

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМЕНИ Д.В. СКОБЕЛЬЦЫНА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М.В. ЛОМОНОСОВА

Исследования антинейтрино и его источников в эксперименте Борексино

Громов М.Б., Чепурнов А.С. от имени коллаборации Борексино

Семинар Отдела физики высоких энергий ИЯИ РАН

19.01.2015

КАФЕДРА ОБЩЕЙ ЯДЕРНОЙ ФИЗИКИ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М.В. ЛОМОНОСОВА

Borexino: солнечная программа

Громов М.Б. (ОЯФ ФФ МГУ)

Нейтрино: основные результаты

Громов М.Б. (ОЯФ ФФ МГУ)

Гео-нейтрино

Детектор Borexino

- Жидко-сцинтилляционный детектор
- Размещён в подземной лаборатории
 1400 м ⇔ 3800 м.в.э. или
 1.2 мюона/(ч · м²)
- Слоистая защита (луковичная структура)
- Работает в режиме реального времени

19.01.2015

4 / 44

- Высокая радиохимическая чистота прежде всего по урану и торию: $^{238}{
 m U} < 8 imes 10^{-20} \ {
 m r/r}, \ ^{232}{
 m Th} < 9 imes 10^{-19} \ {
 m r/r}$
- Суммарный световыход ⇒ энергия, ~500 ф.э./МэВ, точность 5% на энергии в 1 МэВ, диапазон видимой энергии: от 0.2 до 50 МэВ
- Время пролёта (до каждого ФЭУ) ⇒ пространственное положение события в детекторе с точностью в 10 см на энергии в 1 МэВ
- Отбор событий по форме импульса

Громов М.Б. (ОЯФ ФФ МГУ)

Введение Регистрация антинейтрино Borexino: Фазы 1,2 Гео-нейтрино

SOX Заключение

5 / 44

Источники антинейтрино

Громов М.Б. (ОЯФ ФФ МГУ)

SOX Заключение

19.01.2015

Обратный β -распад

Обратный eta -распад $\overline{
u}_e + p \longrightarrow n + e^+ - \,$ основной процесс

для детектирования антинейтрино

Реакция характеризуется четкой сигнатурой:

- мгновенное событие (prompt event) – аннигиляция $e + e^+ \longrightarrow 2\gamma$ Видимая энергия при условии пренебрежения отдачей нейтрона $E_{\rm MITH} = E_{\rm KUH}(e^+) + m_{e^+} + m_{e^-} =$ $= E_{\overline{\nu}_e} + Q + 2m_e = E_{\overline{\nu}_e} - 0.784$ MэB
- запаздывающее событие (delayed event) – захват термализованного нейтрона с последующим испусканием γ -квантов $n + X(A, Z) \longrightarrow X(A + 1, Z) + \gamma$

Реакция является пороговой, $|Q| = m_n + m_{e^+} - m_p, \ Q < 0,$ $E_{\text{пор}} = |Q| \left(1 + \frac{|Q|}{2m_p} \right), \text{ т.к. } m_{\overline{\nu}_e} \sim 0, \quad E_{\text{пор}} = 1.806 \text{ МэВ}$

Громов М.Б. (ОЯФ ФФ МГУ)

,2 Гео-нейтрино осососососососососососососососо

Антинейтринная физика (Фазы 1 и 2)

- Измерение потока гео-нейтрино и исследования внутреннего строения Земли (проверка существующих моделей Земли) Сопоставление результатов экспериментов Borexino и KamLand
- Поиск вспышек сверхновых звёзд Вогехіпо участвует в глобальном проекте SNEWS
- Получение оценки сверху на аномальный магнитный момент нейтрино путём поиска возможных осцилляций солнечных борных нейтрино в антинейтрино
 Результат сильно зависит от модели Солнца

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015

7 / 44

2 Гео-нейтрино 50>

План (Фаза 1 и 2)

- Обновить текущие результаты на большей статистике
- Продолжить поиск вспышек сверхновых звёзд
- Поиск корреляций между (анти)нейтринными событиями и гамма-всплесками (GRB)
- Поиск корреляций в данных нейтринных экспериментов и экспериментов по поиску гравитационных волн
- Атмосферные антинейтрино низких энергий? (десятки МэВ, обсуждается возможность измерения)

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015

19.01.2015

60

9 / 44

В ожидании вспышки сверхновой

500

- Borexino
- IceCube ۰

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

IVD

30

Энергия нейтрино (антинейтрино), МэВ

Super-KamiokaNDE

10

۰

19.01.2015 10 / 44

Что такое "гео-нейтрино"?

