First order phase transitions within holographic approach in application to baryon asymmetry problem

by Andrey Shavrin
under the supervision of Prof. Oleg Novikov
Saint-Petersburg State University, Th. Phys. Dep.
International Conference on Particle Physics and Cosmology
dedicated to memory of Valery Rubakov
A. I. Alikhanyan national science laboratory, Yerevan, Armenia

Electroweak baryogenesis (Motivation)

Baryon asymmetry cannot be explained within SM - "baryon asymmetry problem"

It implies Sakharov conditions:
". Baryon number violation
satisfied within non-perturbative SM
(with sphalerons)
" C, CP violation
(particles - anti-particles)
appears in SM, but effect is too small
" CPT violation
(thermodynamic equilibrium breaking)
prevent the got asymmetry from 'washing'
termodynamical equilibrium breaking \Leftarrow phase transition

$$
\langle\phi\rangle=0
$$

Electroweak Baryogenesis within SM

$$
\begin{gathered}
\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \rightarrow \mathrm{U}(1)_{\mathrm{em}} \\
m_{\text {Higgs }}>70 \mathrm{GeV} \Rightarrow \begin{array}{c}
\text { NO first order } \\
\text { phase transition }
\end{array}
\end{gathered}
$$

Composite Higgs model

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{CH}}+\mathcal{L}_{\mathrm{Int} .}, \quad \mathcal{L}_{\mathrm{CH}}-\text { strongly coupled with } \mathcal{G} \text { inner symmetry } \\
\binom{\mathcal{G} \text { variant }}{\text { vacuum }} \xrightarrow[\text { breaking }]{\text { spontaneous }}\binom{\text { invariane }}{\text { vacuum }} \Rightarrow \begin{array}{c}
\text { Goldstone bosons 尹 Higgs boson } \\
\text { phase transition }
\end{array}
\end{gathered}
$$

$\underset{\text { parameter }: ~}{\text { order }}\binom{\mathcal{G}}{$ vacuum }$\Leftrightarrow\langle\phi\rangle=0 \quad\left(\mathcal{H}_{\text {invariant }}^{\text {invariane }}\right.$ vacuum $) ~ \Leftrightarrow\langle\phi\rangle \neq 0$

Minimal Composite Higgs model

$$
\text { minimal model } \mathcal{G}=S O(5) \times U(1)_{Y}, \mathcal{H}=S O(4) \times U(1)_{Y} \supset S U(2)_{L} \times U(1)_{Y}
$$

$$
\text { minimal } \Leftarrow \text { the coset must contain Higgs doublet } \phi \in S U(2)_{\mathbb{C}} \subset S_{\mathbb{R}}^{4} \cong S O(5) / S O(4)
$$

$$
\Sigma_{I J}=\left\langle\bar{\Psi}_{,} \Psi_{J}\right\rangle=\xi^{\top}\left[\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \varsigma
\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \xrightarrow[\text { low energy }]{\mathrm{SO}(5) \rightarrow \mathrm{SO}(4)}\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \varsigma
\end{array}\right) \Rightarrow \begin{gathered}
\text { symmetry } \\
\text { breaking }
\end{gathered}
$$

$\Sigma_{I J}$ is a condensate of the $S O(5)$-inn.sym. fundamental fields Ψ; ξ is NB-bosons, η is "radial" fluctuations, ς is background field

Effective field theory

$$
\begin{gathered}
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-s-J \cdot \phi}=: e^{W[J]} \\
\Gamma[\langle\phi\rangle]=W[J]-\frac{\delta W[J]}{\delta J} \cdot J=\int_{X} d^{d} x(\underbrace{K_{\text {eff }}[\partial\langle\phi\rangle]}_{=0 \mathrm{iff}\langle\phi\rangle=\text { const }}+V_{\text {eff }}[\langle\phi\rangle]) \quad \text { - effective action }
\end{gathered}
$$

$$
\text { Effective potential: } \quad V_{\text {eff }}=\frac{1}{\mathrm{Vol}_{4}} \Gamma
$$

