

Измерение угла смешивания θ_{13} и расщепления масс нейтрино Δm^2_{32} в эксперименте Daya Bay

(по материалам кандидатской диссертации)

Максим Гончар

Руководитель: к. ф.-м. н. Наумов Д. В.

Лаборатория Ядерных Проблем ОИЯИ

ИЯИ, 19 июня 2017

Содержание

1 Введение

- Осцилляции
- Реакторные v_e

Эксперимент Daya Bay

- Детектор
- 🛯 Данные

3 Осцилляционный анализ

- dybOscar
- Реактор
- Детектор
- Систематика

4 Результаты

5 Положения

6 Приложение

Содержание

1 Введение

- Осцилляции
- Реакторные v_e

Эксперимент Daya Bay

- Детектор
- 🛛 Данные

3 Осцилляционный анализ

- dybOscar
- Реактор
- Детектор
- Систематика

4 Результаты

5 Положения

6 Приложение

Смешивание нейтрино

Флейворные состояния нейтрино не имеют определённой массы:

- $|
 u_{lpha}
 angle = \sum U^*_{lpha i} |
 u_i
 angle$
- $\alpha~-$ флейворные состояния
- массовые состояния

Матрица смешивания Понтекорво-Маки-Накагавы-Сакаты (ПМНС):

	(1	0	0)		$\cos \theta_{13}$	0	$\sin \theta_{13} e^{-i\delta_{\rm CP}}$		$\cos \theta_{12}$	$\sin\theta_{12}$	0	١
U =	0	$\cos \theta_{23}$	$\sin \theta_{23}$		0	1	0		$-\sin \theta_{12}$	$\cos heta_{12}$	0	
	0	$-\sin\theta_{23}$	$\cos \theta_{23}$	1	$-\sin heta_{13} e^{i\delta_{\rm CP}}$	0	$\cos \theta_{13}$	/ /	0	0	1)	J

■ $\theta_{23} \approx 45^{\circ}$ из ускорительных и атмосферных экспериментов.

• $\theta_{12} \approx 34^\circ$ совместный анализ данных солнечных экспериментов и KamLAND.

■ *θ*₁₃ ≈ 8° **реакторные** (средняя база) и ускорительные эксперименты:

→ Daya Bay, RENO, Double CHOOZ, T2K.

Смешивание нейтрино

Флейворные состояния нейтрино не имеют определённой массы:

$$|
u_{lpha}
angle = \sum U^*_{lpha i} |
u_i
angle$$

- α флейворные состояния
- і массовые состояния

Матрица смешивания Понтекорво-Маки-Накагавы-Сакаты (ПМНС):

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

• $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$ эВ² из совместного анализа данных **KamLAND**, солнечных и атмосферных экспериментов.

■ $\Delta m_{32}^2 = (-2.52 \pm 0.05) \times 10^{-3} \Rightarrow B^2 \iff (2.45 \pm 0.05) \times 10^{-3} \Rightarrow B^2 = \Delta m_{32}^2$ из реакторных, ускорительных и атмосферных экспериментов \hookrightarrow Daya Bay, T2K, MINOS, NO ν A, SuperK, IceCube

Измерение угла смешивания θ_{13}

1980–1995 — реакторные эксперименты с короткой базой:

нет следов осцилляций.

- 1995–2000 реакторные эксперименты со средней базой CHOOZ и Palo Verde: sin² 2θ₁₃ < 0.1 @90%C.L.
- 2010–2011 указание на ненулевое значение θ₁₃ от атмосферных, реакторных и ускорительных экспериментов.
- 2012-н.в. прецизионное измерение θ₁₃.

Измерение угла смешивания $heta_{13}$

■ 1980–1995 — реакторные эксперименты с короткой базой:

нет следов осцилляций.

■ 1995–2000 — реакторные эксперименты со средней базой СНООZ и Palo Verde:

 $\sin^2 2\theta_{13} < 0.1$ @90%C.L.

- 2010–2011 указание на ненулевое значение θ₁₃ от атмосферных, реакторных и ускорительных экспериментов.
- 2012-н.в. прецизионное измерение θ₁₃.

Осцилляции реакторных электронных антинейтрино

Реактор как источник \overline{v}_{o} :

- выход $\sim 10^{20}~ \overline{\nu}_{\rm e}/s/GW_{th}.$
- Чистота:

исключительно \overline{v}_{ρ} .

- Простые осцилляции:
 нет эффекта вещества,
 нет зависимости от δ_{CP}.
- Разделение:

можно использовать существующие АЭС.

■ Источник. Распад продуктов деления: ~6 v_e на деление.

• Детектор. Обратный бета-распад (ОБР) в сцинтилляторе $\overline{v}_e + p \longrightarrow e^+ + n$.

Осцилляции реакторных электронных антинейтрино

$$\begin{split} 1 - P_{\nu_e \to \nu_e} &\approx \frac{\sin^2 2\theta_{13} \sin^2 \Delta_{32} + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}}{\Delta_{jk} = 1267 \cdot \frac{\Delta m_{jk}^2}{\Im B^2} \frac{L}{E} \left[\frac{\mathsf{M} \Im \mathsf{B}}{\mathsf{K} \mathsf{M}}\right]} \end{split}$$

Осцилляции реакторных электронных антинейтрино

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left(\frac{P_{\nu_e \to \nu_e}(E,L_{\rm f})}{P_{\nu_e \to \nu_e}(E,L_{\rm n})}\right)$$

Содержание

1 Введение

- Осцилляции
- Реакторные v_e
- Эксперимент Daya Bay
 - Детектор
 - 🛯 Данные
- 3 Осцилляционный анализ
 - dybOscar
 - Реактор
 - Детектор
 - Систематика

4 Результаты

5 Положения

6 Приложение

Введение Daya Bay Модель Результаты Положения

Детектор Данные

Максим Гончар (ОИЯИ)

Антинейтринный детектор

3-зонный детектор антинейтрино (АД):							
Внутренняя зона	20 т	ЖС (Gd)					
Средняя зона	20 т	ЖС					
Внешняя зона	40 т	Минер. масло					
U P X N	K.	1 Mey					

`

Антинейтринный детектор

► АКУ ► Вето

Антинейтринный детектор

► АКУ ► Вето

Калибровочная система

3 автоматических калибровочных устройства (АКУ):

- Центр мишени (АКУ-А): неоднородность, эн. шкала, нелинейность.
- Граница мишени (АКУ-В): неоднородность, эффективность.
- Средняя зона (АКУ-С): неоднородность, эффективность.

Источники АКУ:

LED:

временной отклик, усиление, QE.

- Нейтронный источник ²⁴¹Am¹³C: время захвата нейтрона.
- ⁶⁸Ge γ (2 × 511 кэВ): порог, нелинейность.
- ⁶⁰Co γ (1.17 + 1.33 МэВ): энергетическая шкала.

Система мюонного вето

Бассейн с водой:

- Защита от внешней радиоактивности и космогенного фона.
- Черенковский детектор.
- 288 8" ФЭУ (ближние).
- 384 8" ФЭУ (дальняя).
- Внешний бассейн (1 м).
- Внутренний бассейн (>2.5 м).
- 4 слоя РПК:
 - Мюонный трекер.
 - 54 модуля (ближние).
 - 81 модуль (дальние).
- Эффективность 99.5%,

неопределённость < 0.25%.

