Evidence of large potassium abundance in the Earth from new Borexino data

<u>Valery Sinev^{1,2}</u>, Leonid Bezrukov¹, Ivan Karpikov¹

¹ Institute for Nuclear Research RAS ²National Research Nuclear University (MEPhI)

Borexino experiment

View from inner camera

Borexino detects single events from electrons, gammas and alphas

Что меряет Борексино?

- Рассеяние нейтрино на электроне. А значит и антинейтрино тоже.
- Есть возможность оценить антинейтринные потоки, например геонейтрино от калия (⁴⁰К).
- Сколько калия в Земле и какой поток он производит?
- 0.024% дает 0.05 событий в сутки в 100 т
- 1% 2 события в сутки.
- В коре 1.5-2.5% калия по массе. Сколько внутри неизвестно.

Final single events spectrum from Borexino done for 871.37 day of live time measurements

Final Phase-III dataset: Jan 2017-Sep 2021; N_{ev}= 110000

How to analyze the Borexino spectrum?

There is a set of calculated spectra that are applied to fit the experimental spectrum. Solar neutrinos spectra:

⁸B, ⁷Be, *pep*, CNO (¹³N, ¹⁵O, ¹⁷F)

Backgrounds:

²¹⁰Po, ²¹⁰Bi, ⁸⁵Kr, ¹¹C – inner inside the scintillator

²⁰⁸Tl, ²¹⁴Bi, ⁴⁰K – coming from outside

Each component has an individual spectrum that is calculated and normalized by unit. It is pdf – probability density function.

When fitting experimental spectrum one founds coefficients for pdf-s that are integrals of components.

Fit of Borexino spectrum

 $R(CNO) = 6.7^{+2.0}_{-0.8}$ $R(^{7}Be) = 48 + 2.0$ $R(^{210}Bi) \le 10.8 \pm 1.0$ $R(^{85}Kr) \le 8.5 \pm 2.0$ $R(^{210}Po) = 42 \pm 2.0$ $R(^{210}Po) = 42 \pm 2.0$ $R(^{11}C) = 1.4 \pm 0.2$ $R(pep) = 1.74 \pm 0.04$ $R(^{214}Bi) = 1.8 \pm 0.2$ $R(^{208}TI) = 4.4 \pm 0.2$

We have reproduced the analysis of Borexino data the same way

Our fit of Borexino data

 $R(CNO) = 6.7 \pm 1.6$ $R(^{7}Be) = 48 + 2.0$ $R(^{210}Bi) = 10.8 \pm 1.0$ $R(^{85}Kr) = 8.5 \pm 2.0$ $R(^{210}Po) = 42 \pm 2.0$ $R(^{11}C) = 1.7 \pm 0.8$ $R(pep) = 1.74 \pm 0.04$ $R(^{214}Bi) = 1.8 \pm 0.2$ $R(^{208}TI) = 4.4 \pm 0.2$

 $\chi^{2} = 199$

Potassium problem

- Potassium abundance in the crust $a_{\rm K} = (1.5 2.5)\%$
- To explain the fact that the Earth is not melted now, they proposed that it was melted some time ago, and while cooling the crust was formed and all potassium comes into the crust (lithophilic element). Then mean abundance became $a_{\rm K} = 0.024\%$.
- BUT. Large potassium abundance can explain climate changes taking place on the Earth from time to time.
- There is no evidence of the Earth being melted in the past, it is just hypothesis.
- Neutrino detection can setup an upper limit on potassium abundance.