Гео-нейтрино – нейтрино и антинейтрино, возникающее в ходе цепочек распадов радиоактивных изотопов, входящих в компонентный состав Земли.

Основные цепочки распадов:

 $\label{eq:238} \begin{array}{l} ^{238}\mathrm{U} \longrightarrow \ ^{206}\mathrm{Pb} + 8\alpha + 8e^{-} + 6\widetilde{\nu}_{e} + Q_{238\mathrm{U}}, Q_{238\mathrm{U}} = 51.698 \ \mathrm{M} \circ \mathrm{B} \\ ^{232}\mathrm{Th} \longrightarrow \ ^{208}\mathrm{Pb} + 6\alpha + 4e^{-} + 4\widetilde{\nu}_{e} + Q_{232\mathrm{Th}}, Q_{232\mathrm{Th}} = 42.562 \ \mathrm{M} \circ \mathrm{B} \end{array}$

$${}^{235}\text{U} \longrightarrow {}^{207}\text{Pb} + 7\alpha + 4e^- + 4\tilde{\nu}_e + Q_{235\text{U}}, Q_{235\text{U}} = 46.402 \text{ M} \text{B}$$

$${}^{40}\text{K} \longrightarrow {}^{40}\text{Ca} + e^- + \tilde{\nu}_e + Q_{40\text{K}}, Q_{40\text{K}} = 1.311 \text{ M} \text{B} \text{ (89.3\%)}$$

$${}^{40}\text{K} + e^- \longrightarrow {}^{40}\text{Ar} + \nu_e + Q_{40\text{Ke}}, Q_{40\text{Ke}} = 1.505 \text{ M} \text{B} \text{ (10.7\%)}$$

Громов М.Б. (ОЯФ ФФ МГУ)

Спектр гео-нейтрино

Громов М.Б. (ОЯФ ФФ МГУ)

Зачем измерять поток гео-нейтрино?

0) Подтвердить существование гео-нейтрино и оценить их поток 1) Объяснение наблюдаемого теплового потока из недр Земли 2) Исследования структуры и компонентного состава Земли

Следствие: новые данные о происхождении Земли и Солнечной системы

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

19.01.2015

12 / 44

19.01.2015 13 / 44

Тепловое излучение Земли

тепловое излучение от Солнца	$\sim 1.4\;\kappa{ m Bt}/{ m m}^2$
среднее удельное тепловыделение от Земли	(60 – 90) мВт/м ²
тепловой поток от космических лучей	$\sim 10^{-8}\;{ m Bt}/{ m m}^2$

Исходя из геофизических данных, полный тепловой поток от Земли: 47 ± 2 ТВт

Тепловой поток от Земли содержит две компоненты:

- Остаточное тепло, возникшее на раннем этапе эволюции планеты
- Энергию, выделяющуюся в результате цепочек распадов радиоактивных изотопов, входящих в современный компонентный состав Земли
 99% от распадов ²³⁸U, ²³²Th, ²³⁵U, ⁴⁰K 1% от распадов ⁸⁷Rb, ¹³⁸La, ¹⁷⁶Lu

Громов М.Б. (ОЯФ ФФ МГУ)

Тепловое излучение Земли

Возможные источники остаточного тепла:

- гравитационная энергия, высвободившаяся в результате возникновения в гомогенной протопланете железно-никелевого ядра
- энергия от короткоживущего и уже полностью распавшегося ²⁶AI
- энергия от распадов долгоживущих изотопов, входящих в современный состав Земли, в предшествующие эпохи

