

Результаты эксперимента BEST (Baksan Experiment on Sterile Transitions)

BEST

arXiv:2109.11482

BEST Collaboration:

БНО ИЯИ РАН

В. Н. Гаврин

V. Gavrin*, V. Barinov, S. Danshin, V. Gorbachev, D. Gorbunov, T. Ibragimova, Yu. Kozlova, L. Kravchuk, V. Kuzminov, B. Lubsandorzhiev, Yu. Malyshkin, I. Mirmov, A. Shikhin, E. Veretenkin, V. Yants

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia

B. Cleveland

SNOLAB, Sudbury, ON P3Y 1N2, Canada

H. Ejiri

Research Center for Nuclear Physics, Osaka University, Osaka, Japan

S. Elliott, I. Kim, R. Massarczyk

Los Alamos National Laboratory, Los Alamos NM 87545, USA

D. Frekers

Institut für Kernphysik, Westfälische Wilhelms-Universität Munster, D-48149 Munster, Germany

W. Haxton

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

V. Matveev, G. Trubnikov

Joint Institute for Nuclear Research (JINR) Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia

J. Nico

National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA

A. Petelin, V. Tarasov, A. Zvir

JSC "State Scientific Center Research Institute of Atomic Reactors", Dimitrovgrad, 433510, Russia

R. Robertson

Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195, USA

D. Sinclair

Carleton University 1125 Colonel By Drive Ottawa, K1S 5B6, Canada

J. Wilkerson

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA

* Principal Investigator

Галлиевые эксперименты с источниками

Низкая скорость захвата нейтрино, измеренная в Ga экспериментах с источниками, может быть объяснена в рамках нейтринных осцилляций в предположении переходов из активных в стерильные нейтрино с ∆m² ~ 1эB²

$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_v (MeV)})$$

Область допустимых осцилляционных параметров, полученных из 4-х галлиевых экспериментов с источниками в предположении осцилляций в стерильные нейтрино. b.f.p. $\Delta m^2 = 2.15 \text{ eV}^2$, $\sin^2(2\theta) = 0.24$

Consequences of ⁷¹Ga(³He, t) ⁷¹Ge and Q_{EC} -value measurements:

1. contribution from excited states: $7.2\% \pm 2.0\% (5.1\% \text{ by Bahcall})^{(1)}$ Recent measurement of ⁷¹Ga(³He, t)⁷¹Ge (At RCNP, Japan)

2. Q_{EC} is close to the value employed by Bahcall⁽²⁾ : 233.7 ± 1.2 keV (232.7 ± 0.15 keV used by Bahcall)

Penning trap Q-value determination of the 71 Ga(v,e⁻) 71 Ge reaction using threshold charge breeding of on-line produced isotopes (at ISAC/TRIUMF Canada)

3. the observed discrepancy is NOT due to any unknowns in Nuclear Physics.

The deficit of neutrinos in the Ga source experiments can be a real physical effect of unknown origin, such as a transition to sterile neutrinos

[S Gariazzo, C Giunti, M Laveder, Y F Li, E M Zavanin, arXiv:1507.08204v1 [hep-ph]]

- ⁽¹⁾ D. Frekers, H. Ejiri, H. Akimune et al., Phys. Lett. B 706, 134 (2011)
- ⁽²⁾ D. Frekers, M. C. Simon, C. Andreoiu, et al., Phys. Lett. B 722, 4–5 (2013)

Эксперимент BEST

Ga R_2 Ga Pee $im^2(2\Theta)$ inner zone outer zone Rı R_2 Rn

ø210

Схема предложенного эксперимента с источником нейтрино. R_1 и R_2 отношение измеренных скоростей захвата к ожидаемым в отсутствие осцилляций скоростям во внутренней и внешней зонах соответственно

R

Отличительные черты **BEST** :

• Поиск исчезновения электронных нейтрино через реакцию заряженных токов (СС) :

 $v_e + {^{71}Ga} \rightarrow {^{71}Ge} + e^{-}$

БНО ИЯИ РАН

В. Н. Гаврин

• Использование компактного, почти монохроматического источника нейтрино хорошо известной активности – наблюдение чистой синусоиды осцилляционных переходов :

$$P_{ee} = 1 - \sin^2 2\theta \cdot \sin^2 (1.27 \frac{\Delta m^2 (eV^2) \cdot L(m)}{E_v (MeV)})$$

• Хорошо известная активность источника.

