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[Clausius, 1865]

→ Entropy allows us to describe the laws 
of thermodynamics most concisely.

I.  (Energy conservation)

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉

II.  (Monotonic increase of entropy)

𝑑𝑆 ≥ 0

III.  (Nernst-Planck’s theorem)

lim
𝑇→0

𝑆 = 0

These are basic tools to study thermodynamic equilibrium system!



Local thermodynamic equilibrium (LTE)

There are systems in which thermodynamic equilibrium is achieved locally.
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Local thermodynamic equilibrium (LTE)

There are systems in which thermodynamic equilibrium is achieved locally.
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Isotropic homogeneous expanding universe Astronomical bodies

A precise analysis of these systems needs General Relativity.

Q1 What is the definition of entropy for a system in curved spacetime?

Q2 How are laws of thermodynamics modified in curved spacetime?



What is difficult in curved spacetime?



𝐸 = න
𝑅3
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0 13

The definition of (total) energy for field theory on flat spacetime
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𝜇𝜈 = 0 → Energy is conserved (time independent).
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Q. What is the definition of energy on curved spacetime?

What is the correct guiding principle to define energy?

→ The continuity equation changes into the ‘covariant’ conservation equation. 

𝜕𝜇𝑇
𝜇𝜈 = 0

𝛻𝜇𝑇
𝜇𝜈 = 0 𝜕𝜇𝑇
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Q. What is the definition of energy on curved spacetime?

What is the correct guiding principle to define energy?

→ The continuity equation changes into the ‘covariant’ conservation equation. 

𝜕𝜇𝑇
𝜇𝜈 = 0

𝛻𝜇𝑇
𝜇𝜈 = 0 𝜕𝜇𝑇

𝜇𝜈 = −Γ𝜇𝜎
𝜇
𝑇𝜎𝜈 − Γ𝜇𝜎

𝜈 𝑇𝜇𝜎↔

There is a long history on this issue and remain several proposals.

[Einstein ‘16]
[Landau-Lifshitz ‘47, ‘75]  

[ADM ’62] [Bondi ‘62] [Brown-York ’92] [Hawking-Horowitz ’95] 

[Horowitz-Mayers ’98] [Balasubramanian-Kraus ’98][Ashtekar-Das ‘98]…
[Komar ’62]

→ Energy is conserved (time independent).

“pseud-tensor” “quasi-local energy” “Komar mass”

The definition of (total) energy for field theory on flat spacetime

What is difficult in curved spacetime?



1. Introduction

Plan

2. Proposals

3. Applications to LTE

✓

4. Summary



・This reduces to the original definition in the flat limit.

𝐸 = න
𝑅3
𝑑3𝑥 𝑇00(𝑡, Ԧ𝑥)𝐸

𝑔𝜇𝜈 𝑥 → 𝜂𝜇𝜈

𝐸 = න
Σ𝑡

𝑑3 Ԧ𝑥 |𝑔|𝑇 𝜇
0 𝑡, Ԧ𝑥 𝑛𝜇(𝑡, Ԧ𝑥)

Time slice at an arbitrary time x0=tΣ𝑡

𝑛𝜇 Time evolution vector field

𝑔

Comments

・This is manifestly invariant under general coordinate transformation.

・This expression was written in the old textbook of Fock.

[V. Fock, The Theory of Space, Time and Gravitation 1959]

Determinant of the metric in the total spacetime

[Aoki-Onogi-SY ’20]

Our proposal of definition of energy

Cf. [Trautman 2002]

・This reproduces the masses of well-known black holes.

Vladmir Aleksandrovich Fock

Soviet, 1898-1974

©Wikipedia



[Aoki-Onogi-SY ’20]

𝑄[𝑣] = න
Σ𝑡

𝑑𝑑−1 Ԧ𝑥 |𝑔|𝑇 𝜇
0 𝑡, Ԧ𝑥 𝑣𝜇(𝑡, Ԧ𝑥)

𝑣𝜇 = 𝑛𝜇 Time evolution 𝑄[𝑛] = 𝐸 Energy

𝑣𝜇 = 𝛿(𝑖)
𝜇

Translation for i-th direction 𝑄[𝛿 𝑖 ] = 𝑃𝑖 Momentum

Extension to a general charge
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Translation for i-th direction 𝑄[𝛿 𝑖 ] = 𝑃𝑖 Momentum

→ Q[ξ] is a Neother charge.

This charge conserves when v=ξ is a Killing vector field.
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Q. Is there any case for Q[v] to conserve unless v is a Killing vector?