Дополнительные источники тепла:

- гипотетический урановый реактор в центре Земли с мощностью не более 30 ТВт и радиусом \sim 4 км
- наличие ⁴⁰К в ядре

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015 14 / 44

Методы исследования строения Земли

- Сейсмические методы разведки (измерения скоростей распространения упругих волн в среде)
- Сбор и анализ химического состава образцов горных пород и мантии (петрология)
- Лабораторные исследования свойств различных химических соединений при нестандартных внешних условиях (от сотен кПа до сотен ГПа, температура до нескольких тысяч К) в том числе в рамках петрологии
- Анализ химического состава метеоритов
- Последние годы: Измерение потока гео-нейтрино

< 日 > < 同 > < 回 > < 回 > < 回 > <

19.01.2015

15 / 44

Предварительная Эталонная Модель Земли

Громов М.Б. (ОЯФ ФФ МГУ)

Гео-нейтрино

Структура Земли

 MORB - Mid-Ocean Ridge Basalts, базальты срединно-океанических хребтов
 Сос

 Громов М.Б. (ОЯФ ФФ МГУ)
 ВОREXINO: антинейтрино
 19.01.2015
 17 / 44

Структура нижней мантии

В относительно однородной среде на границе с ядром выделяют крупные блоки разных размеров:

- LLSVPs, Large Low Shear Velocity Provinces Большие Области Низких Скоростей Вторичных (Поперечных) Волн; существует две такие области; характерные размеры – 5000 км в длину и 1000 в высоту
- Зоны средних размеров, 1000 км в длину и 400 в высоту
- ULVZs, Ultra Low Velocity Zones Области Сверхнизких Скоростей; 100 км в длину и 10 км в высоту

Неоднородности мантии потенциально могут изменить наблюдаемый поток гео-нейтрино

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

・ロット 全部 マート・ キャー・

19.01.2015

19.01.2015

19 / 44

Компонентный состав Земли

Описывается семейством Силикатных Моделей Земли (CM3, англ. BSE, Bulk Silicate Earth)

- Задаёт состав Первичной Мантии (Primitive Mantle), возникшей после выделения железно-никелевого ядра и до формирования коры и современной мантии
- В качестве опорного компонентного состава берётся состав хондритов (разновидность каменных метеоритов) с учётом химического состава солнечной фотосферы Считается, что хондриты образовались непосредственно из протопланетного облака
- Для Th, U и K используются хондритовые (массовые) соотношения $m_{
 m Th}/m_{
 m U}=$ 3.9, $m_{
 m K}/m_{
 m U}=\sim13000$

Громов М.Б. (ОЯФ ФФ МГУ)

Компонентный состав Земли

Описывается семейством Силикатных Моделей Земли (CM3, англ. BSE, Bulk Silicate Earth)

- Делают поправки двух видов
 - Учитывают наблюдаемую распространнёность элементов в земной коре и в потоках мантии при извержении вулканов
 - Предполагают возможность потери планетой части своей массы* в ходе эволюции
- * вещества с низкой температурой конденсации

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015

20 / 44

SOX Заключение

21 / 44

19.01.2015

Базовые приближения

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

< ロ > < 同 > < 回 > < 回 >

Классификация моделей

Выделяют три категории моделей на основе

предсказываемого ими радиогенного теплового потока:

● *Q* = 10 − 15 TB_T

Частный случай – космохимические модели (энстатитные хондриты + столкновительная эррозия)

• Q = 17 - 22 ТВт (углеродистые хондриты + земные образцы)

Частный случай – геохимические модели

• Q > 25 ТВт

Частный случай – геодинамические модели (конвекция мантии + измерения потока тепла)

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

19.01.2015 22 / 44

Гео-нейтрино S

Размеры детектора

Данные приводятся для обратного β -распада при использовании водородной мишени

Сечение взаимодействия	$\sim 10^{-43}~{ m cm}^2$
Поток гео-нейтрино выше порога	$\sim 10^5 - 10^6 \; { m cm}^{-2} { m \cdot c}^{-1}$
Количество событий	10 - 100 TNU
"Свободных"протонов в мишени	$\sim 10^{32}$ шт.
Объём рабочего вещества (жидкость)	$\sim 10^3 \; { m m}^3$
Масса рабочего вещества (жидкость)	~ 1 кт

TNU, Terrestrial neutrino unit, Земная Нейтринная Единица – единица нейтринного потока, равная одному событию в мишени с 10³² "свободными" протонами за один год.

