What is the correct definition of entropy for general relativistic field theory？

4 Oct 2023
＠Yerevan State University
International Conference on Particle Physics and Cosmology dedicated to Prof．Rubakov memory
\section*{Shuichi Yokoyama}
Ritsumeikan University
R
立命館大学
Refs．
SY
arXiv：2304．06196
Aoki－Onogi－SY Int．J．Mod．Phys．A 36 （2021）29， 2150201
Aoki－Onogi－SY Int．J．Mod．Phys．A 36 （2021）10， 2150098

Entropy

Entropy

\rightarrow "en" +"tropy"
"energy" "т \quad [Clausius, 1865]

© Wikipedia
Rudolf Julius Emmanuel Clausius Germany, 1822-1888

Entropy

$$
\begin{aligned}
& \rightarrow \text { "en" }+ \text { "tropy" } \\
& \text { "energy" "七ропń"(Greek) }
\end{aligned}
$$

© Wikipedia
Rudolf Julius Emmanuel Clausius Germany, 1822-1888
\rightarrow Entropy allows us to describe the laws of thermodynamics most concisely.
I. (Energy conservation)

$$
T d S=d U+p d V
$$

II. (Monotonic increase of entropy)

$$
d S \geq 0
$$

III. (Nernst-Planck's theorem)

$$
\lim _{T \rightarrow 0} S=0
$$

These are basic tools to study thermodynamic equilibrium system!

Local thermodynamic equilibrium (LTE)

There are systems in which thermodynamic equilibrium is achieved locally.

©NASA/WMAP
Isotropic homogeneous expanding universe

Astronomical bodies

Local thermodynamic equilibrium (LTE)

There are systems in which thermodynamic equilibrium is achieved locally.

Isotropic homogeneous expanding universe

Astronomical bodies

A precise analysis of these systems needs General Relativity.

Q1 What is the definition of entropy for a system in curved spacetime?
Q2 How are laws of thermodynamics modified in curved spacetime?

What is difficult in curved spacetime?

What is difficult in curved spacetime?

The definition of (total) energy for field theory on flat spacetime

$$
\begin{aligned}
& E= \int_{R^{3}} d^{3} x T^{00}(t, \vec{x}) \quad g_{\mu \nu}(x)=\eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right) \\
& \partial_{\mu} T^{\mu \nu}=0 \rightarrow \text { Energy is conserved (time independent). }
\end{aligned}
$$

What is difficult in curved spacetime?

The definition of (total) energy for field theory on flat spacetime

$$
\begin{aligned}
& E= \int_{R^{3}} d^{3} x T^{00}(t, \vec{x}) \quad g_{\mu \nu}(x)=\eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right) \\
& \partial_{\mu} T^{\mu \nu}=0 \rightarrow \text { Energy is conserved (time independent). }
\end{aligned}
$$

Q. What is the definition of energy on curved spacetime?

$$
E=? ? ?
$$

$$
g_{\mu \nu}(x) \neq \eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right)
$$

What is difficult in curved spacetime?

The definition of (total) energy for field theory on flat spacetime

$$
\begin{gathered}
E=\int_{R^{3}} d^{3} x T^{00}(t, \vec{x}) \quad g_{\mu \nu}(x)=\eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right) \\
\partial_{\mu} T^{\mu \nu}=0 \rightarrow \text { Energy is conserved (time independent). }
\end{gathered}
$$

Q. What is the definition of energy on curved spacetime?

$$
E=? ? ? \quad g_{\mu \nu}(x) \neq \eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right)
$$

\rightarrow The continuity equation changes into the 'covariant' conservation equation.

$$
\nabla_{\mu} T^{\mu \nu}=0 \quad \leftrightarrow \quad \partial_{\mu} T^{\mu \nu}=-\Gamma_{\mu \sigma}^{\mu} T^{\sigma v}-\Gamma_{\mu \sigma}^{v} T^{\mu \sigma}
$$

What is the correct guiding principle to define energy?

What is difficult in curved spacetime?