• Возможность исследования зависимости скорости захвата нейтрино на двух расстояниях от источника.

- Исследования с очень короткой базой.
- Практически нулевой фон. В основном от Солнца.

Источник ЗМКи обеспечит количество взаимодействий на Ga в несколько десятков раз превышающее то, что можно ожидать от Солнца.

• Все процедуры извлечения хорошо изучены в солнечных измерениях SAGE на ГГНТ.

• Простая интерпретация результатов.

Изготовление стартовой мишени из металлического хрома-50

Стадии получения изотопа Хром-51

- 1. Обогащение стартовой мишени в форме фтористого хромила (380 кг) на основе природного хрома по изотопу хром-50 до 97%
- Получено 4500 г (по металлу) хрома, обогащенного по стабильному изотопу хром-50, в виде хромового ангидрида (CrO₃), содержание целевого изотопа хром-50 составляет 98 %

W V				
GEP	า InI@InIKIA	IT KAC	IECT	
ufacturer: ck Company «Production As ctrochemical Plant»	isociation	ECP	Stock Company	Performer of analys «Production Associatio «Electrochemical Plan Central Plant Laborato
изводитель: ионерное общество «Произ единение «Электрохимиче	водственное ский заводи	E STATE CORPORATION COMPANY	Центральная АО «ПО «Эле	Исполнитель анализс заводская лаборатор эктрохимический заво
	СЕRTIFIС СЕРТИФИКАТ	ATE No. <u>53/4999</u> ™		
Name of Product: Наименование продукта:	<u>Chrome enriched</u> Хром, обогащенный по	<u>in stable isotope Cr-50,</u> стабильному изотопу Cr-50, в	as chromic anhydr виде хромового ангидр	ide ^{uda}
Contract No. 1	<u>3/8178-Д</u>	Addendum	No.	
lorosop Nº	700	Доп. соглашен	ие №	
LOT NO. 3	/02	Packages N Viakosky Nº Nº	l≌ 1÷4	
 Weight of Масса продукт Net weight* 	rroduct <u>CrO</u> ₃ ª <u>4389.53</u> g	Element weight	<u>2229.00</u> g	
масса нетто 2. Isotopic cc Изотопный сос	mposition <u>Cr</u>	масса элемента		
isotopes Ізотопы	50	52	53	54
Atomic fraction, % Атомная доля, %	98.725	1.26	0.01	0.005
3. Remark:	Radiologically safe			
примечание:	Mass fraction of chro	omic anhydride		≥ 99.5 %
	Массовая доля хромовог	о ангидрида		. 0. 0.20
	mass maction of F			< 0.030 7

Аассовая доля фтор-ион

Нейтронно-физические расчеты и расчеты трансмутации ядер.

Для обоснования конструкции облучательного устройства (ОУ), позволяющей получить активность хрома-51 более 3 МКи, и обоснования технологии реакторного накопления Cr-51 были выполнены вариантные нейтронно-физические расчеты и расчеты трансмутации ядер. Рассматривались варианты конструкции ОУ с стержневой и дисковой формой мишени.

По результатам вариантных нейтронно-физических расчетов :

Разработана конструкция ОУ, обеспечивающая наработку хрома-51 в количестве более ЗМКи (для облучения используются дисковые заготовки из металлического хрома двух типоразмеров (ø88×22 мм и ø84×6 мм, по 13 шт.), суммарная масса хрома 4007.5 г, обогащение по изотопу хром-50 – 98%).

Сборка стартовой мишени из хромовых дисков для размещения в ОУ

ОУ с хромовой мишенью 22 марта 2019 г. установлено на облучение в Центральную ловушку активной зоны реактора СМ-3

Калориметрическая система

Измерительная ячейка с источником ней/трино

Активность источника определяется как $A = \frac{N}{c}$, где N – тепловыделение, ε - средняя энергия на распад ⁵¹Cr: 36.750 ± 0.084 кэВ/распад. Тепловыделение пропорционально разнице выходной и входной температур теплоносителя:

$$N = k \ge Q \ge (T_{out} - T_{in}),$$

где N – тепловыделения источника, Вт, k – коэффициент пропорциональности, Дж/(кг x K),

Q – расход теплоносителя, кг/с, Т_{оиt} – выходная температура теплоносителя, К,

Т_{іп} – входная температура теплоносителя, К.