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

・ロト ・ 一 ・ ・ ・ ・

19.01.2015

Гео-нейтрино

19.01.2015

25 / 44

Влияние осцилляций

Упрощения:

 Приближение для вакуума, так как учёт среды увеличивает вероятность антинейтрино сохранить свой флейвор на 2%

•
$$\Delta m_{31}^2 \sim \Delta m_{32}^2 >> \Delta m_{21}^2$$

 Малость пространственной длины когерентности по сравнению с радиусом Земли

$$L \sim \pi c \hbar rac{4E}{\Delta m^2_{21}}, \ E \sim 3 \ {
m M}$$
эВ \Longrightarrow $L \sim 100 \ {
m Km} << R_{
m 3emjn} pprox 6371 \ {
m Km}$

В итоге:

$$\langle P_{\rm ee} \rangle \simeq \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2 \theta_{12} \right) + \sin^4 \theta_{13} \sim 0.55$$

Громов М.Б. (ОЯФ ФФ МГУ)

Влияние окружения

19.01.2015

Гео-нейтрино: публикации Borexino

Статьи:

- 1 G. Bellini et al., (Borexino Collaboration), Observation of geo-neutrinos, Phys. Lett. B 687 (2010) 299-304, arXiv:1003.0284v2.
- 2 G. Bellini et al., (Borexino Collaboration), Measurement of geo-neutrinos from 1353 days of Borexino, Phys. Lett. B 722 (2013) 295-300, arXiv:1303.2571v2.
- **3** В 2015 году ожидается статья с результатами на большей (удвоенной) статистике.

Обзоры:

- 1 G. Bellini, A. Ianni, L. Ludhova, F. Mantovani, W.F. McDonough, Geo-neutrinos, arXiv:1310.3732v1.
- 2 L. Ludhova, S. Zavatarelli, Studying the Earth with Geoneutrinos, Advances in High Energy Physics, Volume 2013 (2013), Article ID 425693, 16 pages, doi: 10.1155/2013/425693, arXiv:1310.3961v2.

Громов М.Б. (ОЯФ ФФ МГУ)

Гео-нейтрино

Предполагаемый спектр

спектр гео-нейтрино с учётом гео-нейтрино.

осцилляций.

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

Гео-нейтрино

SOX Заключение

Гео-нейтрино: результаты

< ロ > < 同 > < 回 > < 回 >

19.01.2015

Громов М.Б. (ОЯФ ФФ МГУ)

SOX Заключение

Гео-нейтрино: результаты

Экспозиция: (613 \pm 26) т·г или (3.69 \pm 0.16) $ imes$ 10 ³¹ протонов \cdot год					
N _{peakt}	N _{peakt}	Ост. фон	N _{reo}	N _{peaкт}	
модел. с осц.	модел. без осц.		эксп.	эксп.	
соб.	соб.	соб.	соб.	соб.	
			TNU	TNU	
33.3 ± 2.4	60.4 ± 2.4	0.70 ± 0.18	14.3 ± 4.4	$31.2^{+7}_{-6.1}$	
			$\textbf{38.8} \pm \textbf{12.0}$	$84.5^{+19.3}_{-16.9}$	
]		BSE S _{geo} [TNU] MOREAN		одели	
		A43			

