decay width $\Gamma(P \rightarrow \gamma \gamma)$ which can be extracted from cross sections $\sigma(e^+e^- \rightarrow e^+e^- P)$ $\Gamma(P \rightarrow \gamma \gamma)$ is used for calculation of the mixing angle (φ_P) and gluonium content ($Z_G^2 = \sin^2 \phi_G$)

Measurement of the form factors $\gamma^* \gamma^* \rightarrow \pi^0, \eta$ at low Q^2

 $0.02 \, \text{GeV}^2 < Q^2 < 0.4 \, \text{GeV}^2$

 η' meson is considered a good candidate to host a gluon condensate. This question has been extensively investigated but it's still without a definite conclusion

 $\eta - \eta'$ mixing and η' gluonium content

KLOE measurement: $R\phi = \frac{BR(\phi \rightarrow \eta' \gamma)}{BR(\phi \rightarrow \eta \gamma)} = (4.77 \pm 0.09_{STAT.} \pm 0.19_{SYST.}) \times 10^{-3}$

related to the mixing angle and gluonium content.

 $\varphi_P = (40.4 \pm 0.6)^0$ $Z_G^2 = 0.12 \pm 0.04$ at $\chi^2/ndf = 4.6/3$ $P(\chi^2) = 20\%$

F. Ambrosino *et al.*, JHEP 0907, 105(2009)

M. Martemyanov - INR, Troitsk - 31.10.2011

 $\eta - \eta'$ mixing: from KLOE to KLOE-2

KLOE : global fit with 6 free parameters to various relation between hadronic widths

KLOE–2 expxectation measuring of η' branching ratio with 1 % accuracy

M. Martemyanov - INR, Troitsk - 31.10.2011

Dark matter searches

 e^{γ^*} U e^{γ^*} U e^{γ^*} e^{γ^*} e^{γ^*} U

Recent observations from independent experiments (PAMELA, ATIC, INTEGRAL, DAMA/LIBRA) can be explained by a secluded gauge sector (U – boson with mass near the GeV scale). U – boson couples the secluded sector to SM through its kinetic mixing (mixing parameter $\varepsilon \leq 10^{-3}$)

R. Essig et al., Phys.Rev. D80:015003 (2009)

Possible scenarios :

- $\phi \rightarrow \eta U$, $U \rightarrow e^+e^-$
- $e^+e^- \rightarrow Uh'$ (*h*' Higgs' strahlung) :

 $(m_{h'} < m_U)$: $U \rightarrow l^+ l^-$, h' – undetected; process can be defined only by two detected leptons + missing mass

 $(m_{h'} > m_U) h' \rightarrow UU \rightarrow 4l \text{ (multi - lepton events)}$

 \blacktriangleright KLOE search $\phi \rightarrow \eta U$, $U \rightarrow e^+e^-$

• $\eta \rightarrow \pi^+ \pi^- \pi^0$ (preliminary result available), $\eta \rightarrow \gamma \gamma$ (in progress)

> Main irreducible background from $\phi \rightarrow \eta e^+e^-$ (BR measured in CMD–2, SND)

> KLOE obtained result (systematics not included) on 739 pb⁻¹ ~ 20 events and

 $\epsilon < 3 \times 10^{-3}$ in the region $25 < Mee < 425 \ MeV$

> KLOE–2 data taking can improve result to 10^{-3}

M. Martemyanov - INR, Troitsk - 31.10.2011

- ✓ KLOE-data (*Lint*. = 1.65 fb⁻¹ *at* ϕ peak and *Lint*. = 0.2 fb⁻¹ \sqrt{S} = 1 GeV) ✓ Crucial background from $\phi \rightarrow K^+ K^- / \pi^+ \pi^- \pi^0$
- Possible decision to suppress background : using off-peak sample
 Next step: improvement of the vertex reconstruction (IT installation)

 \checkmark New DA Φ NE interaction scheme (crab-waist) is successfully implemented. It increased the old luminosity by factor 3 (instantaneous luminosity ~ 4×10^{32} cm⁻² s⁻¹) \checkmark **DA** Φ **NE** is in commissioning phase ✓ KLOE-2 collaboration proposed a wide physics program ✓ KLOE–2 is ready to start a long period of data-taking ✓ Installation of the taggers (HET and LET) gives a way to search $\gamma\gamma$ – physics processes ✓ New detector upgrades (calorimeters and inner tracker) are

planned to install next year

M. Martemyanov - INR, Troitsk - 31.10.2011