ИсточникМульти тока метр

115 815

й компьютер неопределенностей на 14-02 05.07.2019 составила 3.410 ± 0.008 MCi

BNO INR RAS

June 22 to July 2, 2020

10⁵ Full spectrum of photons 320 (51Cr) from the source 10⁴ 10³ 10^{2} 10^{1} 10⁰ 500 1000 1500 2000 2500 3000 E (keV) 400 Part spectrum of photons from the source (600-900 300 95Nb ⁵⁴Mn keV) 200 137 Cs 95 Zr 134 Cs 58 Co 750 850 650 700 800

Measured nuclide impurities in the ⁵¹Cr source and their contribution to the source activity measurement at the reference time 14:02 on 05.07.2019

Gamma-ray spectroscopy

		The	The	Activity	
	Jactone T	energy in	output	Activity	W,
	1 1 solope, $1_{1/2}$	the line,	lines,	on July 5,	mW
		keV	%	mC1	
1	¹³⁷ Cs, 30.05 y	662	85	8.5×(1±0.23)	0.06
2	⁹⁵ Zr, 64 d	724	11.1	60×(1±0.12)	2.1
		757	54.38		
3	⁹⁵ Nb, 35 d	766	99.8	87×(1±0.04)	
4	¹³⁴ Cs, 2.06 y	796	85.5	3.3×(1±0.18)	0.04
5	⁵⁸ Co, 70.85d	811	99.44	6.0×(1±0.27)	0.08
6	⁵⁴ Mn, 312 d	835	100	13×(1±0.05)	0.1
7	⁴⁶ Sc, 83.8 d	889	100	5.2×(1±0.10)	0.07
		1120	100		
8	⁵⁹ Fe, 44.5 d	1099	57	23×(1±0.07)	0.22
		1291	43.2		
9	⁶⁰ Co, 5.27 y	1173	100	6.6×(1±0.03)	0.11
		1332	100		
10	¹²⁴ Sb, 60.2 d	1690	47.5	5.8×(1±0.06)	0.1
		2091	5.5		
11	¹⁵⁴ Eu (?), 8.6 y	1274	34.9	0.86×(1±0.18)	0.01
		1595	1.8		
Σ					2.9

(V.V. Gorbachev, XXXV International Conference on Equations on State for Matter, *Elbrus, KBR, March 1-6, 2020*)

From 11 spectrometric measurements of gamma radiation of the source was obtained: - the total amount of heat release from impurity radionuclides is 2.9 ± 0.5 mW, which is ~ 4.10⁻⁶ of the initial ⁵¹Cr source power, and can be neglected; - confirmation of a high purity of the material used to produce the ⁵¹Cr source

Lead

chamber

2 zone gallium target

Source

ori

Global intensity of muon (3.03 \pm 0.19) × 10⁻⁹ (cm²s)⁻¹ Fast neutron flux (>3MeV) (6.28 \pm 2.20) × 10⁻⁸ (cm²s)⁻¹

SAGE

Gamer - 50 tons

.

The second of the

Извлечение ⁷¹Ge (продолжительность 30 часов): 1) Перекачка галлиевых мишеней в реакторы : Inner zone \rightarrow 1 реактор , Outer zone \rightarrow 6 реакторов. (4.5 ч) 2) Германиевый носитель в форме GeCl₄ извлекается из металлического галлия каждого реактора в водную фазу. 3) Концентрирование водного раствора упариванием. (16ч) 4) Синтез GeH₄ и заполнение счетчиков. 5) Счет распадов ⁷¹Ge.(60 – 150 дней)

Измерение активности источника:

1) Перемещение источника в свинцовый контейнер

2) Измерение с ППД спектра гамма излучения на расстоянии 21.65 м (*1ч*)

3) Перемещение источника в калориметр

4) Измерение тепловыделения источника (20-21 ч)

Counter

Installation for synthesis of GeH₄ (И. Н. Мирмов)