Отбор событий обратного бета-распада

Реакция ОБР:

- $\blacksquare \ \overline{\nu}_{\rm e} + p \longrightarrow e^+ + n$
- $\langle \tau_{cap} \rangle \approx 28$ мкс: $n + Gd \rightarrow Gd^* \rightarrow Gd + \sum \gamma$ (8 МэВ)

Отбор. Одно событие — два сигнала:

- Исключение событий спонтанного излучения ФЭУ (99.98%).
- Отбор мгновенной энергии (позитнон):
 0.7 МэВ < *E*_p < 12 МэВ (99.88%).
- Отбор запаздывающей энергии (захват нейтрона):
 6 МэВ < E_p < 12 МэВ (90.9%).
- Время захвата нейтрона: 1 мкс < ∆t < 200 мкс (98.6%).</p>
- 5 Мюонное вето:
 - Сигнал в бассейне Nhits > 12: 0.6 мс
 - Сигнал в АД E > 12 МэВ: 1 мс
 - Ливень в АД E > 2.5 ГэВ: 1 с
- 6 Множественность: нет сигналов E > 0.7 МэВ в окне $\pm 200 \text{ мкс.}$

Фоновые события

	Ближние С/Ш, %	Дальняя С/Ш, %	Ошибка	Методика оценки
Случайные	1.3	1.6	1%	Расчёт: измеренная частота независимых сигналов
⁸ He/ ⁹ Li	0.3	0.2	44%	Измерение: события после мюонов
Быстрые нейтроны	o 0.08	0.07	\lesssim 17%	Измерение: события после мюонов
$^{241}Am^{13}C$	0.03	0.07	45%	МК. Проверено калибровочными данными
$^{13}\mathrm{C}(lpha, \textit{n})^{16}\mathrm{O}$	0.01	0.07	50%	Расчёт: измеренная радиоактивность

Периоды набора данных

.

ИЯИ. 19 июня 2017 14a / 35

Детектор Данные

Периоды набора данных

Измерение θ_{13} и Δm_{32}^2 в Daya Bay (диссертация)

Детектор Данные

Периоды набора данных

14c / 35

Периоды набора данных

Периоды набора данных

14e / 35

Содержание

1 Введение

- Осцилляции
- Реакторные v_e
- Эксперимент Daya Bay
 - Детектор
 - 🛛 Данные

3 Осцилляционный анализ

- dybOscar
- Реактор
- Детектор
- Систематика

4 Результаты

5 Положения

6 Приложение

Анализ данных в эксперименте Daya Bay

Параллельный анализ

Все исследования проводятся по крайней мере 2-я независимыми группами.

В осцилляционном анализе участвует 5 групп:

- Общие данные на входе
- Различные подходы к:
 - Реконструкция энергии
 - Калибровка энергетической шкалы
 - Отбор событий
 - Оценка вкладов фоновых событий
 - Осцилляционный анализ
- Проверки и сравнения между группами:
 - Слепой анализ
 - Обмен модельными данными

Слепой анализ

Номинальные значения для:

Тепловая мощность
 Масса мишени
 Координаты реакторов и детекторов

Анализ данных в эксперименте Daya Bay

Параллельный анализ

Все исследования проводятся по крайней мере 2-я независимыми группами.

В осцилляционном анализе участвует 5 групп:

- Общие данные на входе
- Различные подходы к:
 - Реконструкция энергии
 - Калибровка энергетической шкалы
 - Отбор событий
 - Оценка вкладов фоновых событий
 - Осцилляционный анализ
- Проверки и сравнения между группами:
 - Слепой анализ
 - Обмен модельными данными

Слепой анализ

Номинальные значения для:

Тепловая мощность

Масса мишени

Координаты реакторов и детекторов

ΠO dybOscar

ПО dybOscar разработано группой из Дубны для анализа данных Daya Bay.

Особенности

- Модульность. Альтернативные модели и подходы:
 - Модели и параметризации спектра антинейтрино
 - Вероятность осцилляций
 - Сечение ОБР и кинематика взаимодействия
 - Модели отклика детектора
 - Функции подгонки:
 - функция хи-квадрат со штрафными членами и/или ковариационной матрицей
 - Методика и точность вычисления ковариационной матрицы:

дифференцирование, интегрирование, МК

- Интерфейсы к ПО минимизации: MINUIT, scipy.optimize
- Проработка:

подробности

- Унифицированный подход к работе с модельными параметрами
- Оптимизация времени работы для вариации параметров осцилляций
- Предварительная настройка точности интегрирования
- Отслеживание состояния промежуточных вычислений
- Кеширование промежуточных вычислений с возможностью интерполяции по одному или двум произвольным параметрам
- Тщательное тестирование, демонстрация несмещённости оценок параметров и адекватности определения ошибок

• Тестирование

ΠO dybOscar

ПО dybOscar разработано группой из Дубны для анализа данных Daya Bay.

Текущие задачи

- Осцилляционный анализ данных (nGd)
- Исследование подхода с волновыми пакетами на основе данных Daya Bay и KamLAND [1608.01661 EPJC]
- Исследование спектра реакторных антинейтрино и его эволюции

Суммарный спектр реакторных антинейтрино

99% реакторных антинейтрино рождаются в процессах распада продуктов деления* изотопов ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu.

Суммарный спектр реакторных антинейтрино

(e) — средняя тепловая энергия, выделяемая в цепочке на один акт деления:

- Копейкин et al., [hep-ph/0410100].
- Xu Bo Ma et al., [Doc9838].

■ *F* — отработавшее ядерное топливо, *C_i* — поправка на неравновесность.

Информация от АЭС о ежедневном состоянии реакторов:

- *W* тепловая мощность.
- f_i относительный вклад делящегося изотопа в полное число делений.

Максим Гончар (ОИЯИ)

Электронные антинейтрино от реактора

²³⁵U, ²³⁹Pu и ²⁴¹Pu Захват медленных нейтронов Экспериментальные данные Schreckenbach et al. (ILL), PLB: [160], [115], [218]. Mueller et al., (ILL), [1101.2663] Huber, (ILL), [1106.0687]

$+ {}^{238}U$

- Захват быстрых нейтронов
- Теоретические расчёты (в основном)
- Mueller et al., [1101.2663]
- Fallot et al., [1208.3877]
- Dwyer&Langford, [1407.1281]
- Наад et al. (только ²³⁸U), [1312.5601]

Учитываются так же

- Неравновесная поправка (спектры ILL)
- 🛯 Вклад ОЯТ

Максим Гончар (ОИЯИ)

Измерение θ_{13} и Δm_{32}^2 в Daya Bay (диссертация)

Chektd De ot 235U

Аномалия и эксцесс

- Спектры Huber/Mueller предсказывают на ~ 3% больше нейтрино, чем ILL.
- Реакторные эксперименты наблюдают дефицит
 5% относительно предсказания Huber/Mueller.
- Новые реакторные эксперименты наблюдают эксцесс в области *E_v* ~ 6 МэВ.
- Указания на связь с ²³⁵U [1704.02276], [1704.01082].