This charge conserves when v=ξ is a Killing vector field.



YES if EM tensor is covariantly conserved 

𝑇𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

A.

and ∃a vector field to satisfy 

A wider class of conserved charges including Neother charge!

[Aoki-Onogi-SY ’20]

𝛻𝜇𝜉𝜈+𝛻𝜈𝜉𝜇 = 0

Q. Is there any case for Q[v] to conserve unless v is a Killing vector?

𝑄[𝑣] = න
Σ𝑡

𝑑𝑑−1 Ԧ𝑥 |𝑔|𝑇 𝜇
0 𝑡, Ԧ𝑥 𝑣𝜇(𝑡, Ԧ𝑥)

𝑣𝜇 = 𝑛𝜇 Time evolution 𝑄[𝑛] = 𝐸 Energy

𝑣𝜇 = 𝛿(𝑖)
𝜇

Translation for i-th direction 𝑄[𝛿 𝑖 ] = 𝑃𝑖 Momentum

𝛻𝜇𝑇
𝜇𝜈 = 0

→ Q[ξ] is a Neother charge.

Cf. [Kodama ’80]

Extension to a general charge

This charge conserves when v=ξ is a Killing vector field.

𝑠𝜈 = |𝑔|𝑇 𝜇
𝜈 𝜁𝜇→ 𝜕𝜈𝑠

𝜈= 0 where



𝑄[𝜁] = න
Σ𝑡

𝑑𝑑−1 Ԧ𝑥 |𝑔|𝑇 𝜇
0 𝑡, Ԧ𝑥 𝜁𝜇(𝑡, Ԧ𝑥)

[Aoki-Onogi-SY ’20]

𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

A new conserved charge
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Q. Is there any physical meaning of the new conserved charge?
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𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

Claim

𝑠𝜈 = |𝑔|𝑇 𝜇
𝜈 𝜁𝜇 : entropy current𝑄 𝜁 : entropy,

by finding the vector field 𝜁 suitably.

Q. Is there any physical meaning of the new conserved charge?

A new conserved charge
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𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

Claim

Theory of gravity is fundamental and reversible. Entropy must be conserved.

𝑠𝜈 = |𝑔|𝑇 𝜇
𝜈 𝜁𝜇 : entropy current𝑄 𝜁 : entropy,

Intuitive argument

by finding the vector field 𝜁 suitably.

Q. Is there any physical meaning of the new conserved charge?

A new conserved charge

(If this interpretation is not correct, then what is the physical meaning of this conserved quantity?)
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𝜇
𝛻𝜇𝜁

𝜈 = 0

Claim

Theory of gravity is fundamental and reversible. Entropy must be conserved.

𝑠𝜈 = |𝑔|𝑇 𝜇
𝜈 𝜁𝜇 : entropy current𝑄 𝜁 : entropy,

Intuitive argument

by finding the vector field 𝜁 suitably.

Evidence

This interpretation leads to the local Euler’s relation and the 1st law of 
thermodynamics for several well-known gravitational systems.

Q. Is there any physical meaning of the new conserved charge?

A new conserved charge

(If this interpretation is not correct, then what is the physical meaning of this conserved quantity?)
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Application 1: FLRW model
[Aoki-Onogi-SY Int.J.Mod.Phys.A 36 (2021) 29, 2150201]

Isotropic homogeneous expanding universe



FLRW model

𝑑𝑠2 = − 𝑑𝑡 2 + 𝑎(𝑡)2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗Homogeneous & isotropic system

1 dynamical variable



FLRW model

𝑑𝑠2 = − 𝑑𝑡 2 + 𝑎(𝑡)2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗

𝜌 =
1

8𝜋𝐺𝑁
(
𝑑 − 1 𝑑 − 2

2

𝑘 + ሶ𝑎2

𝑎2
− Λ)

𝑇 𝜈
𝜇
= 𝜌 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝛿𝜈

𝜇LTE → Perfect fluid

𝑃 =
1

8𝜋𝐺𝑁
((2 − 𝑑) (

ሷ𝑎

𝑎
+
𝑑 − 3

2

𝑘 + ሶ𝑎2

𝑎2
) + Λ)

Homogeneous & isotropic system

1 dynamical variable

Einstein eq:
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𝑃 =
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ሷ𝑎

𝑎
+
𝑑 − 3

2

𝑘 + ሶ𝑎2

𝑎2
) + Λ)