Equation of motion (EoM): $\quad \frac{\delta \Gamma}{\delta\langle\phi\rangle}=J \xlongequal{\langle\phi\rangle=\text { const }} \frac{\delta V_{\text {eff }}}{\delta\langle\phi\rangle} \xlongequal{J=0} 0$ gives extrema condition

AdS/CFT

In a narrow sense: non-perturbative method for correlators calculations; In general: conformal field theory $\mathcal{Z}_{\text {CFT }} \sim$ field theory in AdS $\mathcal{Z}_{\text {AdS }}$

strongly coupled $\lambda_{\text {CFT }} \gg 1$ with $\lambda_{\text {CFT }} \sim \frac{1}{\lambda_{\text {AdS }}}$ gives $\lambda_{\text {AdS }} \ll 1$ weakly coupled field theory

$$
\mathcal{Z}_{\mathrm{CFT}}[J]=\left.\int \mathcal{D}\left[{ }^{\star} \text { fields }{ }^{\star}\right] \exp (-S-\mathcal{O} \cdot J) \xlongequal[\text { correspondence }]{\text { AdS/CFT }} \mathcal{Z}_{\text {AdS }}\right|_{\partial \mathrm{AdS}}
$$

Fields of CFT are unknown, action is unknown, but we know something (symmetries) about the sources J and the operators \mathcal{O}

$$
\mathcal{O} \in \mathbb{C}\left[\phi, \partial \phi, \partial^{2} \phi, \ldots\right]
$$

Holographic correlators

$\frac{\delta S_{\mathrm{AdS}}}{\delta \phi}=0 \Rightarrow$ solution of the equation of motion: $\psi(x, z) \xrightarrow[\partial \mathrm{AdS}]{z \rightarrow 0} z^{d-\Delta} \psi_{0}(x)+z^{\Delta} \psi_{1}(x)$

$$
\mathcal{Z}[J]=\int \mathcal{D}[\ldots] e^{-S-\mathcal{O} \cdot J} \xlongequal{\text { Ads/CFT }} \exp \left(-\left.S_{\text {Ads }}[\psi]\right|_{z=0}\right), \quad J \xlongequal{\text { Ads/CFT }} \psi_{0}(x), \quad\langle\mathcal{O}\rangle \xlongequal{\text { Ads/CFT }} \psi_{1}(x)
$$

EoM solutions $\xlongequal[\text { asymptotic }]{\partial \text { AdS }}$ boundary part $S_{\text {AAdS }} \xlongequal[\text { approach }]{\text { quasiclassical }}$ CFT generating function

$$
\begin{aligned}
& G_{n}=\langle\mathcal{O} \ldots \mathcal{O}\rangle=\left.\left(\frac{\delta}{\delta J}\right)^{n} \log \mathcal{Z}[J]\right|_{J=0}=-\left(\frac{\delta}{\delta \psi_{0}}\right)^{n} S_{\text {AdS }}[\psi]=\underbrace{-\left(\frac{\delta^{n} S_{\text {AdS }}^{\text {bulk }}}{\delta \psi_{0}^{n}}\right)}_{=0 \text { due to EoM }}-\left(\frac{\delta^{n} S_{\partial \mathrm{AdS}}^{\text {border }}}{\delta \psi_{0}^{n}}\right) \\
& \text { /CFT }
\end{aligned}
$$

Holographic potential

Extrema condition: $\left.V_{\text {eff }}\right|_{\text {extrema }}=\left.V_{\text {eff }}\right|_{J=0} \Leftrightarrow G_{0}$; AdS/CFT: $G_{0} \Leftarrow$ boundary term of dual theory $S_{\text {วAdS }}$

$$
\left.V_{0} l_{X} V_{\text {eff }}\right|_{\text {extrema }}=G_{0}=\left.W[J=0] \stackrel{\text { AdS } / \text { CFT }}{=} S_{\text {AdS }}\right|_{\partial A d S} ^{\psi_{0}=0}
$$