Double CHOOZ [1406.7763]

Параметризация спектра антинейтрино

Спектр \overline{v}_{e} от каждого изотопа параметризуется кусочно-гладкой функцией:

$$\begin{split} S_{ij}\left(E_{\nu}\right) &= n_{j}S_{ij}^{\mathrm{tot}}e^{-b_{ij}\left(E_{\nu}-E_{j}^{\nu}\right)}\\ E_{\nu} &\in \left(E_{j}^{\nu},E_{j+1}^{\nu}\right). \end{split}$$

• S_{ii}^{tot} — модельный спектр от изотопа *i* в E_i^{ν} .

n_j — коррелированная поправка для интервала *j*.

n_i — отношение наблюдаемого среднего спектра антинейтрино к ожидаемому:

$$n(E) = \frac{\langle S(E) \rangle_{\text{obs}}}{\langle S(E) \rangle_{\text{Huber+Mueller}}}$$

Параметризация спектра антинейтрино

Спектр \overline{v}_{e} от каждого изотопа параметризуется кусочно-гладкой функцией:

$$\begin{split} S_{ij}\left(E_{\nu}\right) &= n_{j}S_{ij}^{\mathrm{tot}}e^{-b_{ij}\left(E_{\nu}-E_{j}^{\nu}\right)}\\ E_{\nu} &\in \left(E_{j}^{\nu},E_{j+1}^{\nu}\right). \end{split}$$

• S_{ii}^{tot} — модельный спектр от изотопа *i* в E_i^{ν} .

- *n_j* коррелированная поправка для интервала *j*.
- *n_i* отношение наблюдаемого среднего спектра антинейтрино к ожидаемому:

$$n(E) = \frac{\langle S(E) \rangle_{\text{obs}}}{\langle S(E) \rangle_{\text{Huber+Mueller}}}$$

Эффекты детектора

- Поправка на потерю энергии в несцинтиллирующих материалах
- Полу-эмпирическая модель нелинейности энергетического отклика (σ < 1%).
- Энергетическое разрешение 9%@1 МэВ.

Эффекты детектора

- Поправка на потерю энергии в несцинтиллирующих материалах.
- Полу-эмпирическая модель нелинейности энергетического отклика (σ < 1%).
- Энергетическое разрешение 9%@1 МэВ.

Эффекты детектора

- Поправка на потерю энергии в несцинтиллирующих материалах.
- Полу-эмпирическая модель нелинейности энергетического отклика (σ < 1%).
- Энергетическое разрешение 9%@1 МэВ.

Систематические неопределённости

	Параметры	Кол-во.	Некорр.	Ошибка	Комментарий
	D	2			
родо	Параметры осцилляции (реакт.)	15			
<u>ő</u>	Параметры спектра антинеитрино	15			
	Параметры осцилляций (сол.)	2	П		(мал.)
Реактор	Тепловая мощность	6	P	0.5%	
	Доля распадов	6×4	РИ*	5%	
	Средняя энергия деления	4	И	0.12% - 0.25%	
	Неравновесный вклад	6×3	РИ	30%	
	Вклад ОЯТ	6	Р	50%	
	Спектры ⊽ _е	4×28	КN	2% - 30%	
Детектор	Относительная эффективность	8	Д	0.13%	отн. шкала.*
	Относительная энергетическая шкала	8	Д	0.2%	отн. эфф.*
	Нелинейность энергетической шкалы	4	П	<1%	
	Энергетическое разрешение	3	П	30%	(мал.)
	Поправка IAV	8	Д	4%	
θ	Случайные совпадения	8	Д	0.4%	
	Вклад ⁸ Не/ ⁹ Li	3	С	32% - 38%	
	Доля ⁹ Li в ⁸ He/ ⁹ Li	1		5%	(мал.)
	Вклад быстрых нейтронов	3	С	10% - 17%	
	Форма спектра быстрых нейтронов	3	С	8% - 11%	(мал.)
	Вклад ²⁴¹ Am ¹³ C	8	Д	40% - 45%	
	Вклад ${}^{13}C(\alpha, n){}^{16}O$	8	Д	50%	
	Форма спектра ⁹ Li			нет	(мал.)
	Форма спектра ²⁴¹ Am ¹³ C			нет	(мал.)
	Форма спектра ${}^{13}C(\alpha, n){}^{16}O$			нет	(мал.)
	Спектр случайных совпадений			нет	(мал.)

В общей сложности 17 свободных и 237 ограниченных параметров.

Максим Гончар (ОИЯИ)

Измерение θ_{13} и Δm_{32}^2 в Daya Bay (диссертация)

Функция подгонки

Хи-квадрат со штрафными членами

Функция подгонки

Хи-квадрат со штрафными членами

Содержание

1 Введение

- Осцилляции
- Реакторные v_e

Эксперимент Daya Bay

- Детектор
- 🛛 Данные

3 Осцилляционный анализ

- dybOscar
- Реактор
- Детектор
- Систематика

4 Результаты

5 Положения

6 Приложение

Результаты спектрального анализа: 1230 дней

Результаты спектрального анализа: 1230 дней

- 280 интервалов данных, 17 свободных параметров, 237 ограниченных
- Свободный усреднённый спектр реакторных антинейтрино

Результаты спектрального анализа: 1230 дней

Наблюдаемый спектр на ближних площадках

- Согласованные между отдельными детекторами результаты
- Ближние площадки также чувствительны к осцилляциям

◄ EH3

Сравнение

- Наиболее точное измерение θ₁₃.
- Значение θ₁₃ = 0 исключается с довтоверностью > 25σ.
- Наиболее точное измерение Δm_{32}^2 .
- Пренебрежимая корреляция между $\sin^2 2\theta_{13}$ и Δm_{32}^2 .

Содержание

1 Введение

- Осцилляции
- Реакторные v_e

Эксперимент Daya Bay

- Детектор
- 🛛 Данные

3 Осцилляционный анализ

- dybOscar
- Реактор
- Детектор
- Систематика

4 Результаты

5 Положения

6 Приложение

Положения, выносимые на защиту

- Разработка ПО для анализа данных реакторных нейтринных экспериментов и, в частности, эксперимента Daya Bay.
- Результат измерения амплитуды осцилляций нейтрино sin² 2013 на основе данных о полном числе событий в детекторах эксперимента Daya Bay.
- Результат измерения амплитуды осцилляций нейтрино sin² 2013 на основе спектра и потока реакторных антинейтрино в эксперименте Daya Bay.

Личный вклад автора

Разработка dybOscar: определяющий вклад

- Аналитическая модель детектора
- Методика учёта систематических погрешностей
- Тщательное тестирование и проверка несмещённости оценок
- Участие в параллельном анализе данных эксперимента Daya Bay
 - Проверка методик отбора событий и оценки фона
 - Кросс-проверка моделей детектора, результатов слепого и открытого анализа
- Участие в сменах на установке Daya Bay
- Доклады на телефонных и рабочих совещаниях и собраниях коллаборации
 Daya Bay

Апробация I

Выступления на международных конференциях

"Precise sin² 2θ₁₃ measurement by the Daya Bay reactor neutrino experiment", DAE Symposium on Nuclear Physics, 7–11 December 2012, New-Delhi, India

🔶 пленарный доклад

- 2 "Recent measurement of θ₁₃ from Daya Bay and a future project Daya Bay II", The international workshop on non accelerator new physics NANPino-2013, 24—29 June 2013, Valday, Russia → пленарный доклад

- "Recent results from Daya Bay experiment", Международная Сессия-конференция Секции ядерной физики ОФН РАН, 12—15 апреля 2016, Дубна → секционный доклад
- G "Oscillation analysis in Daya Bay experiment", Neutrino 2016, 4-9 July 2016, London