Homogeneous & isotropic system

𝜁𝜈 = −𝛽𝑢𝜈

𝛽 = 𝛽0 𝑒
− 𝑡0׬

𝑡
𝑑𝑡(

𝑃𝐾
𝜌 )

→ 𝜃 = 𝑑 × 𝐻Expansion

1 dynamical variable

Einstein eq:

𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0 𝜌𝑢𝜇𝛻𝜇𝛽 = 𝑃𝜃𝛽

Comoving frame



FLRW model

𝑑𝑠2 = − 𝑑𝑡 2 + 𝑎(𝑡)2 ෤𝑔𝑖𝑗𝑑𝑥
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1
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𝜇
= 𝜌 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝛿𝜈

𝜇

𝑢:= 𝜌𝑣

LTE → Perfect fluid

𝑃 =
1

8𝜋𝐺𝑁
((2 − 𝑑) (

ሷ𝑎

𝑎
+
𝑑 − 3

2
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) + Λ)

Homogeneous & isotropic system

𝜁𝜈 = −𝛽𝑢𝜈

𝛽 = 𝛽0 𝑒
− 𝑡0׬

𝑡
𝑑𝑡(

𝑃𝐾
𝜌 )

→ 𝜃 = 𝑑 × 𝐻

𝑠 = |𝑔|𝑇 𝜇
0 𝜁𝜇 = ෤𝑔𝑎𝑑−1𝜌𝛽 = 𝑢𝛽entropy density: 

Expansion

𝑣:= ෤𝑔𝑎𝑑−1

1 dynamical variable

Einstein eq:

𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0 𝜌𝑢𝜇𝛻𝜇𝛽 = 𝑃𝜃𝛽

Comoving frame

𝛽 = 1/𝑇

internal energy density 

Volume element

𝑇𝑠 = 𝑢

Local Euler’s relation
𝑠 ≔ 𝑠0



FLRW model

𝑑𝑠2 = − 𝑑𝑡 2 + 𝑎(𝑡)2 ෤𝑔𝑖𝑗𝑑𝑥
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𝜌 =
1
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(
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𝑘 + ሶ𝑎2
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𝑇 𝜈
𝜇
= 𝜌 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝛿𝜈

𝜇

𝑢:= 𝜌𝑣

LTE → Perfect fluid

𝑃 =
1
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ሷ𝑎

𝑎
+
𝑑 − 3

2

𝑘 + ሶ𝑎2
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) + Λ)

Homogeneous & isotropic system

1st law of thermodynamics𝑇
𝑑𝑠

𝑑𝑡
=
𝑑𝑢

𝑑𝑡
+ 𝑃

𝑑𝑣

𝑑𝑡

𝜁𝜈 = −𝛽𝑢𝜈

𝛽 = 𝛽0 𝑒
− 𝑡0׬

𝑡
𝑑𝑡(

𝑃𝐾
𝜌 )

→ 𝜃 = 𝑑 × 𝐻

𝑠 = |𝑔|𝑇 𝜇
0 𝜁𝜇 = ෤𝑔𝑎𝑑−1𝜌𝛽 = 𝑢𝛽entropy density: 

Expansion

𝑣:= ෤𝑔𝑎𝑑−1

1 dynamical variable

Einstein eq:

𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0 𝜌𝑢𝜇𝛻𝜇𝛽 = 𝑃𝜃𝛽

Comoving frame

𝛽 = 1/𝑇

internal energy density 

Volume element

𝑇𝑠 = 𝑢

Local Euler’s relation
𝑠 ≔ 𝑠0

Direct calculation



FLRW model

𝑑𝑠2 = − 𝑑𝑡 2 + 𝑎(𝑡)2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗

𝜌 =
1
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(
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𝑘 + ሶ𝑎2
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𝑇 𝜈
𝜇
= 𝜌 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝛿𝜈

𝜇

𝑢:= 𝜌𝑣

LTE → Perfect fluid

𝑃 =
1

8𝜋𝐺𝑁
((2 − 𝑑) (

ሷ𝑎

𝑎
+
𝑑 − 3

2

𝑘 + ሶ𝑎2

𝑎2
) + Λ)

Homogeneous & isotropic system

1st law of thermodynamics𝑇
𝑑𝑠

𝑑𝑡
=
𝑑𝑢

𝑑𝑡
+ 𝑃

𝑑𝑣

𝑑𝑡

𝜁𝜈 = −𝛽𝑢𝜈

𝛽 = 𝛽0 𝑒
− 𝑡0׬

𝑡
𝑑𝑡(

𝑃𝐾
𝜌 )

→ 𝜃 = 𝑑 × 𝐻

𝑠 = |𝑔|𝑇 𝜇
0 𝜁𝜇 = ෤𝑔𝑎𝑑−1𝜌𝛽 = 𝑢𝛽entropy density: 

Expansion

𝑣:= ෤𝑔𝑎𝑑−1

・Energy does not conserve, but entropy does conserves.

