Измерение каонных формфакторов в распаде К→ µ v γ на установке ИСТРА+

OKA

ИФВЭ У-70 (Протвино, Россия)

Вячеслав Дук, ИЯИ РАН

коллаборация ИСТРА+

Содержание

- Распад К $\rightarrow \mu \nu \gamma$
- Эксперимент ИСТРА+
- Отбор событий
- Подавление фоновых процессов
- Выделение сигнала
- Фитирование спектра
- Результаты
- Выводы

Распад К → μ ν γ : мотивация

Теория К→µνγ: дифференциальная ширина распада

 $\begin{aligned} \frac{d\Gamma_{K_{\mu\nu\gamma}}}{dxdy} &= A_{IB}f_{IB}(x,y) \\ &+ A_{SD}[(F_V + F_A)^2 f_{SD^+}(x,y) + (F_V - F_A)^2 f_{SD^-}(x,y)] \\ &- A_{INT}[(F_V + F_A) f_{INT^+}(x,y) + (F_V - F_A) f_{INT^-}(x,y)], \end{aligned}$

3 основных вклада: IB – доминирующий SD±, INT± наиболее интересные $(\rightarrow F_v, F_A)$

> Кинематические переменные: $x=2*E_{\gamma}(cm)/M_{k}$ $y=2*E_{\mu}(cm)/M_{k}$

$$\begin{split} f_{IB}(x,y) &= \left[\frac{1-y+r}{x^2(x+y-1-r)}\right] \\ &\times \left[x^2+2(1-x)(1-r)-\frac{2xr(1-r)}{x+y-1-r}\right], \\ f_{SD^+} &= [x+y-1-r][(x+y-1)(1-x)-r], \\ f_{SD^-} &= [1-y+r][(1-x)(1-y)+r], \\ f_{INT^+} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][(1-x)(1-x-y)+r], \\ f_{INT^-} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][x^2-(1-x)(1-x-y)-r], \end{split}$$

$$\begin{split} r &= \left[\frac{M_{\mu}}{M_{K}}\right]^{2},\\ A_{IB} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{2\pi} \frac{1}{(1-r)^{2}},\\ A_{SD} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{8\pi} \frac{1}{r(1-r)^{2}} \left[\frac{M_{K}}{F_{K}}\right]^{2},\\ A_{INT} &= \Gamma_{K_{\mu 2}} \frac{\alpha}{2\pi} \frac{1}{(1-r)^{2}} \frac{M_{K}}{F_{K}}. \end{split}$$

Теория К→µvү: дифференцильная ширина распада

$$\begin{split} \frac{d\Gamma_{K_{\mu\nu\gamma}}}{dxdy} &= A_{IB}f_{IB}(x,y) \\ &+ A_{SD}[(F_V + F_A)^2 f_{SD^+}(x,y) + (F_V - F_A)^2 f_{SD^-}(x,y)] \\ &- A_{INT}[(F_V + F_A) f_{INT^+}(x,y) + (F_V - F_A) f_{INT^-}(x,y)], \end{split}$$

3 основных вклада: IB – доминирующий SD±, INT± наиболее интересные $(\rightarrow F_v, F_A)$

> Кинематические переменные: $x=2*E_{\gamma}(cm)/M_{k}$ $y=2*E_{\mu}(cm)/M_{k}$

Теория К→µvү: формфакторы

22.11.2010

К→µvү : основные экспериментальные результаты

авторы	коллабора ция	год	Кинематическая область	Полученные результаты
Barmin et al	ITEP	1988	P _μ < 231.5 MeV/c	BR(IB)=(6.0±0.9)*10 ⁻³
Demidov et al	ITEP	1990	Ρ _μ < 231.5 MeV/c	BR(IB)=(6.6±1.5)*10 ⁻³
Akiba et al	E104 (KEK)	1985	$214.5 < P_{\mu} < 231.5 \text{ MeV/c}$	BR(IB) =(5.4±0.3)*10 ⁻³
Adler et al	E787 (BNL)	2000	P_{μ} > 218.4 MeV/c, E_{γ} > 90 MeV	BR(SD+)=(1.33±0.22)*10 ⁻⁵

Измерения формфакторов:

E787(BNL) Phys.Rev.Lett.85(2000)2256 $(K \rightarrow \mu \nu \gamma)$ $|F_{V}+F_{A}|=0.165 \pm 0.013; -0.04 < F_{V}-F_{A} < 0.24$