← постер

Апробация II

Семинары

- "Precise sin² 2θ₁₃ measurement of the Daya Bay experiment", научный совет ОИЯИ, 21—22 февраля 2013, Дубна → постер (1 премия), доклад
- 2 "Recent results from Daya Bay experiment and JUNO project", Форум Индия-ОИЯИ, 16—20 июня 2014, Дубна → семинар
- Image: параметров смешивания нейтрино амплитуды осцилляций

 $\sin^2 2\theta_{13}$ и расщепления масс Δm_{32}^2 в эксперименте Daya Bay",

 ЛЯП, 7 октября 2015, Дубна
- д. Новые результаты в эксперименте Daya Bay",
 ЛЯП, 10 ноября 2016, Дубна → семинар
- "JINR neutrino programme. Daya Bay and JUNO: precision measurements with reactor neutrinos", 46 сессия ПКК по физике частиц ОИЯИ,

16—17 января 2017, Дубна

🔶 доклад

Апробация III

Премии

■ Первая премия ОИЯИ 2012 за измерение угла смешивания нейтрино sin² 2θ₁₃ в эксперименте Daya Bay (в составе группы)

Breakthrough Prize in Fundamental Physics 2016

(в составе коллаборации Daya Bay)

• Стипендия имени Бруно Максимовича Понтекорво 2016, ЛЯП ОИЯИ

• Первая премия Лаборатория Ядерных Пробле ОИЯИ 2016

(в составе группы)

Список публикаций I

- Observation of electron-antineutrino disappearance at Daya Bay. /. F. An [μ gp.] // Phys.Rev.Lett. – 2012. – T. 108. – C. 171803. – arXiv: 1203.1669 [hep-ex].
- Improved Measurement of Electron Antineutrino Disappearance at Daya Bay. /. F. An [μ др.] // Chin.Phys. – 2013. – T. C37. – C. 011001. – arXiv: 1210.6327 [hep-ex].
- A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay. /. – F. P. An [μ др.] // Phys. Rev. Lett. – 2015. – T. 115, № 11. – C. 111802. – arXiv: 1505.03456 [hep-ex].
- Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment. /. – F. P. An [μ др.] // Phys. Rev. – 2017. – T. D95. – C. 072006. – arXiv: 1610.04802 [hep-ex].
- Gonchar M. Precise sin² 2θ₁₃ measurement by the Daya Bay reactor neutrino experiments, — // DAE Symp. Nucl. Phys. — 2012. — T. 57. — C. 54—59.
- A side-by-side comparison of Daya Bay antineutrino detectors. /. F. An [и др.] // Nucl.Instrum.Meth. – 2012. – Т. A685. – С. 78–97. – arXiv: 1202.6181 [physics.ins-det].

Список публикаций II

- Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. /. – F. An [μ др.] // Phys.Rev.Lett. – 2014. – T. 112. – C. 061801. – arXiv: 1310.6732 [hep-ex].
- Independent measurement of the neutrino mixing angle θ₁₃ via neutron capture on hydrogen at Daya Bay. /. – F. An [μ др.] // Phys.Rev. – 2014. – T. D90, № 7. – C. 071101. – arXiv: 1406.6468 [hep-ex].
- The muon system of the Daya Bay Reactor antineutrino experiment. /. F. An [μ др.] // Nucl.Instrum.Meth. – 2015. – T. A773. – C. 8–20. – arXiv: 1407.0275 [physics.ins-det].
- 10. Search for a Light Sterile Neutrino at Daya Bay. /. F. An [и др.] // Phys.Rev.Lett. — 2014. — Т. 113. — С. 141802. — arXiv: 1407.7259 [hep-ex].
- The Detector System of The Daya Bay Reactor Neutrino Experiment. /. F. P. An [μ др.] // Nucl. Instrum. Meth. – 2016. – T. A811. – C. 133–161. – arXiv: 1508.03943 [physics.ins-det].
- Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. /. F. P. An [μ др.] // Phys. Rev. Lett. – 2016. – T. 116. – C. 061801. – arXiv: 1508.04233 [hep-ex].

Список публикаций III

- New measurement of θ₁₃ via neutron capture on hydrogen at Daya Bay. /. F. P. An [μ др.] // Phys. Rev. – 2016. – T. D93, № 7. – C. 072011. – arXiv: 1603.03549 [hep-ex].
- Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. /. – F. P. An [ν др.] // Phys. Rev. Lett. – 2016. – T. 117, № 15. – C. 151802. – arXiv: 1607.01174 [hep-ex].
- Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. /. - F. P. An [μ др.] // Chin. Phys. - 2017. - T. C41, № 1. - C. 013002. - arXiv: 1607.05378 [hep-ex].
- 16. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments. /. P. Adamson [μ др.] // Phys. Rev. Lett. 2016. T. 117, № 15. C. 151801. arXiv: 1607.01177 [hep-ex]. [Addendum: Phys. Rev. Lett.117,no.20,209901(2016)].

Научный руководитель

Наумов Дмитрий Вадимович,

кандидат физико-математических наук, заместитель директора Лаборатории Ядерных Проблем, **ОИЯИ**, Дубна.

Официальные оппоненты

Дербин Александр Владимирович,

доктор физико-математических наук,

заведующий отделом полупроводниковых ядерных детекторов, Национальный исследовательский центр "Курчатовский институт", Федеральное государственное бюджетное учреждение **Петербургский Институт Ядерной Физики** им. Б. П. Константинова, Санкт-Петербург.

Семикоз Виктор Борисович,

доктор физико-математических наук,

заведующий теоретическим отделом, Федеральное государственное бюджетное учреждение науки Институт Земного Магнетизма, Ионосферы и Распространения Радиоволн им. Н. В. Пушкова Российской Академии Наук, Москва.

Ведущая организация:

 Федеральное государственное бюджетное учреждение науки Институт Ядерных Исследований Российской Академии Наук.

Спасибо за внимание!

Дополнительные материалы...

Содержание

7 Other results

- 8 Selection and uncertainties
- 9 Antineutrino detector

10 Backgrounds

11 The model and fitting

Содержание

7 Other results

8 Selection and uncertainties

9 Antineutrino detector

10 Backgrounds

11 The model and fitting

Independent nH oscillation analysis

621 days, arXiv:1603.03549, PRD

Key points:

- ✓ Additional statistics (+20 ton/AD)
- ✓ Largely independent systematics
- ✗ Lower delayed energy (∼2.2 MeV)
- X More accidentals
- × Loosely defined fiducial volume

nΗ

 $\sin^2 2\theta_{13} = 0.071 \pm 0.011$

nH+nGd

 $\sin^2 2\theta_{13} = 0.082 \pm 0.004$

- Observed significant rate deficit.
- Spectral distortion consistent with oscillations.
- Third world precise measurement after Daya Bay (nGd) and RENO (nGd).

Absolute reactor antineutrino flux

621 days, arXiv:1607.05378, CPC

- Consistent between ADs
- Consistent with world average
- Supports reactor anomaly existence

Huber+Mueller

Data/prediction: 0.946 ± 0.020

ILL+Vogel

Data/prediction: 0.992 ± 0.021

Huber+Mueller (global)

Data/prediction: $0.943 \pm 0.008 \text{ (exp)} \pm 0.023 \text{ (model)}$

Reactor antineutrino spectrum

Observed positron spectrum

- Bump feature around 5–6 MeV.
- Consistent with other experiments.
- Seen for both Huber+Mueller/ILL+Vogel.

Extracted antineutrino spectrum

621 days, arXiv:1607.05378, CPC

Light sterile neutrino search

217 days, arXiv:1407.7259, PRL

- Sterile neutrino will cause spectral distortions at the near and far sites.
- Relative measurement independent of reactor related systematics.
- Result is consistent with 3-flavor oscillations.