1 dynamical variable

Cf. [Kolb-Turner]

Einstein eq:

𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0 𝜌𝑢𝜇𝛻𝜇𝛽 = 𝑃𝜃𝛽

Comoving frame

𝛽 = 1/𝑇

internal energy density 

Volume element

𝑇𝑠 = 𝑢

Local Euler’s relation
𝑠 ≔ 𝑠0

Comments 𝑇
𝑑𝑠

𝑑𝑡
=
𝑑𝑢

𝑑𝑡
+ 𝑃

𝑑𝑣

𝑑𝑡
= 0

・The “Big-bang nature” of the universe is inevitable and easily seen.

・These properties hold regardless of any equation of state.

Direct calculation



Application 2: Spherically symmetric 
hydrostatic equilibrium

[SY arXiv:2304.06196]



Spherically symmetric hydrostatic equilibrium

𝑑𝑠2 = −𝑓 𝑑𝑡 2 + ℎ 𝑑𝑟 2 + 𝑟2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗Spherically symmetric system

2 dynamical variables



Spherically symmetric hydrostatic equilibrium

𝑑𝑠2 = −𝑓 𝑑𝑡 2 + ℎ 𝑑𝑟 2 + 𝑟2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗

𝑇 𝜈
𝜇
= 𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝𝛿𝜈

𝜇LTE → Perfect fluid

Spherically symmetric system

2 dynamical variables

Einstein eq
Comoving frame

log ℎ ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 + Λ −

𝑑 − 3 ℎ − 1

𝑟
,

log 𝑓 ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 − Λ +

𝑑 − 3 ℎ − 1

𝑟

𝑝′ = −
𝑝 + 𝜌

2
log 𝑓 ′,

TOV equation [Oppenheimer-Volkov ‘39]



𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

Spherically symmetric hydrostatic equilibrium

𝑑𝑠2 = −𝑓 𝑑𝑡 2 + ℎ 𝑑𝑟 2 + 𝑟2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗

𝑇 𝜈
𝜇
= 𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝𝛿𝜈

𝜇

𝑢𝑡 → 1/ 𝑓

LTE → Perfect fluid

Spherically symmetric system

𝑠 = |𝑔|𝑇 𝜇
0 𝜁𝜇 = 𝑓𝑣𝜌𝜁 = 𝑓𝛽0(𝑢 + 𝑣𝑝)

𝑣:= ෤𝑔ℎ𝑟𝑑−1

2 dynamical variables

Einstein eq

𝜁′ = −
𝑝

𝜌

𝜌′

𝑝 + 𝜌
𝜁

Comoving frame

𝛽 =
1

𝑇
:= 𝛽0 𝑓

𝑇𝑠 = 𝑢 + 𝑝𝑣

Local Euler’s relation

log ℎ ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 + Λ −

𝑑 − 3 ℎ − 1

𝑟
,

log 𝑓 ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 − Λ +

𝑑 − 3 ℎ − 1

𝑟

𝑝′ = −
𝑝 + 𝜌

2
log 𝑓 ′,

𝜁 = 𝛽0𝑢
𝑡𝑓(1 +

𝑝

𝜌
)

TOV equation [Oppenheimer-Volkov ‘39]

𝜁𝜈 = −𝜁𝑢𝜈



𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

Spherically symmetric hydrostatic equilibrium

𝑑𝑠2 = −𝑓 𝑑𝑡 2 + ℎ 𝑑𝑟 2 + 𝑟2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗

𝑇 𝜈
𝜇
= 𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝𝛿𝜈

𝜇

𝑢𝑡 → 1/ 𝑓

LTE → Perfect fluid

Spherically symmetric system

1st law of thermodynamics𝑇
𝑑𝑠

𝑑𝑟
=
𝑑𝑢

𝑑𝑟
+ 𝑝

𝑑𝑣

𝑑𝑟

𝑠 = |𝑔|𝑇 𝜇
0 𝜁𝜇 = 𝑓𝑣𝜌𝜁 = 𝑓𝛽0(𝑢 + 𝑣𝑝)