E865(BNL) Phys.Rev.Lett.89(2002)061803 (K \rightarrow eve⁺e⁻, K \rightarrow µve⁺e⁻) F_V+F_A=0.147 ± 0.026; F_V-F_A=0.077 ± 0.028

Коллаборация ИСТРА+

- Институт физики высоких энергий, Протвино (ИФВЭ)
- Институт ядерных исследований
 РАН, Москва (ИЯИ РАН)
- Объединенный институт ядерных исследований, Дубна (ОИЯИ)

ИСТРА+: от $\pi \rightarrow e \nu \gamma$ до $K \rightarrow \mu \nu \gamma$

1990

2003-

2007

Изучение распада $\pi \rightarrow e v \gamma$: измерение F_{ν} , $\gamma = F_{\Delta}/F_{\nu}$, F_{τ}

 $K \rightarrow ev \pi^0$, $K \rightarrow \mu v \pi^0$: измерение формфакторов на большой статистике. Phys.Lett.B589(2004)111, Phys.Lett.B581(2004)31 К→π⁻ π⁰π⁰: измерение параметров наклона диаграммы Далитца. Phys.Lett.B567(2003)159 $K \rightarrow \pi^{-} \pi^{0} P$: поиск легкого псевдоскалярного сголдстино. Phys.Lett.B602(2004)149 К→еvπ⁰: Измерение BR и V_{иs} . arXiv:0704.2052 [hep-ex] К→еvπ⁰у: Измерение BR и Т-нечетной корреляции. Phys.Atom.Nucl.70:734-740,2007

К→µνπ⁰γ : Первое наблюдение распада, измерение BR и Tнечетной корреляции. Phys.Atom.Nucl.70:29-34,2007

Установка ИСТРА+

 $p\sim -25~{
m GeV}$; $\Delta p/p\sim 1.5\%$; $K^+\sim 3\%$; $I\sim 3\cdot 10^6/1.9~{
m sec}$.

$T_0 = S1 \cdot S2 \cdot S3 \cdot S4 \cdot C0 \cdot C1 \cdot C2 \cdot \overline{S5}$	$\tau - \tau \cdot (\nabla C D 1 > M I D)$	
(фактор подавления ~10)		

С1-С4 — пороговые черенковские счетчики; S1-S5 — сцинтилляционные счетчики; PC1-PC3 — пропорциональные камеры; SP2 — вето-калориметор; SP1 электромагнитный калориметр; DC — дрейфовые камеры; DT-дрейфовые трубки; MH — матричный сцинтилляционный годоскоп

C1-C4 – пороговые черенковские счетчики; S1-S5 – сцинтилляционные счетчики; PC1-PC3 – пропорциональные камеры; SP2 – вето-калориметор; SP1 – электромагнитный калориметр; DC – дрейфовые камеры; DT-дрейфовые трубки; MH – матричный сцинтилляционный годоскоп

Установка ИСТРА+: распадный объем

Установка ИСТРА+: магнитный спектрометр

Установка ИСТРА+: ECAL, HCAL

Отбор событий

- Треки (один первичный трек, один вторичный трек, ограничения на качество трека)
- Вето (отсутствие сигналов выше порога)
- Вершина распада (400 < z < 1600 cm, ограничения на вероятность вершинного фита)
- Идентификация частиц:

Фотон: ливень в калориметре ECAL

Мюон: 1) MIP в ECAL

- 2) сумма отсчетов ADC в HCAL < 200
- 3) относительное энерговыделение
 - в последних трех слоях HCAL > 0.05

Триггерная эффективность є

Данные ИСТРА+: *Триггер Т*₀ : ~10% ++,++,++,+,+ $T_1 = T_0 \cdot (\sum ECAL > MIP) : ~90\%$ 0.8 Триггерная эфф-ть: $\varepsilon = T_0^* T_1 / T_0$ 0.6 0.4 0.2 Событиям с Т₁ 0 присваивается 2 10 12 14 16 18 6 Bec $1/\epsilon$ Энерговыделение в ECAL, ГэВ

Подавление фонов и наблюдение сигнала

- Основные фоновые процессы:
- $K \rightarrow \mu \nu \pi^0 (K\mu 3)$
- с одним потерянным фотоном от распада $\pi^0 \rightarrow \gamma \gamma$
- K→ π π⁰ (Kπ2)
- с одним потерянным фотоном от π⁰→γγ и неправильной идентификацией π
- Наблюдение сигнала: $M(\mu \vee \gamma) = \sqrt{(P_{\mu} + P_{\nu} + P_{\gamma})^{2}}$ где $\vec{p}_{\nu} = \vec{p}_{\kappa} - \vec{p}_{\mu} - \vec{p}_{\gamma}$; $E_{\nu} = |\vec{p}_{\nu}|$