Light sterile neutrino search

621 days, arXiv:1607.01174, PRL

- Sterile neutrino will cause spectral distortions at the near and far sites.
- Relative measurement independent of reactor related systematics.
- Result is consistent with 3-flavor oscillations.

Light sterile neutrino search with Bugey-3 and MINOS

621 days, arXiv:1607.01174, PRL

- Combining Daya Bay and Bugey-3 data strongly constrains Δm_{41}^2 and $\sin^2 2\theta_{41}$.
- Combining Daya Bay and Bugey-3 and MINOS data allows to constrain Δm_{41}^2 and sin² $2\theta_{41} \sin^2 2\theta_{42}$.
- Joint analysis strongly suggests that LSND results is not due to sterile neutrino.

10²

10

Дополнительные материалы Other results Selection and uncertainties Antineutrino detector Backgrounds The

Light sterile neutrino search with Bugey-3 and MINOS

621 days, arXiv:1607.01174, PRL

+MINOS, arXiv:1607.01177, PRL

- Combining Daya Bay and Bugey-3 data strongly constrains Δm_{41}^2 and $\sin^2 2\theta_{41}$.
- Combining Daya Bay and Bugey-3 and MINOS data allows to constrain Δm_{41}^2 and sin² 2 θ_{41} sin² 2 θ_{42} .
- Joint analysis strongly suggests that LSND results is not due to sterile neutrino.

Wave packet effects

621 days, arXiv:1608.01661, EPJC

The obtained limits read

 $2.38 \cdot 10^{-17} < \sigma_{\rm rel} < 0.23,$

taking into account the reactor/detector sizes:

 $10^{-11} ext{ cm } \lesssim \sigma_x \lesssim 2m.$

• These results ensure unbiased measurement of $\sin^2 2\theta_{13}$ and Δm_{32}^2 within the PW model.

Reactor antineutrino flux evolution (1230 days)

- Effective fission fractions F_i change in time as fuel evolves.
- **3.1** σ discrepancy in the antineutrino flux variation with respect to the reactor fuel composition model prediction.
- Indication that ²³⁵U is the dominant contributor to reactor anomaly.

arXiv:1704.01082, PRL

Reactor antineutrino spectrum evolution (1230 days)

Spectrum shape evolution consistent iwth model predictions

Содержание

7 Other results

8 Selection and uncertainties

9 Antineutrino detector

10 Backgrounds

11 The model and fitting

Эффективность детектора: 621 день

Correlated		Uncorrelated		
Energy/fission	0.2%	Power	0.5%	
\overline{v}_{e} /fission	ssion 3%		0.6%	
		Spent fuel	0.3%	
Combined	3%	Combined	0.8%	

- Only uncorrelated uncertainties are relevant for Near/Far oscillation analysis.
- Largest systematics smaller than Far site statistics (~1%).

 Influence of uncorrelated reactor systematics is reduced by far/near measurement.

Эффекты детектора

Максим Гончар (ОИЯИ)

Измерение θ_{13} и Δm_{32}^2 в Daya Bay (диссертация)
Эффективность детектора: 1230 дней

Detector	Efficiency	Correlated	Uncorrelated
Target Protons		0.92%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Prompt energy cut	99.8%	0.10%	0.01%
Delayed energy cut	92.7%	0.97%	0.08%
Capture time cut	98.7%	0.12%	0.01%
Multiplicity cut		0.02%	0.01%
Gd capture fraction	84.2%	0.95%	0.10%
Spill-in	104.9%	1.00%	0.02%
Livetime	100.0%	0.002%	0.01%
Combined	80.6%	1.93%	0.13%

Correlated		Uncorrelated			
Energy/fission	0.2%	Power	0.5%		
\overline{v}_{e} /fission	3%	Fission fraction	0.6%		
		Spent fuel	0.3%		
Combined	3%	Combined	0.8%		

- Only uncorrelated uncertainties are relevant for Near/Far oscillation analysis.
- Largest systematics smaller than Far site statistics (~1%).

 Influence of uncorrelated reactor systematics is reduced by far/near measurement.

🔹 Эффекты детектора

Результаты отбора событий за период Р12В: 50 дней

Площадка		Ближняя,	Daya Bay	Ближняя, Ling Ao	1	Дальняя		
Детектор		AD1	AD2	AD3	AD4	AD5	AD6	
Кандидаты ОБР		28692	28857	22169	3536	3464	3461	
Время набора данных	(дни)	49.5	527	49.4968		48.9453		
ε_{μ}		0.8143	0.8108	0.8460	0.9815	0.9803	0.9809	
εm		0.9755	0.9758	0.9768	0.9743	0.9739	0.9738	
Случайные совпадения	(в день)	10.00 ± 0.06	10.11 ± 0.06	7.76 ± 0.05	3.37 ± 0.03	3.43 ± 0.03	3.21 ± 0.03	
Быстрые нейтроны	(в день)	0.95=	E0.28	0.71±0.22		0.07±0.02		
⁸ He/ ⁹ Li	(в день)	2.74±0.64		$1.45 {\pm} 0.89$	0.16±0.08			
²⁴¹ Am ¹³ C	(в день)	0.2±0.2		0.2±0.2				
${}^{13}C(\alpha, n){}^{16}O$	(в день)	0.04=	±0.02	$0.035 {\pm} 0.02$		$0.03{\pm}0.02$		

Результаты отбора событий за период Р12С: 139 дней

Площадка	Ближняя	, Daya Bay	Ближняя, Ling Ao	Дальняя			
Детектор	AD1	AD2	AD3	AD4	AD5	AD6	
Кандидаты ОБР	68654	69336	65845	9819	9730	9518	
Время набора данных (дни	127	.553	127.376		126.26	126.26	
ε_{μ}	0.814	0.8108	0.8464	0.9808	0.9802	0.9802	
ε _m	0.9756	0.9759	0.9771	0.9758	0.9755	0.9753	
Случайные совпадения (в день	9.93 ± 0.06	9.84 ± 0.06	7.74 ± 0.06	3.14 ± 0.03	3.13 ± 0.03	3.02 ± 0.03	
Быстрые нейтроны (в день	0.94 :	± 0.28	0.61 ± 0.19		0.05 ± 0.02		
⁸ Не/ ⁹ Li (в день	2.67 :	± 0.66	1.02 ± 0.64		0.22 ± 0.06		
²⁴¹ Am ¹³ С (в день	0.179 :	± 0.063	0.179 ± 0.063		0.179 ± 0.063		
$^{13}C(\alpha, n)^{16}O$ (в день	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	

Результаты отбора событий за период Р14А: 621 день

Площадка	Площадка Ближняя, Daya Bay			Ближняя	ı, Ling Ao	Дальняя			
Детектор		AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
Кандидаты ОБР		299024	303947	279365	183131	40507	40819	40282	27012
Время набора данных	(дни)	559.150	559.157	558.048	368.426	555.645	555.645	555.645	365.885
ε_{μ}		0.8182	0.8153	0.8482	0.8482	0.9810	0.9805	0.9806	0.9809
<i>e</i> m		0.9765	0.9769	0.9778	0.9777	0.9776	0.9774	0.9772	0.9780
Случайные совпадения	я (в день)	8.66 ± 0.03	8.62 ± 0.03	6.65 ± 0.03	6.66 ± 0.03	1.66 ± 0.01	1.56 ± 0.01	1.55 ± 0.01	1.22 ± 0.01
Быстрые нейтроны	(в день) 0.92 ± 0.92		0.92	0.62 :	± 0.62	0.04 ± 0.04			
⁸ He/ ⁹ Li	(в день)	2.40 ± 2.40		1.20 ± 1.20		0.22 ± 0.22			
$^{241}Am^{13}C$	(в день)	0.22 ± 0.22	0.22 ± 0.22	0.21 ± 0.21	0.22 ± 0.22	0.11 ± 0.11	0.10 ± 0.10	0.10 ± 0.10	0.07 ± 0.07
${}^{13}C(\alpha, n){}^{16}O$	(в день)	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03