₹50 ·	*			Модели	
÷ ۲			- Max -		
HNd. 40	┤ ┍ ┍ ┍ ┍ └ └	23.6	31.44	Javoy et al. (2010) (a)	
ней 30 -		26.6	35.24	Lyubetskaya & Korenaga (2007) (b)	
20 ·	a	28.4	37.94	McDonough & Sun (1995) (c)	
10 H	— СМЗ макс (BSE max)	28.4	37.94	Allegre et al. (1995) (d)	
ອັ	— СМЗ мин (BSE min)	29.6	39.34	Palme & O'Neil (2004) (e)	
0	4.9 6.9 8.1 8.1 8.9 11.3 12.5	33.3	44.24	Anderson (2007) (f)	
	Предполагаемая масса урана в СМЗ (BSE), 10 ¹⁶ кг		46.64	Turcotte & Schubert (2002) (g)	

Отсутствие гео-нейтрино исключено на уровне 4.4 σ или 99.9989% Верхнее ограничение на мощность гео-реактора составляет

4.5 ТВт с достоверностью 95%

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015 30 / 44

Определение вкладов

От коры и мантии

$S_{\text{Measured}} = S_{\text{LOCal}} + S_{\text{Rest Of Cruct}} + S_{\text{Mantle}}$				
	LOC	ROC	Measured	Mantle
	TNU	TNU	TNU	TNU
Borexino	9.7 ± 1.3	13.7 ± 2.5	38.8 ± 12.0	15.4 ± 12.3
KamLAND	17.7 ± 1.4	7.3 ± 1.4	31.1 ± 7.3	6.1 ± 7.6

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015

Borexino и KamLAND

	Borexino	KamLAND
Depth	3600 m.w.e $(\phi_{\mu}=1.2 \ m^{-2}h^{-1})$	2700 m.w.e $(\phi_{\mu}=5.4 \ m^{-2}h^{-1})$
Scintillator mass	278 ton (PC+1.5g/l PPO)	1 kt (80% dodec.+20% PC+1.4g/l PPO)
Inner Detector	13 m sphere, 2212 8" PMT's	18 m sphere, 1325 17"+554 20" PMT's
Outer detector	2.4 kt HP water + 208 8" PMT's	3.2 kt HP water + 225 20" PMT's
Energy resolution	5% at 1 MeV	6.4% at 1 MeV
Vertex resolution	11 cm at 1 MeV	12 cm at 1 MeV
Reactors mean distance	$\sim 1170 \mathrm{km}$	$\sim 180 \mathrm{km}$

Основные характеристики детекторов Borexino и KamLAND

	Borexino	KamLAND
Period	Dec 07 - Aug 12	Mar 02 - Nov 12
Exposure (proton \cdot year)	$(3.69 \pm 0.16) \ 10^{31}$	$(4.9 \pm 0.1) \ 10^{32}$
Reactor- $\bar{\nu}_e$ events (no osc.)	60.4 ± 4.1	3564 ± 145
$^{13}C(\alpha, n)^{16}O$ events	0.13 ± 0.01	207.1 ± 26.3
⁹ Li - ⁸ He events	0.25 ± 0.18	31.6 ± 1.9
Accidental events	0.206 ± 0.004	125.5 ± 0.1
Total non- $\bar{\nu}_e$ backgrounds	0.70 ± 0.18	364.1 ± 30.5

Уровни наиболее важных фонов

Громов М.Б. (ОЯФ ФФ МГУ)

Гео-нейтрино

Borexino и KamLAND: результаты

	Borexino	KamLAND
Period	Dec 07- Aug 12	Mar 02- Nov 12
Exposure (proton \cdot year)	$(3.69 \pm 0.16) \ 10^{31}$	$(4.9 \pm 0.1) \ 10^{32}$
Geo- ν events	14.3 ± 4.4	$116 \ ^{+28}_{-27}$
Geo- ν signal [TNU]	38.8 ± 12	30 ± 7
Geo- ν flux (oscill.) [$\cdot 10^6 \text{cm}^{-2} \text{s}^{-1}$]	4.4 ± 1.4	3.4 ± 0.8
Geo- ν signal/(not-oscill. anti- ν background)	0.23	0.032
Geo- ν signal/(non anti- ν background)	20.4	0.32

Энергетические спектры мгновенных событий

19.01.2015

Сопоставление результатов

Сопоставление результатов совместного анализа данных экспериментов Borexino

и KamLAND с предсказаниями разных моделей Земли. Обработка выполнена в

приближении сферически-симметричной мантий. Громов М.Б. (ОЯФ ФФ МГУ) ВОREXINO: антинейтрино

SOX Заключение

Радиогенный тепловой поток

Синяя область — космохимические СМЗ,

Зелёная область — геохимические СМЗ.