The definition of (total) energy for field theory on flat spacetime

$$
\begin{gathered}
E=\int_{R^{3}} d^{3} x T^{00}(t, \vec{x}) \quad g_{\mu \nu}(x)=\eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right) \\
\partial_{\mu} T^{\mu \nu}=0 \rightarrow \text { Energy is conserved (time independent) }
\end{gathered}
$$

Q. What is the definition of energy on curved spacetime?

$$
E=? ? ? \quad g_{\mu \nu}(x) \neq \eta_{\mu \nu}=\left(\begin{array}{cc}
-1 & \overrightarrow{0} \\
\overrightarrow{0} & 1_{3}
\end{array}\right)
$$

\rightarrow The continuity equation changes into the 'covariant' conservation equation.

$$
\mapsto \nabla_{\mu} T^{\mu \nu}=0 \quad \leftrightarrow \quad \partial_{\mu} T^{\mu \nu}=-\Gamma_{\mu \sigma}^{\mu} T^{\sigma v}-\Gamma_{\mu \sigma}^{v} T^{\mu \sigma}
$$

What is the correct guiding principle to define energy?
There is a long history on this issue and remain several proposals.

"pseud-tensor"

"quasi-local energy"

Plan

1. Introduction
2. Proposals
3. Applications to LTE
4. Summary

Our proposal of definition of energy

[Aoki-Onogi-SY '20]

$$
E=\int_{\Sigma_{t}} d^{3} \vec{x} \sqrt{|g|} T^{0}{ }_{\mu}(t, \vec{x}) n^{\mu}(t, \vec{x})
$$

$n^{\mu} \quad$ Time evolution vector field
$\Sigma_{t} \quad$ Time slice at an arbitrary time $\mathrm{x}^{0}=\mathrm{t}$
g Determinant of the metric in the total spacetime

Comments

©Wikipedia
Vladmir Aleksandrovich Fock Soviet, 1898-1974

- This expression was written in the old textbook of Fock.

$$
\begin{equation*}
\text { The quantity } \quad I=\int T^{\mu u} \varphi_{\mu} \sqrt{ }(-g) \cdot d x_{1} d x_{2} d x_{3} \tag{49.07}
\end{equation*}
$$

will be constant, i.e. will be independent of x_{0}, the coordinate that has the character of time, if the vector φ_{μ} satisfies the equations

$$
\begin{equation*}
\nabla_{v} \varphi_{\mu}+\nabla_{\mu} \varphi_{v}=0 \tag{49.08}
\end{equation*}
$$

[V. Fock, The Theory of Space, Time and Gravitation 1959]
Cf. [Trautman 2002]

- This is manifestly invariant under general coordinate transformation.
- This reduces to the original definition in the flat limit.

$$
E \xrightarrow{g_{\mu \nu}(x) \rightarrow \eta_{\mu \nu}} \quad E=\int_{R^{3}} d^{3} x T^{00}(t, \vec{x})
$$

- This reproduces the masses of well-known black holes.

Extension to a general charge

$$
Q[v]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T^{0}{ }_{\mu}(t, \vec{x}) v^{\mu}(t, \vec{x})
$$

[Aoki-Onogi-SY '20]

$$
\begin{array}{lcl}
v^{\mu}=n^{\mu} & \text { Time evolution } & \square Q[n]=E \\
v^{\mu}=\delta_{(i)}^{\mu} & \text { Translation for i-th direction } & \square
\end{array} \quad \text { Energy } \quad\left[\delta_{(i)}\right]=P^{i} \quad \text { Momentum }
$$

Extension to a general charge

$$
Q[v]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T^{0}{ }_{\mu}(t, \vec{x}) v^{\mu}(t, \vec{x})
$$

[Aoki-Onogi-SY '20]

$$
\begin{array}{lcl}
v^{\mu}=n^{\mu} & \text { Time evolution } & \square Q[n]=E \\
v^{\mu}=\delta_{(i)}^{\mu} & \text { Translation for i-th direction } & \square
\end{array} \quad \text { Energy } \quad\left[\delta_{(i)}\right]=P^{i} \quad \text { Momentum }
$$

This charge conserves when $\mathrm{v}=\xi$ is a Killing vector field.

$$
\nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}=0 \quad \rightarrow \mathrm{Q}[\xi] \text { is a Neother charge. }
$$

Extension to a general charge

$$
Q[v]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T^{0}{ }_{\mu}(t, \vec{x}) v^{\mu}(t, \vec{x})
$$

[Aoki-Onogi-SY '20]

$$
\begin{array}{lcl}
v^{\mu}=n^{\mu} & \text { Time evolution } & \square Q[n]=E \\
v^{\mu}=\delta_{(i)}^{\mu} & \text { Translation for i-th direction } & \square
\end{array} \quad \text { Energy }
$$