М(μνγ) имеет пик на М_к=0.494 GeV для сигнала

Процедура подавления фонов: "сканирование" Далитцплота (x,y) и поиск пика в распределении по М(µvy)

Подавление фонов: Далитц-плот (x,y)

Предыдущие эксперименты: поиск сигнала возле кинематической границы по у

ИСТРА+: поиск сигнала возле кинематической границы по Е,

Выделение сигнала

- Далитц-плот (х,у) делится на полосы по х с шириной δx=0.05 (х-полосы)
- Оптимальное ограничение на у в х-полосах: величина
 R=S/v(S+B) (S сигнал, В фон) максимальна
- Одновременный фит M(μ v γ), у и соз θ_{μν} в х-полосах

Извлечение сигнала: одновременный фит в х-полосах

зеленый – сигнал, синий – Кµ3, красный – Кπ2

одновременный фит в x-полосах: фитирующая функция

F – фитирующая функция z – $M(\mu \vee \gamma)$, у или соs N_{sig} , $N_{K\mu3}$, $N_{K\pi2}$ – нормировочные коэффициенты f_{sig} , $f_{K\mu3}$, $f_{K\pi2}$ – формы распределений из MC a, b – дополнительные параметры (a~1, b~0)

одновременный фит в х-полосах: вычисление ошибки

Окончательный спектр по х

Фит спектра: распределение по х нормировано на IB

Источник систематики	значение		
систематика фита	3.0*10-2	Окончательный результат:	
ограничение на х	1.2*10 ⁻²		
ширина х-полосы	2*10-2		
ограничение на у	-	$F_{V} - F_{A} = 0.21 \pm 0.04 \pm 0.04$	
ограничение на z	-		
Вклад INT+	1.4*10-2		
ИТОГО	4*10 ⁻²		

систематика ограничения по у: более строгое ограничение на у в х-полосах (FWHM), повторение процедуры выделения сигнала: результаты совместимы

Ограничение по z

ширина х-полосы: выбранный кинематический диапазон разбивается на х-полосы dx=0.035 (максимальное разрешение по x) dx=0.07; результаты сравниваются с основным (dx=0.05): ε_{syst} ~ 2*10⁻²

Возможный вклад INT+: добавление INT+ с $F_V + F_A = 0.165$ и $F_V + F_A = -0.165$ в фитирующую функцию; сдвиг результата дает систематическую ошибку : $\varepsilon_{syst} \sim 1.4*10^{-2}$

Выбранный кинематический диапазон: комплементарность с предыдущими экспериментами; область малых у ранее не изучена

F_V - F_A : сравнение с КТВ O(p⁴)

$F_v - F_A = 0.21 \pm 0.04(stat) \pm 0.04(syst)$

F_V-F_A: сравнение с LFQM

F_V-F_A: сравнение с КТВ О(р⁶)

22.11.2010

Окончательный результат

авторы	коллабо рация	год	кинематическая область	результат
Barmin et al	ITEP	1988	P _μ < 231.5 MeV/c	BR(IB)=(6.0±0.9)*10 ⁻³
Demidov et al	ITEP	1990	P _μ < 231.5 MeV/c	BR(IB)=(6.6±1.5)*10 ⁻³
Akiba et al	E104 (KEK)	1985	214.5 < P _µ < 231.5 MeV/c	BR(IB) =(5.4±0.3)*10 ⁻³
Adler et al	E787 (BNL)	2000	P _μ > 218.4 MeV/c E _γ > 90 MeV	BR(SD+)=(1.33±0.22)*10 ⁻⁵
Duk et al	ISTRA+	2010	12 < Ε _γ < 148 MeV (0.05 < x<0.6)	F _v - F _A =0.21±0.04±0.04

Е787: 2800 событий *ИСТРА+: ~22К событий*

выводы

- Распад К→ µ ∨ γ выделен на установке ИСТРА+ в ранее не изученном кинематическом регионе
- Наблюдаемое число событий составило 22К (самая большая статистика в мире)
- Впервые измерен вклад INT F_v-F_A= 0.21 ± 0.04(stat) ± 0.04(syst)
- Знак INT- отрицательный

Спасибо за внимание!