Заштрихованная пурпурная область — геодинамические СМЗ.

Громов М.Б. (ОЯФ ФФ МГУ)

Стерильные нейтрино: эксп. указания

Несколько разных экспериментов наблюдали неизвестные сигналы на уровне $\sim 3\,\sigma$:

• Ускорительная аномалия (3.8 σ) В эксперименте LSND в пучке ν_{μ} наблюдался избыток ν_e с низкими энергиями

Неизвестный сигнал на короткой базе?

• Галлиевая аномалия (2.8 σ)

В ходе калибровочных ранов с нейтринными источниками в солнечных радиохимических экспериментах SAGE, GALLEX был зарегистрирован дефицит в скорости счёта ν_e : $R=0.76\pm0.09$

ullet Реакторная антинейтринная аномалия ($\sim 2.5\,\sigma)$

Зафиксирован дефицит в скорости счёта во всех нейтринных реакторных экспериментах на короткой базе (L=10-100 м): $R=0.927\pm0.23$

Осцилляции электронных антинейтрино в стерильные $\widetilde{
u}_e \longrightarrow
u_s?$

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015 36 / 44

19.01.2015 37 / 44

Смешивание при стерильных нейтрино

В случае наличия легких стерильных нейтрино ($m_{
u} <$ 45 ГэВ,

непарные к Z⁰-бозону) матрица смешивания ПМНС в общем виде

Будут наблюдаться новые виды осцилляций:

активное состояное → стерильные

$$P(\nu_{e} \longrightarrow \nu_{s}) = \sin^{2} 2\theta_{14} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E} \right); \quad \sin^{2} 2\theta_{14} = 4 |U_{14}|^{2} (1 - |U_{14}|^{2})$$

2) активное состояное \rightarrow активное

$$P(\nu_{\mu} \longrightarrow \nu_{e}) = \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right); \quad \sin^{2} 2\theta_{12} = 4|U_{14}|^{2}|U_{24}|^{2}$$

Громов М.Б. (ОЯФ ФФ МГУ)

Методы наблюдения

Громов М.Б. (ОЯФ ФФ МГУ)

Short-distance Oscillations with BoreXino

Задачи:

- "Открыть/закрыть"стерильные нейтрино, исходя из нейтринной осциллометрии на короткой базе
- $\Delta m_{41}^2, \ \theta_{14}?$
- Прецизионные измерения угла Вайнберга на энергиях $\sim 1~{\rm Mas}$
- Измерение аномального магнитного момента нейтрино
- Измерение g_A и g_V в области низких энергий (единицы МэВ)

19.01.2015

SOX Заключение

CeSOX: ¹⁴⁴Ce/Pr как источник $\widetilde{\nu}_e$

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015

Ожидаемый сигнал от ¹⁴⁴Ce/Pr

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015

41 / 44

SOX: эксперимент на "закрытие"

Громов М.Б. (ОЯФ ФФ МГУ)

SOX Заключение

Предполагаемые значения g_A и g_V

Заключение

Результаты:

- достигнуты хорошие фоновые условия и отработана методика регистрации антинейтрино
- измерен поток гео-нейтрино и наложены новые ограничения на модели строения Земли; текущих результатов недостаточно для однозначных выводов

Перспективы:

- увеличение точности измерения потока гео-нейтрино (большая статистика)
- программа исследований вспышек сверхновых звёзд, гамма-всплесков и другая экзотическая физика
- исследование осцилляций и смешивания на короткой базе; проверка гипотезы о существовании стерильных нейтрино
- измерение g_A и g_V в области низких энергий

Громов М.Б. (ОЯФ ФФ МГУ)

BOREXINO: антинейтрино

19.01.2015 44 / 44