Эффективности извлечения								
11	Extraction	Extraction efficiency						
		from	from	into				
name	Date (2019)	Ga	GeH ₄	GeH ₄				
Cr1	15 Jul 13:59	0.9868	0.9630	0.9503				
Cr2	25 Jul 13:51	0.9841	0.9736	0.9581				
Cr3	04 Aug 12:47	0.9881	0.9784	0.9668				
Cr4	14 Aug 12:51	0.9858	0.9761	0.9622				
Cr5	24 Aug 14:35	0.9871	0.9734	0.9609				
Cr6	03 Sep 12:35	0.9893	0.9353	0.9253				
Cr7	13 Sep 12:29	0.9904	0.9606	0.9514				
Cr8	23 Sep 12:32	0.9897	1.0000	0.9897				
Cr9	03 Oct 12:27	0.9881	0.9781	0.9664				
Cr10	13 Oct 12:26	0.9877	0.9657	0.9538				

E	xtraction	Extraction efficiency			
			fom	into	
name	Date (2019)	from Ga	GeH ₄	GeH ₄	
Cr11	15 Jul 16:01	0.9747	0.9705	0.9460	
Cr21	25 Jul 16:32	0.9814	0.9740	0.9559	
Cr31	04 Aug 16:37	0.9795	0.9875	0.9673	
Cr41	14 Aug 15:35	0.9801	0.9708	0.9515	
Cr51	24 Aug 17:17	0.9808	0.9742	0.9554	
Cr61	03 Sep 15:18	0.9818	0.9725	0.9548	
Cr71	13 Sep 15:11	0.9813	0.9560	0.9381	
Cr81	23 Sep 15:17	0.9835	0.9953	0.9789	
Cr91	03 Oct 15:00	0.9824	0.9716	0.9545	
Cr101	13 Oct 14:59	0.9806	0.9557	0.9372	

Параметры счета

В эксперименте BEST использовались 2 счетные системы: SYS3 и SYS2Z (А. А. Шихин);

и 2 типа счетчиков с катодом из тонкого углеродного слоя, нанесенного на его внутреннюю поверхность :

- **YCT** (ранее исследовались характеристики)

-YCN (не исследовались ранее) В таблицах представлены пиковые эффективности счетчиков, полученные в 2020-2021г.г. из измерений с изотопами ³⁷Ar и ⁷¹Ge. (доклад В.В. Горбачева)

			Cou	ınter fillir	ıg	efficien rise tin energ	nter cy after ne and y cuts		Live tim	ie (days)	Δ	
E> cti na	xtra ion ame	Counter name	Pressure (mm Hg)	GeH4 fraction (%)	Syst. Slot	K -peak	L -peak	Day counting began in 2019	K-peak	L-peak	K-peak	L-peak
Cr	· 1	YCN113	635	9.5	3.4	0.3422	0.3529	197.66	53.788	33.662	0.7648	0.6996
Cr	2	YCT3	635	9.5	3.1	0.3707	0.3525	207.623	54.376	30.640	0.8043	0.6755
Cr	3	YCNA9	640	10.5	Z.4	0.2933	0.3505	217.693	51.070	51.070	0.7650	0.7650
Cr	•4	YCT9	635	9.6	3.6	0.3658	0.3492	227.644	52.981	30.423	0.7820	0.3755
Cr	5	YCN41	635	10.0	Z.1	0.3568	0.3331	237.790	147.774	147.774	0.8025	0.8025
Cr	6	YCT4	630	9.0	3.3	0.3585	0.3558	247.597	139.382	131.148	0.8012	0.3843
Cr	· 7	YCN113	630	10.3	3.4	0.3407	0.3540	257.617	134.985	136.161	0.7977	0.7108
Cr	8	YCT3	640	9.5	3.1	0.3716	0.3519	267.634	129.098	131.802	0.8298	0.8398
• Cr	9	YCNA9	635	9.9	Z.4	0.293	0.3587	277.678	155.439	155.439	0.7865	0.7865
Cr	10	YCT9	645	9.5	3.6	0.3677	0.3480	287.625	143.604	146.307	0.7567	0.7905
			•	•								

