Как искать новую физику и что делать со старой

Федор Леонидович Безруков

Семинар посвещенный 70-летию Леонида Борисовича Безрукова

Standard Model – perturbative field theory up to M_P

Describes

- all laboratory experiments electromagnetism, nuclear processes, etc.
- all processes in the evolution of the Universe after the Big Bang Nucleosynthesis (T < 1 MeV, t > 1 sec)

Experimental problems:

- Laboratory
 - ? Neutrino oscillations
- Cosmology
 - ? Baryon asymmetry of the Universe
 - ? Dark Matter

? Inflation? Dark Energy

Possible solutions

▶ ...

New physics above EW scale

- SUSY (Hierarchy problem, Dark Matter, neutrino masses, GUT)
- Extra Dimensions (low scale gravity, hierarchy)

No new physics above EW scale

 Standard Model up to Planck scale

Do we have experimental indications of the scales where new physics should appear?

Most things do not really point to a definite scale above EW

- Neutrino masses ans oscillations (absent in SM)
 - Right handed neutrino between 1 eV and 10¹⁵ GeV
- Dark Matter (absent in SM)
 - Models exist form 10⁻⁵ eV (axions) up to 10²⁰ GeV (Wimpzillas, Q-balls)
- Baryogenesys (absent in SM)
 - Leptogenesys scenarios exist from $M \sim 10 \text{ MeV}$ up to 10^{15} GeV

It's physics

The question can be answered only by experiment!

Most things do not really point to a definite scale above EW

- Neutrino masses ans oscillations (absent in SM)
 - Right handed neutrino between 1 eV and 10¹⁵ GeV
- Dark Matter (absent in SM)
 - Models exist form 10⁻⁵ eV (axions) up to 10²⁰ GeV (Wimpzillas, Q-balls)
- Baryogenesys (absent in SM)
 - Leptogenesys scenarios exist from $M \sim 10 \text{ MeV}$ up to 10^{15} GeV

It's physics

The question can be answered only by experiment!

LHC – Started again

Searching for "high" scale (about TeV)

- Great way to see if there are something around TeV
 - If something is found celebrate, and forget most of what I am talking about today

If nothing is found?

LHC – Started again

Searching for "high" scale (about TeV)

- Great way to see if there are something around TeV
 - If something is found celebrate, and forget most of what I am talking about today

If nothing is found?

Standard Model – can it be unchanged up to Planck scale?

 Higgs self coupling \(\lambda\) constant changes with energy due to radiative corrections.

- Behaviour is determined by the masses of the Higgs boson and other heavy particles (top quark)
- If Higgs is heavy M_H > 170 GeV the model enters strong coupling at some low energy scale – new physics required. Maiani, Parisi, Petronzio'77; Lindner'85; Hambye, Riesselmann'96

Lower Higgs masses: RG corrections push Higgs coupling to negative values Coupling λ evolution:

- For Higgs masses M_H < M_{critical} coupling constant is negative above some scale μ₀.
 Krasnikov'78; Hung'79; Politzer, Wolfram'79; Altarelli, Isidori'94; Casas, Espinosa, Quiros'94; Ellis, Espinosa, Giudice, Hoecker, Riotto'09
- The Higgs potential may become negative!
 - Or world is not in the lowest energy state!
 - Problems at some scale µ₀ > 10¹⁰ GeV?

LHC major result: SM is perturbative up to Planck scale, and probably has metastable SM vacuum Experimental values for y_t Scale μ_0 for $\lambda(\mu_0) = 0$

We live close to the metastability boundary – but on which side?!

Future measurements of top Yukawa and Higgs mass are essential!

FB, Kalmykov, Kniehl, Shaposhnikov'12; FB, Shaposhnikov'14

Measuring top quark Yukawa and Higgs boson mass

- Hard to relate the "pole" (the same for "Mont-Carlo") mass to the MS top quark Yukawa
 - NLO event generators
 - Electroweak corrections important at the current precision goals!
- Build a lepton collider (ILC, FCC)
- Improve analysis on a hadron collider?

 Higgs mass measurement may also change a bit...

So, what are the consequences if the Standard Model electroweak vacuum is metastable?

What to do if we are metastable?

$$ho_{
m decay} \propto e^{-S_{
m bounce}} \sim e^{-rac{8\pi^8}{3\lambda(h)}}$$

Even if the vacuum is metastable, it lives *much* longer than the <u>Universe</u>

- No danger today (and, with a bit more analysis, neither there are problems at early hot stages)
- And at higher energies, at inflation?