Extrema condition \& duality: $\quad J=\psi_{0}=0 ; \quad$ duality: $\quad\langle\phi\rangle=\psi_{1}$

$$
\left.\frac{\delta V_{\text {eff }}}{\delta\langle\phi\rangle} \xlongequal{\text { AdS/CFT }} \frac{\delta}{\delta \psi_{1}}\left(\left.S[\psi]\right|_{\partial \text { AdS }}\right)\right|_{\psi_{0}=0}=0 \quad\binom{\text { with assumption }}{\langle\phi\rangle=\text { const }}
$$

gives vacuum expectation values: $\left\{\langle\phi\rangle_{\min 1},\langle\phi\rangle_{\min 2}, \ldots\right\}$ - possible vacuums

Extrema positions and values $\left\{\left(\langle\phi\rangle_{\min \mathrm{i}}, V_{\text {eff }}\left[\langle\phi\rangle_{\text {min } i}\right]\right)\right\} \Rightarrow$ phase transitions

Phase transition

$$
\left.\frac{\partial V_{\text {eff }}}{\partial\langle\varphi\rangle}\right|_{\langle\varphi\rangle_{0}}=0 \quad \Rightarrow \quad\left(\langle\varphi\rangle_{0},\left.V_{\text {eff }}\right|_{\langle\varphi\rangle_{0}}\right)
$$

Effective potential extremal values and the positions allow one to judge about PT:
:- trivial minimum (vacuum) only \Rightarrow there is no PT;
"- non-trivial true vacuum with the potential barrier \Rightarrow 1-st PT;

- non-trivial true vacuum without a potential barrier \Rightarrow there is no PT.

The extrema of the effective quantum potential $V_{\text {eff: }} T$ is the plasma temperature, $\langle\varphi\rangle$ is the vacuum expectation.

Temperature estimations

Experimental restrictions \Leftrightarrow mass of the lightest predicted particle.

$$
\begin{gathered}
\Sigma_{I J}=\xi^{\top}\left[\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \varsigma
\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \frac{\text { AdS/CFT }}{\text { dual to }} X_{I J} \rightarrow\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \chi
\end{array}\right) \\
m_{\eta} \sim m_{\delta \chi} \text { fluctuation mass } \sim \text { slope of the "hat". }
\end{gathered}
$$

$$
\chi(z) \rightarrow \chi(z)+\delta \chi(t, \vec{x}, z) \quad \Rightarrow \quad \operatorname{EoM}_{z}[\chi] \rightarrow \operatorname{EoM}_{t, \vec{x}, z}[\chi+\delta \chi] \quad \partial \mathrm{AdS} \quad 2 m^{2}=\phi_{2}
$$

$$
T=\frac{1}{\pi} \frac{1}{z_{\mathrm{H}}} \quad \Rightarrow \quad T=\frac{m}{\pi} \sqrt{\frac{2}{\phi_{2}}}, \quad z_{\mathrm{H}}^{2}=\frac{\phi_{2}}{2 m^{2}}
$$

Bubble free energy

Free energy of a bubble: $\quad F\left[V_{\text {eff }}\right] \xlongequal[\text { approximation }]{\text { thin walls }} 4 \pi R^{2} \mu-\frac{3 \pi}{4} R^{3}\left(\mathcal{F}_{\text {out }}-\mathcal{F}_{\text {in }}\right)$

$$
F_{\mathrm{C}} \stackrel{\text { def }}{=} F\left(R_{\mathrm{C}}\right) \text { : if } R>R_{\mathrm{C}},
$$ bubbles grow and PT occurs.

$$
\frac{\beta}{H *} \sim \frac{F_{C}}{T}+\mathcal{O}(T)
$$

$1 / \beta \sim$ appear \rightarrow collide time $1 / H_{*} \sim$ universe expansion

$$
\begin{aligned}
& v_{4} \sim 10^{-1} \ll 1, \quad C \sim 1 \\
& 10^{3} \gtrsim \frac{\beta}{H_{*}} \gtrsim 10^{5}
\end{aligned}
$$

$$
\begin{aligned}
0.28 & \gtrsim \frac{T(\gamma)}{m}<\frac{T\left(\gamma_{\min }\right)}{m} \\
T \sim \frac{1}{\gamma}<\frac{1}{\gamma_{\min }} \text { - suggestion, } \quad \gamma_{\min } & \ll 1 \\
& \approx 9 \frac{3}{4} / 14
\end{aligned}
$$