		C			Cou	nter							
		Cou	ınter fillir	ıg	efficiency after			Live time (days)		Δ			
				-	risetin	ne and							
	1		1		energ	y cuts							
Extra		Dressure	GeH				Day						
L'Auto	Counter	(mana		Syst.	V. maala	Tural	counting	V. n. sala	Lucal	V. n. aala	Tural		
ction	name		fraction	Slot	к-реак	греак	began	к-реак	г-реак	к-реак	г-реак		
name		Hg)	(%)						in 2019				
Cr 11	YCT92	630	8.8	3.5	0.3563	0.3570	197.66	54.478	34.364	0.8102	0.7450		
Cr 21	YCT2	640	9.5	3.2	0.3751	0.3556	207.623	53.706	29.834	0.7839	0.6542		
Cr 31	YCN43	650	9.3	Z.3	0.3794	0.3565	217.693	50.525	50.525	0.7143	0.7143		
Cr 41	YCT97	640	9.2	3.7	0.3691	0.3495	227.644	52.808	29.884	0.7872	0.3672		
Cr 51	YCN46	650	9.5	Z.8	0.3698	0.3478	237.790	150.436	150.436	0.7470	0.7470		
Cr 61	YCN42	640	9.8	3.8	0.3627	0.3443	247.597	140.143	133.113	0.7717	0.3892		
Cr 71	YCT92	640	9.3	3.5	0.3577	0.3560	257.617	129.483	130.843	0.7493	0.6776		
Cr 81	YCT2	645	9.5	3.2	0.376	0.3550	267.634	129.060	131.764	0.7754	0.7855		
Cr 91	YCN43	640	9.1	Z.3	0.3778	0.3576	277.678	152.034	152.034	0.8019	0.8019		
Cr 101	YCT97	650	9.1	3.7	0.3709	0.3483	287.625	144.446	147.014	0.7629	0.7955		

Система SYS3 (Los Alamos, A. A. Шихин)

Система 22 (А.А.Шихин)

анализ данных

к собранным данным применялся стандартный анализ данных

- исключались зашкаливающие события от внутреннего ²²²Rn из счетного времени исключалось 15 мин до и 3 часа после каждого зашкаливающего импульса;
- исключались все события, имеющие совпадение с детектором NaI;
- для минимизации влияния внешнего ²²²Rn, из счетного времени исключалось 2.6 часа после каждого открытия защиты;
- производился отбор по времени нарастания Т_N для энергетических диапазонов L и К пиков.

Реальные пределы отбора по T_N определялись для каждого счетчика, заполненного изотопом ⁷¹Ge, установленного на измерение в «свой» слот счетной системы.

Времена прихода отобранных таким образом событий - кандидатов ⁷¹Ge фитировались функцией правдоподобия для разделения событий распада ⁷¹Ge (с $T^{1/2} = 11.4$ д) от фоновых событий, имеющих постоянную скоростью.

```
- анализ данных двумя группами BEST
```

Отбор событий-кандидатов на распад германия-71

Определение времени нарастания по форме импульса T_N .

Импульс от события распада ⁷¹Ge имеет время нарастания фронта, соответствующее точечной ионизации .

Для точечной ионизации изменение потенциала на аноде цилиндрического пропорционального счетчика описывается формулой Эллиотта :

$$V(t) = \begin{cases} \frac{V_0}{T_N} [(t+t_0) \cdot \ln(1+\frac{t}{t_0}) - t], & \partial \pi \ 0 < t < T_N \\ \frac{V_0}{T_N} [T_N(\ln(\frac{t+t_0 - T_N}{t_0}) - 1) - (t+t_0) \cdot \ln(1-\frac{T_N}{t+t_0})], & \partial \pi \ T_N < t < \infty \end{cases}$$
[NIM A290 (1990) 158]

Полная шкала по оси Y имеет 256 каналов, соответствующих: 1.040 В (130 мВ/дел, К-пик) для канала 1 осциллоскопа, 0.160 В (20 мВ/дел, L-пик) для канала 2.

Ось Х -1024 нс.

точка начала импульса *t* ≈ 180 нс.

(B.В Горбачев, Т.В. Ибрагимова, S. Elliott, Kim, In wook, Massarczyk, Ralph)

Распределение событий по энергии и времени нарастания импульсов (T_N) для всех хромовых ранов.

На верхней панели - все события, зарегистрированные в течение первых 30 дней счета после извлечения. Положение L- и K-пиков ⁷¹Ge, определенное по калибровкам, показано темным цветом.