This charge conserves when $\mathrm{v}=\xi$ is a Killing vector field.

$$
\nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}=0 \quad \rightarrow \mathrm{Q}[\xi] \text { is a Neother charge. }
$$

Q. Is there any case for $\mathrm{Q}[\mathrm{v}]$ to conserve unless v is a Killing vector?

Extension to a general charge

$$
Q[v]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T^{0}{ }_{\mu}(t, \vec{x}) v^{\mu}(t, \vec{x})
$$

[Aoki-Onogi-SY '20]

$$
\begin{array}{lcl}
v^{\mu}=n^{\mu} & \text { Time evolution } & \square Q[n]=E \\
v^{\mu}=\delta_{(i)}^{\mu} & \text { Translation for i-th direction } & \square
\end{array}\left[\delta_{(i)}\right]=P^{i} \quad \text { Momentum }
$$

This charge conserves when $\mathrm{v}=\xi$ is a Killing vector field.

$$
\nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}=0 \quad \rightarrow \mathrm{Q}[\xi] \text { is a Neother charge. }
$$

Q. Is there any case for $\mathrm{Q}[\mathrm{v}]$ to conserve unless v is a Killing vector?

A. YES if EM tensor is covariantly conserved $\quad \nabla_{\mu} T^{\mu \nu}=0$ and \exists a vector field to satisfy $T_{\nu}^{\mu} \nabla_{\mu} \zeta^{\nu}=0$

$$
\rightarrow \partial_{v} s^{v}=0 \quad \text { where } \quad s^{v}=\sqrt{|g|} T^{\nu}{ }_{\mu} \zeta^{\mu}
$$

A wider class of conserved charges including Neother charge!

A new conserved charge

$$
Q[\zeta]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T_{\mu}^{0}(t, \vec{x}) \zeta^{\mu}(t, \vec{x}) \quad T_{\nu}^{\mu} \nabla_{\mu} \zeta^{v}=0{ }_{\text {[Aoki-Onogi-SY '20] }}
$$

A new conserved charge

$$
Q[\zeta]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T_{\mu}^{0}(t, \vec{x}) \zeta^{\mu}(t, \vec{x}) \quad T_{\nu}^{\mu} \nabla_{\mu} \zeta^{v}=\left.0\right|_{\text {[Aoki-Onogi-SY '20] }}
$$

Q. Is there any physical meaning of the new conserved charge?

A new conserved charge

$$
Q[\zeta]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T_{\mu}^{0}(t, \vec{x}) \zeta^{\mu}(t, \vec{x}) \quad T_{v}^{\mu} \nabla_{\mu} \zeta^{v}=0
$$

Q. Is there any physical meaning of the new conserved charge?

Claim

$Q[\zeta]$: entropy, $\quad s^{\nu}=\sqrt{|g|} T^{v} \zeta^{\mu}$: entropy current
by finding the vector field ζ suitably.

A new conserved charge

$$
Q[\zeta]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T_{\mu}^{0}(t, \vec{x}) \zeta^{\mu}(t, \vec{x}) \quad T_{v}^{\mu} \nabla_{\mu} \zeta^{v}=0
$$

Q. Is there any physical meaning of the new conserved charge?

Claim

$Q[\zeta]$: entropy, $\quad s^{v}=\sqrt{|g|} T^{v}{ }_{\mu} \zeta^{\mu}$: entropy current

by finding the vector field ζ suitably.
Intuitive argument
Theory of gravity is fundamental and reversible. Entropy must be conserved. (If this interpretation is not correct, then what is the physical meaning of this conserved quantity?)

A new conserved charge

$$
Q[\zeta]=\int_{\Sigma_{t}} d^{d-1} \vec{x} \sqrt{|g|} T_{\mu}^{0}(t, \vec{x}) \zeta^{\mu}(t, \vec{x}) \quad T_{v}^{\mu} \nabla_{\mu} \zeta^{v}=0
$$

Q. Is there any physical meaning of the new conserved charge?

Claim

$Q[\zeta]$: entropy, $\quad s^{v}=\sqrt{|g|} T^{v} \zeta^{\mu}$: entropy current

by finding the vector field ζ suitably.