𝑣:= ෤𝑔ℎ𝑟𝑑−1

2 dynamical variables

Einstein eq

𝜁′ = −
𝑝

𝜌

𝜌′

𝑝 + 𝜌
𝜁

Comoving frame

𝛽 =
1

𝑇
:= 𝛽0 𝑓

𝑇𝑠 = 𝑢 + 𝑝𝑣

Local Euler’s relation

Direct calculation

log ℎ ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 + Λ −

𝑑 − 3 ℎ − 1

𝑟
,

log 𝑓 ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 − Λ +

𝑑 − 3 ℎ − 1

𝑟

𝑝′ = −
𝑝 + 𝜌

2
log 𝑓 ′,

𝜁 = 𝛽0𝑢
𝑡𝑓(1 +

𝑝

𝜌
)

TOV equation [Oppenheimer-Volkov ‘39]

𝜁𝜈 = −𝜁𝑢𝜈



𝑇 𝜈
𝜇
𝛻𝜇𝜁

𝜈 = 0

Spherically symmetric hydrostatic equilibrium

𝑑𝑠2 = −𝑓 𝑑𝑡 2 + ℎ 𝑑𝑟 2 + 𝑟2 ෤𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗

𝑇 𝜈
𝜇
= 𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝𝛿𝜈

𝜇

𝑢𝑡 → 1/ 𝑓

LTE → Perfect fluid

Spherically symmetric system

1st law of thermodynamics𝑇
𝑑𝑠

𝑑𝑟
=
𝑑𝑢

𝑑𝑟
+ 𝑝

𝑑𝑣

𝑑𝑟

𝑠 = |𝑔|𝑇 𝜇
0 𝜁𝜇 = 𝑓𝑣𝜌𝜁 = 𝑓𝛽0(𝑢 + 𝑣𝑝)

𝑣:= ෤𝑔ℎ𝑟𝑑−1

・Entropy density is a constant.

2 dynamical variables

[Tolman ‘30]

Einstein eq

𝜁′ = −
𝑝

𝜌

𝜌′

𝑝 + 𝜌
𝜁

Comoving frame

𝛽 =
1

𝑇
:= 𝛽0 𝑓

𝑇𝑠 = 𝑢 + 𝑝𝑣

Local Euler’s relation

Comments 𝑇
𝑑𝑠

𝑑𝑟
=
𝑑𝑢

𝑑𝑟
+ 𝑝

𝑑𝑣

𝑑𝑟
= 0

・The local temperature 𝑇 ∝ 1/ 𝑓 is exactly coincident with that derived by Tolman.

Direct calculation

log ℎ ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 + Λ −

𝑑 − 3 ℎ − 1

𝑟
,

log 𝑓 ′ =
2𝑟ℎ

𝑑 − 2
8𝜋𝐺𝑁𝜌 − Λ +

𝑑 − 3 ℎ − 1

𝑟

𝑝′ = −
𝑝 + 𝜌

2
log 𝑓 ′,

𝜁 = 𝛽0𝑢
𝑡𝑓(1 +

𝑝

𝜌
)

TOV equation [Oppenheimer-Volkov ‘39]

Cf. [MTW][Zel’dovich]

𝜁𝜈 = −𝜁𝑢𝜈

・These hold non-perturbatively in the Newton constant.
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Summary

・A definition of charges whose form was introduced by Fock in the past was 

proposed as the precise one for general relativistic field theory on curved spacetime. 

・There was found a new conserved charge different from the Noether one for GR 

field theory with energy-momentum coveriantly conserved. 

・ The newly found conserved charge was proposed as entropy. 

・ The proposed interpretation leads to the local Euler’s relation and the 1st law of 

thermodynamics exactly holding in several well-known gravitational system such as 

FLRW model and a spherically symmetric hydrostatic equilibrium one. 

・ For the case of LTE with spherical symmetry, the local temperature satisfying the 

laws of thermodynamics is exactly coincident with the Tolman temperature.

・ For FLRW model for the isotropic homogeneous universe, the energy does not 

conserve, but the entropy conserves. 



Future work

・Application to astronomical bodies? 

・Application to non-equilibrium hydrodynamic systems on curved spacetime?

[SY arXiv:2306.16647]

・Application to BHs? [Aoki-Onogi-SY ’21]

・How about the 2nd and 3rd laws of thermodynamics for such systems?

⋯



Future work

・Application to astronomical bodies? 

・Application to non-equilibrium hydrodynamic systems on curved spacetime?

Thank you!

[SY arXiv:2306.16647]

・Application to BHs? [Aoki-Onogi-SY ’21]

・How about the 2nd and 3rd laws of thermodynamics for such systems?
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