Результаты отбора событий за период Р15А: 1230 дней

Площадка		Ближняя,	Daya Bay	Ближняя	Ling Ao	Дальняя			
Детектор		AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
Кандидаты ОБР		597618	606351	567196	466013	80479 80742 80067			66862
Время набора данных	(дни)	1117.178	1117.178	1114.337	924.933	1106.915	1106.915	1106.915	917.417
ε_{μ}		0.8255	0.8221	0.8573	0.8571	0.9824	0.9823	0.9821	0.9826
$\varepsilon_{\rm m}$		0.9744	0.9747	0.9757	0.9757	0.9759	0.9758	0.9756	0.9758
Случайные совпадени	я	8.46	8.46	6.29	6.18	1.27	1.19	1.20	0.98
(8	з день)	± 0.09	± 0.09	± 0.06	± 0.06	±0.01	± 0.01	± 0.01	± 0.01
Быстрые нейтроны		0.79		0.57		0.05			
(в	з день)	± 0.10		±0.07		±0.01			
⁸ He/ ⁹ Li		2.46		1.	.72	0.15		.15	
(E	з день)	± 1	±1.06 ±0.77 ±0.06			.06			
²⁴¹ Am ¹³ C, 6AD		0.27	0.25	0.28		0.22	0.21	0.21	
(E	з день)	± 0.12	± 0.11	± 0.13		±0.10	± 0.10	± 0.10	
²⁴¹ Am ¹³ C, 8AD		0.15	0.16	0.13	0.15	0.04	0.03	0.03	0.05
(E	з день)	± 0.07	± 0.07	± 0.06	± 0.07	±0.02	± 0.02	± 0.02	± 0.02
${}^{13}C(\alpha, n){}^{16}O$		0.08	0.07	0.05	0.07	0.05	0.05	0.05	0.05
(8	в день)	± 0.04	±0.04	±0.03	± 0.04	±0.03	± 0.03	± 0.03	± 0.03
Поток ОБР		653.03	665.42	599.71	593.82	74.25	74.60	73.98	74.73
(в	з день)	± 1.37	± 1.38	± 1.12	± 1.18	±0.28	±0.28	±0.28	± 0.30

🔹 Периоды

Содержание

7 Other results

8 Selection and uncertainties

9 Antineutrino detector

10 Backgrounds

11 The model and fitting

Inside the AD

Experimental hall 1

Максим Гончар (ОИЯИ)

Измерение θ_{13} и Δm^2_{32} в Daya Bay (диссертация)

Измерение θ_{13} и Δm_{32}^2 в Daya Bay (диссертация)

Trigger

Trigger criteria:

- Signal > 0.25 p. e.:
 - ▶ Nhit > 45.
 - Esum > 0.4 MeV.
- Water pool:
 - ▶ Nhit > 12.

Trigger efficiency:

- Measured from LED light and ⁶⁸Ge source.
- No measurable inefficiency above 0.7 MeV.
- Minimal $E_p \approx 0.95$ MeV.

AD liquids

Target mass:

- Target mass is measured during filling by the load cell with precision of ~ 3kg, 0.015%.
- Cross-checked by the Coriolis meters with precision of 0.1%.
- *M*_{target} = *M*_{fill} *M*_{overflow}

Liquid scintillator composition:

- LAB + Gd (0.1%) + PPO (3 g/L) + bis-MSB (15mg/L)
- One year 1-ton prototype monitoring on GdLS stability.

Liquids storage and filling:

- Fill each AD from all 5 storage tanks.
- Fill ADs in pairs.
- Recirculate storage tanks.

Antineutrino detectors comparison

- AD 1

- AD 2

- AD 3

- AD 4

→ AD 5
→ AD 6

10

Energy [MeV]

Рис.: Spectra of AD triggers after muon cut.

- Two ADs in Hall 1 have functionally identical spectra and response.
- Response of all detectors to neutrons constrains largest systematic uncertainty.

Рис.: Spallation neutrons spectra.

Содержание

7 Other results

8 Selection and uncertainties

9 Antineutrino detector

10 Backgrounds

11 The model and fitting

Flashers identification

 $\label{eq:Flashers} \mbox{\sf Flashers} - \mbox{\sf PMTs} \mbox{ spontaneously emitting} \\ \mbox{\sf light:} \end{tabular}$

- $\blacksquare \sim 5\%$ of PMTs
- $\blacksquare \sim 5\%$ of the events
- Rejected based on the topology

$$\begin{split} & d_{max} = Q_{max}/Q_{sum} \\ & d_{quad} = Q_3/(Q_2 + Q_4) \\ & \mathsf{FID} = \log_{10}\left[\left(\frac{d_{quad}}{1}\right)^2 + \left(\frac{d_{max}}{0.45}\right)^2\right] < 0 \end{split}$$

Backgrounds: accidentals

Accidental event — two signals accidentally satisfy event selection criteria.

- Calculated based on prompt and delayed rates.
- Cross-checks:
 - Prompt-delayed distance distribution.
 - Off-window coincidence.

Backgrounds: ⁹Li/⁸He

Long-lived isotopes of ${}^{9}\text{Li}/{}^{8}\text{He}$ decay with both β and neutron emission.

- Calculated by fitting the time-after-last-muon events distribution. Based on known half-life times:
 - ⁹Li $\lambda = 178ms$
 - ⁸He $\lambda = 119ms$
- Cross-checks:
 - Analyze muon samples with and without followed neutrons.

Backgrounds: fast neutrons

Fast neutrons can produce recoil protons, which mimic prompt signal. Neutron capture itself is the delayed signal.

- Method I:
 - Collect events with 12 MeV < E_p < 100 MeV
 - Extrapolate the spectrum to the E_p < 12MeV
- Method II:
 - Use water pool and RPC to determine the number of fast neutrons.

Дополнительные материалы Other results Selection and uncertainties Antineutrino detector Backgrounds The

Backgrounds: $^{241}Am^{13}C$ and $^{13}C(\alpha, n)^{16}O$

Correlated background from $^{241}Am^{13}C$ sources (ACU):

- Neutron inelastic scattering on ⁵⁶Fe + neutron capture on Fe/Cr/Mn/Ni.
- Estimated based on simulation.

Correlated ${}^{13}C(\alpha, n){}^{16}O$ background:

- ²³⁸U, ²³²Th, ²²⁷Ac and ²¹⁰Po α rates are measured.
- Neutron yield is calculated with MC.

 $\mathsf{Puc.:}$ Energy spectrum of the events near the top of ADs in the Far Hall.

Puc.: Correlations of prompt and delayed energy for cascade decay chains.

Электронные антинейтрино от реактора

Поправка на неравновесность

- Время иррадиации в ILL порядка суток.
- Вклад долгоживущих изотопов зависит от времени работы реактора (года).