Intuitive argument

Theory of gravity is fundamental and reversible. Entropy must be conserved.
(If this interpretation is not correct, then what is the physical meaning of this conserved quantity?)

Evidence

This interpretation leads to the local Euler's relation and the $1^{\text {st }}$ law of thermodynamics for several well-known gravitational systems.

Plan

1. Introduction
2. Proposals
3. Applications to LTE
4. Summary

Application 1: FLRW model

[Aoki-Onogi-SY Int.J.Mod.Phys.A 36 (2021) 29, 2150201]

Isotropic homogeneous expanding universe

FLRW model

Homogeneous \& isotropic system

$$
d s^{2}=-(d t)^{2}+a(t)^{2} \frac{1 \text { dynamical variable }}{\tilde{g}_{i j} d x^{i} d x^{j}}
$$

FLRW model

Homogeneous \& isotropic system

$$
\begin{aligned}
d s^{2} & =-(d t)^{2}+a(t)^{2} \tilde{g}_{i j} d x^{i} d x^{j} \\
T_{v}^{\mu} & =(\rho+P) u^{\mu} u_{v}+P \delta_{v}^{\mu}
\end{aligned}
$$

LTE \rightarrow Perfect fluid
Einstein eq: $\quad \rho=\frac{1}{8 \pi G_{N}}\left(\frac{(d-1)(d-2)}{2} \frac{k+\dot{a}^{2}}{a^{2}}-\Lambda\right) \quad P=\frac{1}{8 \pi G_{N}}\left((2-d)\left(\frac{\ddot{a}}{a}+\frac{d-3}{2} \frac{k+\dot{a}^{2}}{a^{2}}\right)+\Lambda\right)$

FLRW model

Homogeneous \& isotropic system

$$
\begin{aligned}
d s^{2} & =-(d t)^{2}+a(t)^{2} \tilde{g}_{i j} d x^{i} d x^{j} \\
T_{v}^{\mu} & =(\rho+P) u^{\mu} u_{v}+P \delta_{v}^{\mu}
\end{aligned}
$$

Einstein eq: $\quad \rho=\frac{1}{8 \pi G_{N}}\left(\frac{(d-1)(d-2)}{2} \frac{k+\dot{a}^{2}}{a^{2}}-\Lambda\right) \quad P=\frac{1}{8 \pi G_{N}}\left((2-d)\left(\frac{\ddot{a}}{a}+\frac{d-3}{2} \frac{k+\dot{a}^{2}}{a^{2}}\right)+\Lambda\right)$

$$
T_{v}^{\mu} \nabla_{\mu} \zeta^{v}=0 \stackrel{\zeta^{v}=-\beta u^{v}}{\square} \rho u^{\mu} \nabla_{\mu} \beta=\underline{\text { Expansion }} \quad \stackrel{\text { Comoving frame }}{\square} \beta=\beta_{0} e^{-\int_{t_{0}}^{t} d t\left(\frac{P K}{\rho}\right)}
$$

FLRW model

Homogeneous \& isotropic system

$$
\begin{aligned}
d s^{2} & =-(d t)^{2}+a(t)^{2} \tilde{g}_{i j} d x^{i} d x^{j} \\
T_{v}^{\mu} & =(\rho+P) u^{\mu} u_{v}+P \delta_{v}^{\mu}
\end{aligned}
$$

LTE \rightarrow Perfect fluid
Einstein eq: $\quad \rho=\frac{1}{8 \pi G_{N}}\left(\frac{(d-1)(d-2)}{2} \frac{k+\dot{a}^{2}}{a^{2}}-\Lambda\right) \quad P=\frac{1}{8 \pi G_{N}}\left((2-d)\left(\frac{\ddot{a}}{a}+\frac{d-3}{2} \frac{k+\dot{a}^{2}}{a^{2}}\right)+\Lambda\right)$

$$
T_{\nu}^{\mu} \nabla_{\mu} \zeta^{v}=0 \stackrel{\zeta^{v}=-\beta u^{v}}{\square} \rho u^{\mu} \nabla_{\mu} \beta=\underline{\text { Expansion }} \boldsymbol{P \theta \beta \beta ^ { \text { Comoving frame } }}{ }^{\square} \beta=\beta_{0} e^{-\int_{t_{0}}^{t} d t\left(\frac{P K}{\rho}\right)}
$$