Gravitational Waves

The spectrum of the gravitational waves can be estimated as (within the approach of relativistic velocity of the bubble walls $v_{w} \sim 1$)

$$
\Omega_{\mathrm{GW}} h^{2}=1.67 \cdot 10^{-5} \kappa \Delta\left(\frac{\beta}{H_{*}}\right)^{-2}\left(\frac{\alpha}{1+\alpha}\right)^{2}\left(\frac{g_{*}}{100}\right)^{-\frac{1}{3}}
$$

Only scalar waves! Sound waves and turbulence are not included!

We estimate only scalar waves produced during initial collisions.

$$
f_{0}=1.65 \cdot 10^{-5} \mathrm{~Hz} \cdot \frac{f_{*}}{\beta} \frac{\beta}{H_{*}} \frac{T}{0.1 \mathrm{TeV}}\left(\frac{g_{*}}{100}\right)^{\frac{1}{6}} \mathrm{~Hz}
$$

$\left(\Omega_{\mathrm{GW}} h^{2}, f_{0}\right)$-curve is the estimation GW amplitude (peak value). It does not contain the spectral shape $S\left(f_{0}\right)$ (in this case $S\left(f_{0}=f_{0}^{\text {peak }}\right)=1$).

$$
(41 / 11) / \sim S_{4}^{\text {permut. }}
$$

Observations

Observations (without legend)

Conclusion

Holographic model

$\mathcal{L}_{\mathrm{CH}}$ - strongly coupled $\quad \Rightarrow \quad$ consider $N \gg 1 \quad \Rightarrow \quad \mathcal{Z}_{\mathrm{CH}}[\mathrm{J}]=\mathcal{Z}_{\mathrm{AdS}}[\mathrm{J}]$
The dual theory: $\mathcal{Z}_{\text {AdS }}[J] \sim \exp \left(-S_{\text {AdS }}[J]\right)$ is weakly coupled \Rightarrow quasiclassical limit
The asymptotic behavior near the conformal border $\partial \mathrm{AdS}$ of the dual theory fields defines the sources of the CH operators (i.e. the correlator functions)

$$
x_{I J} \stackrel{z \rightarrow 0}{ } \frac{\sqrt{N}}{2 \pi} J_{I J} z+\frac{2 \pi}{\sqrt{N}} \Sigma_{I J} z^{3}+\ldots \quad X_{I J}: A d S_{5} \stackrel{\text { dual }}{\Longleftrightarrow} \Sigma_{I J}: \mathbb{R}^{1,3}
$$

Holography is the duality between strongly coupled theory on the border and weakly coupled (quasiclassical) bulk theory.
$F=-T \log \mathcal{Z}_{\mathrm{CH}} \sim T S_{\text {AdS }} \propto \operatorname{Vol}_{4} \cdot \mathcal{F} \quad$ In homogeneous case $(\chi=\chi(z)): \mathcal{F} \propto V_{\text {eff }}[\chi]$