Metastable vacuum during inflation is dangerous

- Let us suppose Higgs is not at all connected to inflationary physics
- All fileds have vacuum fluctuation
- ► Typical momentum $k \sim H_{inf}$ is of the order of Hubble scale

$$H_{\rm inf} \sim 8.6 \times 10^{13} \, {\rm GeV} \left(\frac{r}{0.1} \right)^{1/2}$$

If typical momentum is greater than the potential barrier – SM vacuum would decay

 $H_{\rm inf} > V_{\rm max}^{1/4}$

Most probably, fluctuations at inflation lead to SM vacuum decay...

Observation of any tensor-to-scalar ratio r by CMB polarization missions would mean great danger for metastable SM vacuum! Two most important measurements to test for SM validity up to the highest scales

- Precise value of the top quark Yukawa y_t
 - Best lepton collider at $E \gtrsim 2m_t$ (ILC, FCC)
- (Ok, a bit more than two measurements Higgs boson mass, α_s)
- Scale of inflation
 - Primordial gravity waves or B-modes of CMB (QUIJOTE, QUBIC, GroundBIRD, BICEP3, ...)

All other SM experimental problems can be solved by changes at low scales

Definintly need new particles

- Neutrino oscillations
- Dark Matter
- Baryon asymmetry of the Universe

all can be solved at low energies Three sterile neutrinos –

 ν MSM

New physics only at low scales

Role of sterile neutrinos

 $N_1 M_1 \sim 1 - 50$ keV: (Warm) Dark Matter,

 $N_{2,3}$ $M_{2,3} \sim$ several GeV:

Gives masses for active neutrinos, Baryogenesys

Asaka, Shaposhnikov'05; Asaka, Blanchet, Shaposhnikov'05

N₁ has been seen! (probably)

Line in the X-ray signal can mean 7 keV DM

Signal in Perseus cluster

Data by Chandra and XMM-Newton, Bulbul et.al'13, Boyarsky et.al'13 Required parameters of sterile neutrino N_1

FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line region.

N₁ has been seen! (probably)

Line in the X-ray signal can mean 7 keV DM Suzaku strongly bounds the allowed

Signal in Perseus cluster

Data by Chandra and XMM-Newton, Bulbul et.al'13, Boyarsky et.al'13

FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line region.

Testing that the 3.5 keV line is DM

Verify, that

- all DM dominated objects emit the line
- and all do this in proper amount
- the feature is really a narrow line

Near future: ASTRO-H

- Good energy resolution
- Excellent sensitivity

Sterile neutrino is not the only candidate for light WDM

There are

- axion like particles
- split dark matter

How to test which is right?

Start searching and testing for other predictions

νMSM with DM means hierarchical active neutrino masses

Active neutrino masses

• X-rays require very small N_1 mixing angle θ_1 , so $m_1 < 10^{-5}$ eV

Neutrinoless double beta decay

- Additional contributions are negligible
 - N₁ X-ray constraints
 - N_{2,3} mass > 100 MeV
- Mass spectrum strongly hierarchical – X-ray constraints
 m_{0νββ} < 50 × 10⁻³ eV

Laboratory tests for ν MSM and DM

Indirect

- Search for $0\nu\beta\beta$
 - GERDA

Direct

- Search for creation of N₁ in kinematics of beta decay (most probably only for extensions of *v*MSM)
 - Troitsk
 - KATRIN
 - PTOLEMY

Search for $N_{2,3}$ is possible

- Leptogenesys by $N_{2,3}$ $\Delta M/M \sim 10^{-3}$
- Experimental searches
 - N_{2,3} production in hadron decays (LHCb):
 - Missing energy in K decays
 - Peaks in Dalitz plot
 - N_{2,3} decays into SM
 - Beam target: SHiP
 - High luminosity lepton collider at Z peak

Note: Other related models (e.g. scalars for DM generation, light inflaton) also show up in such experiments

SHiP – Beam Target experiment

- Protons target shield empty space detector
- N created in the target
 - N decays in the empty detector
 - decay products detected

Neutrino oscillations require new physics

But knowing their parameters does not help much at the moment to fix its properties

E.g. in type I see-saw (or in νMSM) all the interesting new physics effects – sterile N masses, sterile-active mixings, CP for leptogenesys – are independent on active ν parameters.

Using neutrino oscillations to measure something

- Using PINGU, ORCA to check the composition of the Earth
- Measuring active neutrino mass hierarchy+0νββ – constraints νMSM?

Conclusions

The scale of new physics is unknown!

- Can be solved only by experiment:
- High scale LHC "energy frontier"
- Ultra high scale interplay between
 - top quark Yukawa (lepton collier)
 - inflationary scale (CMB properties, B-modes)
- Low scale
 - Rare physics rare decays (LHCb), dedicated beam dump experiments (SHiP)
 - Astrophysics X-rays

Use SM for something useful

- Neutrino oscillations for Earth study
- Neutrinos for supernova explosions, reactor monitoring...

Happy Birthday, dear Dad!