$$
\beta=1 / T
$$

entropy density: $s=\sqrt{|g|} T^{0}{ }_{\mu} \zeta^{\mu}=\sqrt{\tilde{g}} a^{d-1} \rho \beta=u \beta$

$$
s:=s^{0}
$$

$$
T s=u
$$

Local Euler's relation

FLRW model

Homogeneous \& isotropic system

$$
\begin{aligned}
d s^{2} & =-(d t)^{2}+a(t)^{2} \tilde{g}_{i j} d x^{i} d x^{j} \\
T_{v}^{\mu} & =(\rho+P) u^{\mu} u_{v}+P \delta_{v}^{\mu}
\end{aligned}
$$

LTE \rightarrow Perfect fluid

1 dynamical variable

Einstein eq: $\quad \rho=\frac{1}{8 \pi G_{N}}\left(\frac{(d-1)(d-2)}{2} \frac{k+\dot{a}^{2}}{a^{2}}-\Lambda\right) \quad P=\frac{1}{8 \pi G_{N}}\left((2-d)\left(\frac{\ddot{a}}{a}+\frac{d-3}{2} \frac{k+\dot{a}^{2}}{a^{2}}\right)+\Lambda\right)$

$$
T_{v}^{\mu} \nabla_{\mu} \zeta^{v}=0 \stackrel{\zeta^{v}=-\beta u^{v}}{\square} \rho u^{\mu} \nabla_{\mu} \beta=\underline{\text { Expansion }} \quad \stackrel{\text { Comoving frame }}{\square} \beta=\beta_{0} e^{-\int_{t_{0}}^{t} d t\left(\frac{P K}{\rho}\right)}
$$

entron $\quad \beta=1 / T$
entropy density: $s=\sqrt{|g|} T^{0}{ }_{\mu} \zeta^{\mu}=\sqrt{\tilde{g}} a^{d-1} \rho \beta=u \beta$

$$
\begin{aligned}
& u:=\rho v \quad \text { internal energy density } \\
& v:=\sqrt{\tilde{g}} a^{d-1} \quad \text { Volume element }
\end{aligned}
$$

Direct calculation

$$
T \frac{d s}{d t}=\frac{d u}{d t}+P \frac{d v}{d t} \quad 1^{\text {st }} \text { law of thermodynamics }
$$

FLRW model

Homogeneous \& isotropic system

$$
\begin{aligned}
d s^{2} & =-(d t)^{2}+a(t)^{2} \tilde{g}_{i j} d x^{i} d x^{j} \\
T_{v}^{\mu} & =(\rho+P) u^{\mu} u_{v}+P \delta_{v}^{\mu}
\end{aligned}
$$

LTE \rightarrow Perfect fluid

1 dynamical variable

Einstein eq: $\quad \rho=\frac{1}{8 \pi G_{N}}\left(\frac{(d-1)(d-2)}{2} \frac{k+\dot{a}^{2}}{a^{2}}-\Lambda\right) \quad P=\frac{1}{8 \pi G_{N}}\left((2-d)\left(\frac{\ddot{a}}{a}+\frac{d-3}{2} \frac{k+\dot{a}^{2}}{a^{2}}\right)+\Lambda\right)$

$$
T^{\mu}{ }_{v} \nabla_{\mu} \zeta^{v}=0 \stackrel{\zeta^{v}=-\beta u^{v}}{\square} \rho u^{\mu} \nabla_{\mu} \beta=\underline{\underline{P \theta \beta}} \stackrel{\text { Expansion }}{ } \quad \square \beta_{0} e^{-\int_{t_{0}}^{t} d t\left(\frac{P K}{\rho}\right)}
$$

entropy density: $s=\sqrt{|g|} T^{0}{ }_{\mu} \zeta^{\mu}=\sqrt{\tilde{g}} a^{d-1} \rho \beta=u \beta$

$$
\begin{aligned}
& u:=\rho v \quad \text { internal energy density } \\
& v:=\sqrt{\tilde{g}} a^{d-1} \quad \text { Volume element }
\end{aligned}
$$

Direct calculation

$$
T \frac{d s}{d t}=\frac{d u}{d t}+P \frac{d v}{d t}
$$

$1^{\text {st }}$ law of thermodynamics
Comments - Energy does not conserve, but entropy does conserves. $T \frac{d s}{d t}=\frac{d u}{d t}+P \frac{d v}{d t}=0$