Action of the holographic model

$$
\begin{gathered}
S_{\text {tot }}=S_{\text {grav }+\phi}+S_{\mathrm{X}}+S_{\mathrm{A}}+S_{\mathrm{SM}}+S, \quad S_{\mathrm{A}}=-\frac{1}{g_{5}^{2}} \int d^{5} x \sqrt{|g|} e^{\phi} g^{a c} g^{b d} F_{a b} F_{c d} \\
S_{\text {grav }+\phi}=\frac{1}{l_{P}^{3}} \int d^{5} x \sqrt{|g|} e^{2 \phi}\left[-R+2|\Lambda|-4 g^{a b} \partial_{a} \phi \partial_{b} \phi-V_{\phi}(\phi)\right], \quad a, b=0, \ldots 4 \\
S_{\text {int }}=\epsilon^{4} \int_{z=\epsilon} d^{4} x \sqrt{\left|g^{(4)}\right|}\left[c_{Y} B_{\mu} \operatorname{Tr}\left(T_{Y} A^{\mu}\right)+c_{W} W_{k, \mu} \operatorname{Tr}\left(T_{k} A^{\mu}\right)+\mathcal{L}_{\psi}\right] \\
S_{X}=\frac{1}{k_{S}} \int d^{5} x \sqrt{|g|} e^{\phi}\left[\frac{1}{2} g^{a b} \operatorname{Tr}\left(\nabla_{a} X^{\top} \nabla_{b} X\right)-V_{X}(X)\right], \quad \nabla_{a} X=\partial_{a} X+\left[A_{a}, X\right], \quad A_{a}=0 \\
V_{X}(X)=\operatorname{Tr}\left(-\frac{3}{2 L^{2}} X^{\top} X-\frac{\alpha}{4}\left(X^{\top} X\right)^{2}+L^{2} \frac{\beta}{6}\left(X^{\top} X\right)^{3}+O\left(X^{8}\right)\right) \\
L \cdot X_{I J} \sim \frac{\sqrt{N}}{2 \pi} J_{J I} \tilde{Z}+\frac{2 \pi}{\sqrt{N}} \Sigma_{I J \tilde{Z}^{3}}+\ldots
\end{gathered}
$$

Geometry

$$
\begin{gathered}
S_{\text {grav }+\phi}=\frac{1}{l_{P}^{3}} \int d^{5} x \sqrt{|g|} e^{2 \phi}\left[-R+2|\Lambda|-4 g^{a b} \partial_{a} \phi \partial_{b} \phi-V_{\phi}(\phi)\right], \quad a, b=0, \ldots 4 \\
d s^{2}=\frac{L^{2}}{\tilde{z}^{2}} A(\tilde{z})^{2}\left(f(\tilde{z}) d \tau^{2}+\frac{d \tilde{z}^{2}}{f(\tilde{z})}+d \vec{x}^{2}\right), \quad \phi=\phi(\tilde{z}) \\
f=1-\frac{\tilde{z}^{4}}{z_{H}^{4}}, \quad \phi=\tilde{\phi}_{2} \tilde{z}^{2}, \quad z_{H}=\frac{1}{\pi T} .
\end{gathered}
$$

"Extrema" curves

$$
\frac{\delta S_{\chi}}{\delta \chi}=0 \Rightarrow \chi \xrightarrow{z \rightarrow 0} J z+\left(\sigma-\left(\frac{3}{2} J^{3}+\phi_{2} J\right) \log z\right) z^{3}+o\left(z^{5}\right)-\begin{gathered}
\text { give the sourses } \\
\text { for CFT operators }
\end{gathered}
$$

Knowing the extrema of the effective potential and its values at these points, we can judge abut the phase transition

$$
\begin{gathered}
V_{\text {eff }}=-\left.\frac{1}{\mathrm{Vol}_{4}} S_{\chi}\right|_{\partial A d S} \Rightarrow \begin{array}{c}
\text { from EoM } \\
\text { for effective }: \operatorname{Vol}_{4} \\
\text { action }
\end{array} \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=J \Rightarrow \begin{array}{c}
\text { extrema condition is } \\
\text { absence of sources }
\end{array} \Rightarrow J=0 \\
\overbrace{\chi \xrightarrow{z \rightarrow 0} \sigma z^{3}+o\left(z^{5}\right)}^{\begin{array}{c}
\text { extreme" solutions }
\end{array}} \text { must give } \overbrace{\frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=0 \Rightarrow \begin{array}{c}
\text { a new condition } \\
\text { for } \phi_{2} \text { and }\langle\varphi\rangle
\end{array}}^{T \sim \frac{1}{\sqrt{\phi_{2}}}, \quad \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=0=\left.\frac{\delta}{\delta \sigma} S_{\chi}\left[\chi_{\text {Sol. }}(z ; J, \sigma)\right]\right|_{J=0} \quad \Rightarrow \quad\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}-\text { extrema }}
\end{gathered}
$$

$$
\sigma \text { is (source) dual to }\langle\varphi\rangle \text {, vacuum average of the effective theory }
$$