We did our own analysis of Borexino data

Comparison of our pdf-s with Borexino Collaboration ones

⁴⁰K antineutrino and neutrino spectra

 ⁴⁰K antineutrino and neutrino spectra transformed into pdf for the analysis.
⁴⁰K beta spectrum was transformed too

Fit of Borexino spectrum with ⁴⁰K pdf

Analysis wasperformedindependently bytwo persons.1. ROOT2. Python

 $R(CNO) = 3.9 \pm 0.4$

 $R(^{7}Be) = 47 \pm 0.2$ $R(^{210}Bi) = 10.7 \pm 0.3$ $R(^{85}Kr) = 8.5 \pm 0.4$ $R(^{210}Po) = 41 \pm 0.5$ $R(^{11}C) = 1.75 \pm 0.08$ $R(pep) = 1.74 \pm 0.04$ $R(^{214}Bi) = 1.8 \pm 0.2$ $R(^{208}TI) = 4.7 \pm 0.2$

 $R(^{40}K) = 11.0 \pm 1.2$

 $\chi^2 = 175.7$

Borexino analysis $R(\text{CNO}) = 6.7^{+2.0}_{-0.8}$

 $R(^{7}Be) = 48 +- 2.0$ $R(^{210}Bi) \le 10.8 \pm 1.0$ $R(^{85}Kr) \le 8.5 \pm 2.0$ $R(^{210}Po) = 42 \pm 2.0$ $R(^{11}C) = 1.4 \pm 0.2$ $R(pep) = 1.74 \pm 0.04$ $R(^{214}Bi) = 1.8 \pm 0.2$ $R(^{208}Tl) = 4.4 \pm 0.2$

 $\chi^2 = ?$

INR analysis No ⁴⁰K $R(CNO) = 6.7 \pm 1.6$ $R(^{7}\text{Be}) = 48 + -2.0$ $R(^{210}\text{Bi}) = 10.8 \pm 1.0$ $R(^{85}$ Kr) = 8.5 ± 2.0 $R(^{210}Po) = 42 \pm 2.0$ $R(^{11}C) = 1.7 \pm 0.8$ $R(pep) = 1.74 \pm 0.04$ $R(^{214}\text{Bi}) = 1.8 \pm 0.2$ $R(^{208}\text{TI}) = 4.4 \pm 0.2$

 $R(^{40}K) = 0$

 $\chi^2 = 200$

with ${}^{40}K$ $R(CNO) = 3.9 \pm 0.4$ $R({}^{7}Be) = 47 \pm 0.2$

 $R(^{210}\text{Bi}) = 10.7 \pm 0.3$ $R(^{85}\text{Kr}) = 8.5 \pm 0.4$ $R(^{210}\text{Po}) = 41 \pm 0.5$ $R(^{11}\text{C}) = 1.75 \pm 0.08$ $R(pep) = 1.74 \pm 0.04$ $R(^{214}\text{Bi}) = 1.8 \pm 0.2$ $R(^{208}\text{TI}) = 4.7 \pm 0.2$

 $R(^{40}K) = 11.0 \pm 1.2$

 $\chi^2 = 175$

What is probability to find ⁴⁰K if it is absent? Monte Carlo simulated distributions of

Conclusion

- We learned how to make the analysis of Borexino Collaboration data data.
- We reproduced Borexino result in case of ⁴⁰K absence.
- We introduced in our analysis ⁴⁰K pdf.
- In the analysis with 40 K the χ^2 -value is smaller (175) than the one without it (200).
- There was performed virtual experiment (M-C) with and without ⁴⁰K.
- Probability to find large value of ⁴⁰K counting rate (>7 cpd) in case of its absence 5.10⁻⁵.
- Found large value can signal about ⁴⁰K presence in analyzed spectrum of Borexino single events. This means high enough mass of potassium in the Earth, but surely > 0. Evidence at level 6σ that K abundance > 0.

Выводы

Обнаружение возможного большого содержания калия в Земле по данным Борексино требует дополнительных исследований.

Теоретико-расчетное. Проверка влияния компонент друг на друга; Определение вероятности большого значения скорости счета ⁴⁰К. Изучение модели Солнца.

В БНО ИЯИ РАН можно:

Независимое измерение спектра СNO в другом эксперименте (например с ¹¹⁵In).

Разработка детектора типа Борексино с чистой пленкой, большим чувствительным объемом и меньшим фоном ²¹⁰Po, ²¹⁰Bi, ¹¹C и без ⁸⁵Kr.