На нижней панели приведена та же гистограмма для всех событий, которые были зарегистрированы в течение такого же живого времени счета через 40 дней после извлечения.

Метод максимального правдоподобия

МП фит по *t* и *E* зависимости всех кандидатов на распад 71 Ge

Time

Из фита МП всех кандидатов в К+L пиках с переменным параметром периода полураспада ⁷¹Ge получены величины T¹/₂ ⁷¹Ge: **11.11±0.69** дней для 10 извлечений из Внешней мишени **11.05±0.72** дней для 10 извлечений из Внутренней мишени Справочное значение T¹/₂ ⁷¹Ge - 11.43±0.03 дня Для оценки вкладов систематических неопределенностей в ожидаемые скорости захвата в зонах мишеней была уточнена конфигурация галлиевых мишеней

 $V_{II} = 6.5561 \text{ м}^3$, Macca = 39.9593 т Vc ϕ = 1.22545 м³, Macca = 7.4691 т

Для данной геометрии получены длины пробегов в сферической и цилиндрической мишенях, а также соответствующие им ожидаемые скорости образования в начале облучения источником ⁵¹Cr активностью 3.413 МКи

 $< L_{Inn} > = 52.03 \pm 0.04$ cm $< L_{Out} > = 54.41 \pm 0.01$ cm

(ошибки из метода Монте Карло для 107 событий)

		Неопределенность			
	Значение	Абсолютная	Относительная (%)		
Атомная плотность $D = \rho N_0 f_I / M$					
Плотность Ga, ρ (г Ga/см ³)	6.095	0.002	0.033		
Число Авогадро N_0 (10 ²³ ат Ga/моль)	6.0221	0	0		
Молекулярный вес Ga M (г Ga/моль)	69.72307	0.00013	0.0002		
Атомная плотность $D (10^{22} \text{ at }^{71} \text{Ga/cm}^3)$	2.1001	0.0008	0.037		
Активность источника в исходное время А, МКи	3.414	0.008	0.23		
Сечение σ [10 ⁻⁴⁵ см ² / (⁷¹ Ga at ⁵¹ Cr распад)], Bahcall	5.81	+0.21,-0.16	+3.6,-2.8		
Длина пробега в Ga <l<sub>Out> (см)</l<sub>	54.41	0.18	0.3		
Длина пробега в Ga <l<sub>Inn> (см)</l<sub>	52.03	0.18	0.3		
Предполагаемая скорость образования (⁷¹ Ge ат/д), R _{Out}	72.59	+2.6,-2.1	+3.6,-2.8		
Предполагаемая скорость образования (⁷¹ Ge ат/д), R _{Inn}	69.41	+2.5,-2.0	+3.6,-2.8		

Результаты анализа скоростей захвата K+L пиков для каждых 10 извлечений двух мишеней, а также результаты объединенного анализа и ожидаемой скорости захвата.

$$\frac{R_{Inn} = 54.9 \pm 2.5 \,(stat)}{R_{Inn}} \stackrel{+1.43}{=} (syst) = 54.9 \pm 2.9}{\frac{69.41^{+2.5}}{=}} = 0.791 \pm 0.05 \,(4.2\sigma)$$

$$R_{Out} = 55.6 \pm 2.7 \text{ (stat)} + 1.45 \text{ (syst)} = 55.6 \pm 3.1$$
$$\frac{R_{Out}}{R_{OutExpect}} = \frac{55.6 \pm 3.1}{72.59^{+2.6}_{-2.1}} = 0.766 \pm 0.05 \text{ (4.75)}$$

$$r = \frac{R_{out}}{R_{Inn}} = \frac{0.766 \pm 0.05}{0.791 \pm 0.05} = 0.97 \pm 0.07$$

TABLE I. A summary of the likelihood fits for the production rate from each extraction, the combined fit of all extractions, and the predicted production rate. The quoted measurement uncertainties are statistical.