Nucleation ratio

The next step is to consider
Baryogenesis generates enough asymmetry (enough efficient) if there is one bubble per Hubble volume

$$
F=F[\langle\varphi\rangle, R]-\text { Free energy of the bubble; } R \text { is the radius of the bubble }
$$

Hubble horizon (time, volume, radius) - speed of receding object behind it is greater than the speed of light (Don't confuse with cosmological horizon)
Bubble appears with a certain size. It defines with "micro-physics". If its radius is grater, then critical one $\left.\frac{\partial F}{\partial R}\right|_{R_{C}}{ }_{=}^{\text {def }} R$, the bubble grow. Otherwise, it bursts. It gives $F_{\mathrm{C}} \stackrel{\text { def }}{=} F\left(R_{\mathrm{C}}\right)$ and defines nucleation ratio and "viability of the model".

Estimations of the nucleation ratio

$\Gamma \sim H_{*}^{4}, \quad \frac{\Gamma}{m^{4}} \sim \frac{H_{*}^{4}}{m^{4}} \propto \frac{m^{4}}{M_{\mathrm{Pl}}} ;$
F_{C} is defined with an error, so $e^{\frac{F_{C}}{T}}$ has large error

Free energy density

The free energy density of the non-trivial solution (blue line) crosses the free energy density of the trivial solution (green field) at the poitnt where 1-st PT becomes possible.
\mathcal{F}_{v} is free energy density of the CM model, σ is the source for vacuum expectation value $\langle\varphi\rangle \sim \sigma, \phi_{2}$ is the temperature parameter $T \propto \frac{1}{\sqrt{\phi_{2}}}$.

Effective potential isn't "Tuned"

NO, it's just ill-defined

$$
\begin{array}{rll}
V_{\chi}=a_{2} \chi^{2}+a_{4} \chi^{4}+a_{6} \chi^{6}, & a_{2}<0, a_{4}<0, a_{6}>0 & \text { no barrier } \\
V_{\text {eff }}=b_{2}\langle\varphi\rangle^{2}+b_{4}\langle\varphi\rangle^{4}+b_{6}\langle\varphi\rangle^{6}, & b_{2}>0, b_{4}<0, b_{6}>0 & \text { there's a barrier }
\end{array}
$$

in details:
.- $V_{\text {eff }}=V_{\text {eff }}[\langle\varphi\rangle]$ describes a quantum objects at the border. V_{χ} is a dual classical potential in the bulk.
$=V_{\text {eff }}=-\left.\frac{1}{\mathrm{Vol}_{4}} S_{\text {AdS }}\right|_{\partial \text { AdS }}$ includes the solutions of the EoM $\frac{\delta S_{\chi}}{\delta \chi=0}$ in bulk. In other words, $V_{\text {eff }}$ includes physics of AdS

"Symmetries" of the dual theory potential

$$
v_{\chi}(\chi)=\frac{m^{2}}{2} \chi^{2}-\frac{D}{4 L^{2}} \lambda \chi^{4}+\frac{\lambda^{2} \gamma}{6 L^{2}} \chi^{6} \text { is the expantion of a more general theory }
$$

Suggestions:
=. The potential V_{χ} always has true vacuum with $E_{\min }\left(V_{\chi} \xrightarrow{\chi \rightarrow \pm \infty} \infty\right)$. So we may use any even power χ^{n} instead of the last term χ^{6}.
\#- The expansion of V_{χ} has certain sign of the second term $\lambda>0$ (the first one m^{2} chosen for the theory to be conformal in AdS).
". Higher orders of the expansion don't give new minima at the considered temperatures.
The certain parametrization has been chosen with respect to the "symmetries"

"Scale invariace",
defining the coefficents
:---:
$\chi \rightarrow \sqrt{\lambda} \chi ;$
:---:
the AdS border
:---
:---
$\Delta_{+}=3$

D is for the Large D limit. But its usage doesn't give any results.
(to keep interaction constants finite at $D \rightarrow \infty$)

Extrema curve on natural scale

"Extrema" curve of the effective potential $V_{\text {eff }}$ in real scale with the 1st order PT "temperature" range (left picture).