Спектр:

Mueller et al.,

Копейкин.

Отработавшее ядерное топливо

- ОЯТ хранится в бассейне недалеко от реактора.
- Вклад в поток ~ 0.3% (±100%).
- Зависит от истории выгрузки ОЯТ

Спектр:

- Копейкин et al.,
- Zhou Bin et al.,

[hep-ph/0412044] [Chin.Phis.C36]

[1101.2663]

[ЯФ75]

Измерение θ_{13} и Δm_{32}^2 в Daya Bay (диссертация)

Интегрирование

Спектральный анализ

Интегрирование

Спектральный анализ

$$N_{dk}^{\nu} \propto \sum_{j} C_{kj} \int_{-1}^{+1} d\cos\theta \int_{E_{j}^{\text{vis}}}^{E_{j+1}^{\text{vis}}} dE_{\text{vis}} \frac{dE_{\nu}(E_{\text{vis}},\cos\theta)}{dE_{\text{vis}}} \frac{d\sigma(E_{\nu},\cos\theta)}{d\cos\theta} P(E_{\nu}) S(E_{\nu})$$

- Интегрирование по методу Гаусса-Лежандра
- Количество опорных точек выбирается индивидуально для каждого интервала *j* и зависит от скорости осцилляций подинтегральной функции.

Интегрирование

Спектральный анализ

$$N_{dk}^{\nu} \propto \sum_{j} C_{kj} \int_{-1}^{+1} d\cos\theta \int_{E_{j}^{\text{vis}}}^{E_{j+1}^{\text{vis}}} dE_{\text{vis}} \frac{dE_{\nu}(E_{\text{vis}},\cos\theta)}{dE_{\text{vis}}} \frac{d\sigma(E_{\nu},\cos\theta)}{d\cos\theta} P(E_{\nu}) S(E_{\nu})$$

- Интегрирование по методу Гаусса-Лежандра
- Количество опорных точек выбирается индивидуально для каждого интервала *j* и зависит от скорости осцилляций подинтегральной функции.

Rate-only анализ

$$N_d^{\nu} \propto \int_{1.8 \text{ M}
m BB}^{13.1 \text{ M}
m BB} dE_{
u} \, rac{d\sigma(E_{
u},\cos heta)}{d\cos heta} \, P(E_{
u}) \, S(E_{
u})$$

- Детектор регистрирует реакторные антинейтрино всех возможных энергий с одинаковой эффективностью
- Нет необходимости в учёте энергетических эффектов

$$\begin{split} N_{dk}^{\nu} &= B^{dk} + \sum_{kj} C_j^k \sum_t \varepsilon_t^d T_t^d M_t^d \times \\ &\times \int_{-1}^{+1} d \cos \theta \int_{E_j^{\text{vis}}}^{E_{j+1}^{\text{vis}}} dE_{\text{vis}} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{\text{vis}}, \cos \theta)}{dE_{\text{vis}}} \times \\ &\times \sum_r \frac{1}{4\pi \left(L_r^d\right)^2} \sum_c \omega_c P_c(E_{\nu}, L_r^d) \times \\ &\times \left[\frac{W_{rt}}{\sum_{i'} f_{i'rt} \langle e \rangle_{i'}} \sum_i f_{irt} S_i(E_{\nu}) C_i(E_{\nu}) + F_r(E_{\nu}) \right] \end{split}$$

65b / 35

$$N_{dk}^{\nu} = B^{dk} + \sum_{kj} C_j^k \sum_{t} \varepsilon_t^d T_t^d M_t^d \times \\ \times \int_{-1}^{+1} d\cos \oint_{E_j^{vis}}^{E_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos \theta)}{d\cos \theta} \frac{dE_{\nu}(E_{vis}, \cos \theta)}{dE_{vis}} \times \\ \times \sum_{r} \frac{1}{4\pi (L_r^d)^2} \sum_{c} \omega_c P_c(E_{\nu}, L_r^d) \times \\ \times \left[\underbrace{\bigvee_{r} f_{i'rt}(e)_{i'}}_{\sum_{i'} f_{i'rt}(e)_{i'}} \sum_{i} f_{irt} S_i(E_{\nu}) C_i(E_{\nu}) + F_r(E_{\nu}) \right] \\ = \text{TennoBaa Moщность} \\ = \text{Qeams Method Matrix Halpenene} \\ = \text{Apanguecs изотопы} \\ \text{Orhocurrenbhali Bknaa densuterocs изотопа B} \\ \text{Orhocurrenbhali Bknaa densuterocs изотопа} \\ = \text{Orpabka ha hepashosechocts} \\ = \text{Orpabka ha$$

$$N_{dk}^{\nu} = B^{dk} + \sum_{kj} C_j^k \sum_t \varepsilon_t^d T_t^d M_t^d \times \\ \times \int_{-1}^{+1} d\cos\theta \int_{E_j^{vis}}^{E_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos\theta)}{d\cos\theta} \frac{dE_{\nu}(E_{vis}, \cos\theta)}{dE_{vis}} \times \\ \times \sum_r \frac{1}{4\pi \left(L_r^d\right)^2} \sum_c \omega_c P_c(E_{\nu}, L_r^d) \times \\ \int_{-1}^{r} \sqrt{\frac{1}{4\pi \left(L_r^d\right)^2}} \sum_i f_{irt} f_i(E_{\nu}) C_i(E_{\nu}) + F_r(E_{\nu}) \end{bmatrix}$$

Е Сумма по реакторам

Вероятность осцилляций, разбитая на слагаемые

Интеграл по интервалу Evis (квадратура Гаусса-Лежандра)

Максим Гончар (ОИЯИ)

$$\begin{split} N_{dk}^{\nu} &= B^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M_{t}^{d} \times \\ &\times \int_{-1}^{+1} d \cos \theta \int_{E_{j}^{\text{vis}}}^{E_{j+1}^{\text{vis}}} dE_{\text{vis}} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{\text{vis}}, \cos \theta)}{dE_{\text{vis}}} \times \\ &\times \sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} \omega_{c} P_{c}(E_{\nu}, L_{r}^{d}) \times \\ &\times \left[\frac{W_{rt}}{\sum_{i'} f_{i'rt} \langle e \rangle_{i'}} \sum_{i} f_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu}) \right] \end{split}$$

$$\begin{split} y_{dk}^{\nu} &= B^{dk} + \sum_{c} \omega_{c}(\theta_{12}, \theta_{13}) \sum_{kj} C_{j}^{k} \sum_{r} \frac{1}{4\pi \left(L_{r}^{d}\right)^{2}} \sum_{i} \times \\ &\times \int_{-1}^{+1} d\cos\theta \int_{E_{j}^{\text{vis}}}^{E_{j+1}^{\text{vis}}} dE_{\text{vis}} \frac{d\sigma(E_{\nu}, \cos\theta)}{d\cos\theta} \frac{dE_{\nu}(E_{\text{vis}}, \cos\theta)}{dE_{\text{vis}}} \widetilde{S}_{i}(E_{\nu}) P_{c}(E_{\nu}, L_{r}^{d}, \Delta m_{c}^{2}) \times \\ &\times \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M_{t}^{d} \frac{f_{irt} W_{rt}}{\sum_{i'} f_{i'rt}' \epsilon(e)_{i'}} \end{split}$$

t

$$\begin{split} \mathsf{V}_{dk}^{\nu} &= B^{dk} + \sum_{c} \omega_{c}(\theta_{12}, \theta_{13}) \sum_{kj} C_{j}^{k} \sum_{r} \frac{1}{4\pi \left(L_{r}^{d}\right)^{2}} \sum_{i} \times \\ &\times \sum_{wv} \omega_{w} \omega_{v} \frac{d\sigma(E_{wv}^{\nu}, \cos \theta_{v})}{d \cos \theta} \frac{dE_{\nu}(E_{w}^{\nu is}, \cos \theta_{v})}{dE_{vis}} \widetilde{S}_{i}(E_{wv}^{\nu}) P_{c}(E_{wv}^{\nu}, L_{r}^{d}, \Delta m_{c}^{2}) \times \\ &\times \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M_{t}^{d} \frac{f_{irt} W_{rt}}{\sum_{i'} f_{i'rt} \langle e \rangle_{i'}} \end{split}$$