- The "Big-bang nature" of the universe is inevitable and easily seen.
- These properties hold regardless of any equation of state. Cf. [Kolb-Turner]

Application 2: Spherically symmetric hydrostatic equilibrium

Spherically symmetric hydrostatic equilibrium

2 dynamical variables
Spherically symmetric system

$$
d s^{2}=f(d t)^{2}+h(d r)^{2}+r^{2} \tilde{g}_{i j} d x^{i} d x^{j}
$$

Spherically symmetric hydrostatic equilibrium

2 dynamical variables
Spherically symmetric system
LTE \rightarrow Perfect fluid

$$
d s^{2}=-f(d t)^{2}+h(d r)^{2}+r^{2} \tilde{g}_{i j} d x^{i} d x^{j}
$$

$$
T_{v}^{\mu}=(\rho+p) u^{\mu} u_{v}+p \delta_{v}^{\mu}
$$

Comoving frame
Einstein eq $\square p^{\prime}=-\frac{p+\rho}{2}(\log f)^{\prime}$, $(\log h)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho+\Lambda\right)-\frac{(d-3)(h-1)}{r}$,
$(\log f)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho-\Lambda\right)+\frac{(d-3)(h-1)}{r}$

TOV equation
[Oppenheimer-Volkov '39]

Spherically symmetric hydrostatic equilibrium

2 dynamical variables
Spherically symmetric system

$$
d s^{2}=-f(d t)^{2}+h(d r)^{2}+r^{2} \tilde{g}_{i j} d x^{i} d x^{j}
$$

LTE \rightarrow Perfect fluid

$$
T_{v}^{\mu}=(\rho+p) u^{\mu} u_{v}+p \delta_{v}^{\mu}
$$

Einstein eq $\quad \square p^{\prime}=-\frac{p+\rho}{2}(\log f)^{\prime}$,
$(\log h)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho+\Lambda\right)-\frac{(d-3)(h-1)}{r}$,
$(\log f)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho-\Lambda\right)+\frac{(d-3)^{(h-1)}}{r}$

TOV equation

[Oppenheimer-Volkov '39]

$$
T^{\mu}{ }_{\nu} \nabla_{\mu} \zeta^{v}=0 \stackrel{\zeta^{v}=-\zeta u^{v}}{ } \zeta^{\prime}=-\frac{p}{\rho} \frac{\rho^{\prime}}{p+\rho} \zeta \Rightarrow \begin{gathered}
\zeta=\beta_{0} u^{t} f \\
\beta=\frac{1}{T}:=\beta_{0} \sqrt{f}
\end{gathered}
$$

$$
\begin{gathered}
s=\sqrt{|g|} T_{\mu}^{0} \zeta^{\mu}=\sqrt{f} v \rho \zeta=\sqrt{f} \beta_{0}(u+v p) \\
u^{t} \rightarrow 1 / \sqrt{f} v:=\sqrt{g} h r^{d-1}
\end{gathered}
$$

$$
T s=u+p v
$$

Spherically symmetric hydrostatic equilibrium

2 dynamical variables
Spherically symmetric system

$$
d s^{2}=-f(d t)^{2}+h(d r)^{2}+r^{2} \tilde{g}_{i j} d x^{i} d x^{j}
$$

LTE \rightarrow Perfect fluid

$$
T_{v}^{\mu}=(\rho+p) u^{\mu} u_{v}+p \delta_{v}^{\mu}
$$

Einstein eq $\quad \square p^{\prime}=-\frac{p+\rho}{2}(\log f)^{\prime}$,
$(\log h)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho+\Lambda\right)-\frac{(d-3)(h-1)}{r}$,
$(\log f)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho-\Lambda\right)+\frac{(d-3)(h-1)}{r}$