		Inne	er Volume			Oute	er Volume	
Exposure	K+L	Number fit	⁵¹ Cr	Production	K+L	Number fit	⁵¹ Cr	Production
Dates (DoY)	Candidates	to 71 Ge	Production	Rate $(Atoms/d)$	Candidates	to 71 Ge	Production	Rate (Atoms/d)
186.585 - 196.376	180	176.3	175.5	$49.4_{-4.0}^{+4.2}$	181	133.4	129.6	$41.1^{+5.3}_{-5.2}$
197.362 - 206.372	129	111.5	107.7	$44.9^{+5.9}_{-5.6}$	174	163.8	158.6	$63.6^{+5.7}_{-5.5}$
207.282 - 216.374	132	117.6	115.4	$62.9^{+7.4}_{-7.1}$	116	92.5	88.2	$51.4_{-6.9}^{+7.3}$
217.286 - 226.371	93	87.3	85.6	$73.3^{+8.6}_{-8.0}$	98	82.3	78.9	$66.6^{+9.8}_{-9.2}$
227.258 - 236.458	134	60.2	58.4	$49.8^{+8.2}_{-7.7}$	120	64.0	59.5	$46.9^{+7.9}_{-7.2}$
237.342 - 246.369	81	48.8	47.7	$69.5^{+12.0}_{-11.0}$	97	62.3	59.3	$87.3^{+13.2}_{-12.3}$
247.243 - 256.368	91	45.0	43.9	$64.6^{+12.6}_{-11.6}$	69	38.0	34.4	$50.4^{+10.6}_{-9.6}$
257.241 - 266.369	59	33.6	32.4	$53.8^{+12.2}_{-11.0}$	68	43.4	39.2	$59.7^{+11.7}_{-10.8}$
267.240 - 276.369	106	23.7	22.7	$49.9^{+16.5}_{-14.9}$	66	20.2	17.0	$43.0^{+15.3}_{-13.5}$
277.201 - 286.367	88	25.2	24.3	$69.1^{+19.4}_{-17.3}$	81	31.8	28.0	$78.8^{+20.0}_{-18.1}$
Combined	1093	724.0	708.2	$54.9^{+2.5}_{-2.4}$	1069	738.8	699.8	$55.6^{+2.7}_{-2.6}$
Predicted				$69.41_{-2.0}^{+2.5}$				$72.59^{+2.6}_{-2.1}$

Фит с переменным параметром $T^{1/2}$ ⁵¹Cr :

30.97±3.90 дней - для 10 извлечений из Внешней мишени

31.55±2.89 дней - для 10 извлечений из Внутренней мишени

Сечение захвата на Ga нейтрино от ⁵¹Cr (10⁻⁴⁵ см²)

Ref.	Cross section	
Bahcall et al. [PRC 56 , 3391 (1997)]	$5.81^{+0.21}_{-0.16}$	>
Frekers et al. [PRC 91 , 034608 (2015)]	5.93	
Barinov et al. [PRD 97 , 073001 (2018)]	5.910 ± 0.114	
Konstensalo et al. [PLB 795 , 542 (2019)]	5.67±0.06	
Semenov [Phys. At. Nucl. 83 , 1549 (2020)]	5.938±0.116	

W. Haxton!

Осцилляционный анализ

 $\chi^2 (\Delta m^2, \sin^2(2\theta)) = (R^{meas} - R^{calc})^T V^{-1} (R^{meas} - R^{calc})$ R^{meas} - вектор измеренных в эксперименте значений $R^{calc}(\Delta m^2, \sin^2(2\theta))$ - вектор вычисляемых значений V - ковариационная матрица ошибок, корреллированные - неопределенности сечения захвата Вычисленные контуры уровней достоверности, соответствуют $\Delta \chi^2 \equiv \chi^2 - \chi^2_{min}$ с 2 d.o.f: $\Delta \chi^2 = 2.30$, 6.18, 11.83 для 68.27% (1 σ), 95.45% (2 σ) и 99.73% (3 σ) C.L., соответственно:

Среднее взвешенное для всех Ga экспериментов - 0.80±0.05, если не учитывать переходы на 2 возбужденных уровня (5%) – 0.84 ±0.04

Сравнение с осцилляционными результатами других экспериментов

Clear tension between the numerous results.

BEST + SAGE и GALLEX b.f.p. $\Delta m^2=1.25 \text{ eV}^2$, sin (2 θ)=0.34

Neutrino-4: JETP Lett. 112, 199 (2020)

Спасибо за внимание