The approximation of the $V_{\text {eff }}=a_{0}+a_{2} \sigma^{2}+a_{4} \sigma^{4}+a_{6} \sigma^{6}$ with the points $\left(\sigma_{\max }, V_{\max }\left(\sigma_{\max }\right)\right)$ and $\left(\sigma_{\min }, V_{\min }\left(\sigma_{\min }\right)\right)$ (right picture).

Analytical and numerical solution

The "extrema" curves defines the positions $\sigma \sim\langle\varphi\rangle$ of the effective potential extrema as functions of the parameter γ and temperature $\phi_{2}\left(T \sim \frac{1}{\sqrt{\phi_{2}}}\right)$

The dotted lines are the numerical solutions.
The dashed lines are the perturbation solution with expantion by λ coupling constant.

SM - CH model interactions

$$
F \underset{\text { approximation }}{\stackrel{\text { thin walls }}{\Longrightarrow} 4 \pi R^{2} \mu-\frac{3 \pi}{4} R^{3}\left(\mathcal{F}_{\text {out }}-\mathcal{F}_{\text {in }}\right)-\text { physical units are required }}
$$

". Fix the Parameters (Interaction with Standard Model - bulk gauge fields)
". Physical Units (Infrared Regularization and finite temperature - "radial" heavy fluctuations)

$$
W_{\mu}^{\alpha} J_{L}^{\alpha \mu}+B_{\mu} J_{\gamma}^{\mu} \quad \Leftrightarrow \quad J^{\mu} \sim A^{M} \text { - bulk } \mathcal{G} \text { gauge field }
$$

The physical values can be estimated without gauge field:
$\Sigma_{I J}=\left\langle\bar{\Psi}_{,} \Psi_{J}\right\rangle=\xi^{\top}\left[\left(\begin{array}{cc}0_{4 \times 4} & 0 \\ 0 & X\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \Leftrightarrow \frac{1}{T} \propto \sqrt{\phi_{2}} \sim \mu_{\mathrm{IR}} \sim m_{\eta} \gtrsim 10 \mathrm{TeV}$
$m_{\eta} \Leftarrow X \rightarrow X+\delta X$ - correction of the background field $\quad \Rightarrow \quad \eta-$ pNG boson

CH gauge field

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{S M}+\mathcal{L}_{\mathrm{CH}}+\underbrace{B_{\mu} \operatorname{Tr}\left(T_{Y} \hat{\jmath}^{\mu}\right)+W_{k, \mu} \operatorname{Tr}\left(T_{k} \hat{j}^{\mu}\right)+\sum_{r} \bar{\psi}_{r} \mathcal{O}_{r}+\text { h.c. }}_{=\mathcal{L}_{\text {interactions }}} \\
& \operatorname{SO}(5) \times U(1): A_{M}=A_{M}^{K} T^{K}+A_{M, Y} T_{Y} \\
& \operatorname{SO}(5) \rightarrow \operatorname{SO}(4): \underbrace{A_{M}^{K} T^{K}}_{\in S O(5)} \rightarrow \underbrace{A_{M}^{a} T^{a}}_{\in S O(4)}+\underbrace{A_{M}^{i} T^{i}}_{\in S O(5) / S O(4)} \\
& \operatorname{SO}(4) \cong \operatorname{SU}(2) \times \operatorname{SU}(2): \quad A_{M}^{K} T^{K}=\underbrace{A_{M}^{K, L} T_{L}^{K}}_{\in S U(2)_{L}}+\underbrace{A_{M}^{k, R} T_{R}^{K}}_{\in S U(2)_{R}}
\end{aligned}
$$

conserved currents: $\left.\hat{J}_{\mu} \stackrel{\text { dual }}{\Longleftrightarrow} A_{\mu}(t, x, z)\right|_{z=0} ^{\text {addS }}, \quad$ holographic gauge: $A_{z}=0$
$\mathcal{O} \stackrel{\text { dual }}{\Longleftrightarrow} \mathcal{J}(A, \Psi, \phi, \ldots)$ - composite operators of the CH fields