Хи-квадрат со штрафными членами

Функция подгонки

Хи-квадрат со штрафными членами

Хи-квадрат со штрафными членами

$$\chi^2 = (x - \mu(\theta, \eta))^T V_{\text{stat}}^{-1} (x - \mu(\theta, \eta)) + (\eta - \eta^0)^T V_{\eta}^{-1} (\eta - \eta^0)$$

Rate-only анализ

Линейная по систематике модель:

$$\mu(\theta,\eta) = \mu(\theta,\eta^0) + D_\eta(\eta-\eta^0)$$

Аналитическое решение для минимума по η:

$$\eta(\theta) = \left(V_{\eta}^{-1} + D_{\eta}^{T}V_{\mathsf{stat}}^{-1}D_{\eta}\right)^{-1}D_{\eta}^{T}V_{\mathsf{stat}}^{-1}(x - \mu^{0}(\theta)) + \eta^{0}$$

Численная минимизация по *θ*.

Хи-квадрат со штрафными членами

$$\chi^{2} = (x - \mu(\theta, \eta))^{T} V_{\text{stat}}^{-1} (x - \mu(\theta, \eta)) + (\eta - \eta^{0})^{T} V_{\eta}^{-1} (\eta - \eta^{0})$$

Rate-only анализ

П Линейная по η модель, численная минимизация по θ .

Функция подгонки

Хи-квадрат со штрафными членами

$$\chi^2 = (x - \mu(\theta, \eta))^T V_{\text{stat}}^{-1} (x - \mu(\theta, \eta)) + (\eta - \eta^0)^T V_{\eta}^{-1} (\eta - \eta^0)$$

Rate-only анализ

Линейная по η модель, численная минимизация по θ.

Спектральный анализ (I)

- **П**инейная по η модель в окрестности $\eta \pm \sigma_{\eta}$, численная минимизация по θ .
- Хи-квадрат с ковариационной матрицей

$$\chi^2 = (x - \mu(\theta, \eta_0))^T V_{\text{full}}^{-1} (x - \mu(\theta, \eta_0))$$

• Способ математически эквивалентен предыдущему.

$$V_{\text{full}}(\theta) = V_{\text{стат.}} + D_{\eta} V_{\eta} D_{\eta}^{T}$$

Хи-квадрат со штрафными членами

$$\chi^{2} = (x - \mu(\theta, \eta))^{T} V_{\text{stat}}^{-1} (x - \mu(\theta, \eta)) + (\eta - \eta^{0})^{T} V_{\eta}^{-1} (\eta - \eta^{0})$$

Rate-only анализ, спектральный анализ (I)

Пинейная по η модель, численная минимизация по θ .

Хи-квадрат со штрафными членами

$$\chi^{2} = (x - \mu(\theta, \eta))^{T} V_{\text{stat}}^{-1} (x - \mu(\theta, \eta)) + (\eta - \eta^{0})^{T} V_{\eta}^{-1} (\eta - \eta^{0})$$

Rate-only анализ, спектральный анализ (I)

Линейная по η модель, численная минимизация по θ.

Спектральный анализ (II)

- Систематические параметры параметры η и ζ .
- Хи-квадрат с ковариационной матрицей и штрафными членами:

$$\chi^{2} = (x - \mu(\theta, \zeta, \eta_{0}))^{T} V_{\mathsf{full}, \eta}^{-1} (x - \mu(\theta, \zeta, \eta_{0})) + (\zeta - \zeta^{0})^{T} V_{\zeta}^{-1} (\zeta - \zeta^{0})$$

• Линейная по η модель, численная минимизация по θ и ζ .

Особенности dybOscar

Количество опорных точек, Е: 4 3 3 3 3 3 3 3 3 3 Время расчёта модели 0.12 Метод интегрирования: 0 10 Гаусса-Лежандра Переменная Время, с 0.08Точный 0.06 4×10^{-1} Полное вычисление 0.04 Изменение $\Delta m_{32}^2 \sim 2 \times 10^{-3} \, \mathrm{sB}^2$ 3×10^{-1} $\Delta m^2 = 0.025 \ B^2$ 0.02Параметры энергетической шкалы 3×10^{-2} L = 1700 M 1×10^{-2} 0.0 Изменение угла смешивания Отношение 1.003 2×10^{-4} Нормировка сигнала от реакторов 1.000 2×10^{-6} $\theta_{ii}, \Delta m_c^2, c$ кешем 0.993 0.99 Erec, M3B

Адаптивное интегрирование:

количество точек, необходимое для интеграции интервала выбирается в зависимости от скорости осцилляций функции.

- Оптимизированное вычисление:
 - Вклад от каждого делящегося изотопа за всё время работы рассчитывается отдельно для каждого детектора.
 - Вся цепочка вычислений, включая эффекты детектора, производится независимо для каждого слагаемого вероятности осцилляций.
- Гибкая система кеширования и интерполяции по переменным Δm_{13}^2 , θ_{13} , θ_{12} .
- Условные вычисления.
- Виртуализация переменных.

Проверка методики подгонки

- Проверка на модельных данных, в том числе полученных с альтернативными параметризациями спектра
- Проверка на модельных данных других групп
- Сравнение результатов слепого анализа данных между группами
- Сравнение результатов анализа данных между группами

Максим Гончар (ОИЯИ)

Проверка методики подгонки

Значение

истинно

среднее

ошибка

 $\times 10^{-3}$

- Модель: антинейтринные спектры Fallot [1208.3877].
- Подгонка: антинейтринные спектры Huber+Mueller, [1106.0687], [1101.2663].

Подгонка: свободные антинейтринные спектры на основе Huber+Mueller, [1106.0687], [1101.2663].

- Проверка на модельных данных, в том числе полученных с альтернативными параметризациями спектра
- Проверка на модельных данных других групп
- Сравнение результатов слепого анализа данных между группами
- Сравнение результатов анализа данных между группами

Максим Гончар (ОИЯИ)

Проверка методики подгонки

- Модель: антинейтринные спектры Fallot [1208.3877].
- Подгонка: антинейтринные спектры Huber+Mueller, [1106.0687], [1101.2663].
- Подгонка: свободные антинейтринные спектры на основе Huber+Mueller, [1106.0687], [1101.2663].
- Проверка на модельных данных, в том числе полученных с альтернативными параметризациями спектра
- Проверка на модельных данных других групп
- Сравнение результатов слепого анализа данных между группами
- Сравнение результатов анализа данных между группами

Максим Гончар (ОИЯИ)

Антинейтринные спектры Fallot et al.

По отношению к спектрам Huber+Mueller