TOV equation

[Oppenheimer-Volkov '39]

$$
T^{\mu}{ }_{v} \nabla_{\mu} \zeta^{v}=0 \stackrel{\zeta^{v}=-\zeta u^{v}}{ } \zeta^{\prime}=-\frac{p}{\rho} \frac{\rho^{\prime}}{p+\rho} \zeta \quad \square \quad \zeta=\beta_{0} u^{t} f\left(1+\frac{p}{\rho}\right)
$$

$$
\beta=\frac{1}{T}:=\beta_{0} \sqrt{f}
$$

$\square s=\sqrt{|g|} T^{0}{ }_{\mu} \zeta^{\mu}=\sqrt{f} v \rho \zeta=\sqrt{f} \beta_{0}(u+v p)$

$$
T s=u+p v
$$

$$
u^{t} \rightarrow 1 / \sqrt{f} \quad v:=\sqrt{\tilde{g} h} r^{d-1}
$$

Local Euler's relation
Direct calculation

$$
T \frac{d s}{d r}=\frac{d u}{d r}+p \frac{d v}{d r} \quad 1^{\text {st }} \text { law of thermodynamics }
$$

Spherically symmetric hydrostatic equilibrium

2 dynamical variables
Spherically symmetric system

$$
\begin{aligned}
d s^{2} & =-f(d t)^{2}+h(d r)^{2}+r^{2} \tilde{g}_{i j} d x^{i} d x^{j} \\
T_{v}^{\mu} & =(\rho+p) u^{\mu} u_{v}+p \delta_{v}^{\mu}
\end{aligned}
$$

LTE \rightarrow Perfect fluid
Comoving frame
Einstein eq $\square p^{\prime}=-\frac{p+\rho}{2}(\log f)^{\prime}$, $(\log h)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho+\Lambda\right)-\frac{(d-3)(h-1)}{r}$,
$(\log f)^{\prime}=\frac{2 r h}{d-2}\left(8 \pi G_{N} \rho-\Lambda\right)+\frac{(d-3)(h-1)}{r}$

TOV equation

[Oppenheimer-Volkov '39]

$$
T_{v}^{\mu} \nabla_{\mu} \zeta^{v}=0 \zeta^{v}=-\zeta u^{v} \zeta^{\prime}=-\frac{p}{\rho} \frac{\rho^{\prime}}{p+\rho} \zeta \quad \zeta=\beta_{0} u^{t} f\left(1+\frac{p}{\rho}\right)
$$

$$
\beta=\frac{1}{T}:=\beta_{0} \sqrt{f}
$$

$\square s=\sqrt{|g|} T_{\mu}^{0} \zeta^{\mu}=\sqrt{f} v \rho \zeta=\sqrt{f} \beta_{0}(u+v p)$

$$
T s=u+p v
$$

$$
u^{t} \rightarrow 1 / \sqrt{f} \quad v:=\sqrt{\tilde{g} h} r^{d-1}
$$

Local Euler's relation
Direct calculation

$$
T \frac{d s}{d r}=\frac{d u}{d r}+p \frac{d v}{d r} \quad 1^{\text {st }} \text { law of thermodynamics }
$$

Comments - Entropy density is a constant. $\quad T \frac{d s}{d r}=\frac{d u}{d r}+p \frac{d v}{d r}=0$

- The local temperature $T \propto 1 / \sqrt{f}$ is exactly coincident with that derived by Tolman.
- These hold non-perturbatively in the Newton constant.

Plan

1. Introduction
2. Proposals
3. Applications to LTE
4. Summary

Summary

- A definition of charges whose form was introduced by Fock in the past was proposed as the precise one for general relativistic field theory on curved spacetime.
- There was found a new conserved charge different from the Noether one for GR field theory with energy-momentum coveriantly conserved.
- The newly found conserved charge was proposed as entropy.
- The proposed interpretation leads to the local Euler's relation and the $1^{\text {st }}$ law of thermodynamics exactly holding in several well-known gravitational system such as FLRW model and a spherically symmetric hydrostatic equilibrium one.
- For FLRW model for the isotropic homogeneous universe, the energy does not conserve, but the entropy conserves.
- For the case of LTE with spherical symmetry, the local temperature satisfying the laws of thermodynamics is exactly coincident with the Tolman temperature.

Future work

- Application to BHs?
- Application to astronomical bodies?
[SY arXiv:2306.16647]
- Application to non-equilibrium hydrodynamic systems on curved spacetime?
- How about the $2^{\text {nd }}$ and $3^{\text {rd }}$ laws of thermodynamics for such systems?

Future work

- Application to BHs?
- Application to astronomical bodies?
- Application to non-equilibrium hydrodynamic systems on curved spacetime?
- How about the $2^{\text {nd }}$ and $3^{\text {rd }}$ laws of thermodynamics for such systems?
\bullet
-

Thank you!

