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Electroweak baryogenesis (Motivation)

Motivation andmodel 1/14

Baryon asymmetry cannot be explained within SM— “baryon asymmetry problem”

It implies Sakharov conditions:
Baryon number violation
satisfied within non-perturbative SM
(with sphalerons)

C, CP violation
(particles – anti-particles)
appears in SM, but effect is too small

CPT violation
(thermodynamic equilibrium breaking)
prevent the got asymmetry from ‘washing’

termodynamical
equilibrium breaking ⇐ first order

phase transition

〈φ〉 6= 0
〈φ〉 = 0

broken
symmetry

unbroken symmetry

Electroweak Baryogenesis within SM

SU(2)L × U(1)Y → U(1)em

mHiggs > 70 GeV ⇒ NO first order
phase transition



Composite Higgsmodel

Motivation andmodel 0/14

L = LSM + LCH + LInt., LCH – strongly coupled with G inner symmetry(
G invariant

vacuum
) spontaneous
−−−−−−−−−−→

breaking

(
H invarianе

vacuum
)

⇒ Goldstone bosons 3Higgs boson
phase transition

Effective
potential Veff

of broken phase

〈φ〉 6= 0

order
parameter :

(
G invariant

vacuum
)

⇔ 〈φ〉 = 0
(
H invarianе

vacuum
)

⇔ 〈φ〉 6= 0



Minimal Composite Higgsmodel

Motivation andmodel -1/14

minimal model G = SO(5)× U(1)Y ,H = SO(4)× U(1)Y ⊃ SU(2)L × U(1)Y

minimal⇐ the coset must contain Higgs doublet φ ∈ SU(2)C ⊂ S4R ∼= SO(5)/SO(4)

ξ ηi

ΣIJ = 〈Ψ̄IΨJ〉 = ξ>
[(

04×4 0
0 ς

)
+ ηiT̃i

]
ξ

SO(5)→SO(4)−−−−−−−−→
low energy

(
04×4 0
0 ς

)
⇒ symmetry

breaking

ΣIJ is a condensate of the SO(5)-inn.sym. fundamental fieldsΨ;
ξ is NB-bosons, η is “radial” fluctuations, ς is background field



Effective field theory

AdS/CFT -2/14

Z[J] =
∫

Dφ e−S−J·φ =: eW[J]

Γ[〈φ〉] = W[J]− δW[J]
δJ

· J =

∫
X
ddx
(

Keff[∂〈φ〉]︸ ︷︷ ︸
=0 if 〈φ〉=const

+Veff[〈φ〉]
)

– effective action

Effective potential: Veff =
1

Vol4
Γ

Equation of motion (EoM):
δΓ

δ〈φ〉
= J

〈φ〉=const
=

δVeff
δ〈φ〉

J=0
= 0 gives extrema condition



AdS/CFT

AdS/CFT ≈ π2

2 /1 4

In a narrow sense: non-perturbative method for correlators calculations;
In general: conformal field theoryZCFT ∼ field theory in AdSZAdS

Z[J]
AdS/CFT
=

correspondence
ZAdS

quasiclassical
≈
approximation

e−SAdS
∣∣
∂AdS — quasiclassical

non-perturbative

strongly coupled λCFT � 1with λCFT ∼ 1
λAdS

gives λAdS � 1weakly coupled field theory

ZCFT[J] =
∫

D[*fields*] exp(−S −O · J)
AdS/CFT
=
correspondence

ZAdS
∣∣
∂AdS

Fields of CFT are unknown, action is unknown,
but we know something (symmetries) about the sources J and the operatorsO

O ∈ C[φ, ∂φ, ∂2φ, . . .]



Holographic correlators

AdS/CFT 6/14

δSAdS
δφ

= 0 ⇒ solution of the equation of motion: ψ(x, z) z→0−−−→
∂AdS

zd−∆ ψ0(x) + z∆ ψ1(x)

conformal boundary BH horizon
∂AdS

AdS bulk
t
~x

z

T ∼ 1
z0 ≡ gravity at the horizon

zHorizon

Z[J] =
∫

D[. . .]e−S−O·J AdS/CFT
= exp

(
−SAdS[ψ]

∣∣
z=0

)
, J

AdS/CFT
= ψ0(x), 〈O〉 AdS/CFT

= ψ1(x)

EoM solutions ∂AdS⇒
asymptotic

boundary part S∂AdS
quasiclassical⇒
approach

CFT generating function

Gn = 〈O . . .O〉 =
(
δ

δJ

)n
logZ[J]

∣∣∣
J=0

= −
(

δ

δψ0

)n
SAdS[ψ] = −

(
δnSbulkAdS
δψn

0

)
︸ ︷︷ ︸
=0 due to EoM

−

(
δnSborder∂AdS
δψn

0

)



Holographic potential

AdS/CFT 61/4

Extrema condition: Veff
∣∣
extrema = Veff

∣∣
J=0

⇔ G0;
AdS/CFT: G0 ⇐ boundary term of dual theory S∂AdS

VolX Veff
∣∣
extrema = G0 = W[J = 0]

AdS/CFT
= SAdS

∣∣ψ0=0

∂AdS

Extrema condition & duality: J = ψ0 = 0; duality: 〈φ〉 = ψ1

δVeff
δ〈φ〉

AdS/CFT
=

δ

δψ1

(
S[ψ]

∣∣
∂AdS

) ∣∣∣
ψ0=0

= 0
(
with assumption

〈φ〉=const

)
gives vacuum expectation values:

{
〈φ〉min 1, 〈φ〉min 2, . . .

}
—possible vacuums

Extrema positions and values
{(

〈φ〉min i, Veff[〈φ〉min i]
)}

⇒ phase transitions



Phase transition

Solution 614/

∂Veff
∂〈ϕ〉

∣∣∣
〈ϕ〉0

= 0 ⇒
(
〈ϕ〉0, Veff

∣∣
〈ϕ〉0

)
Effective potential extremal values and the
positions allow one to judge about PT:

trivial minimum (vacuum) only⇒
there is no PT;
non-trivial true vacuumwith the
potential barrier⇒ 1-st PT;
non-trivial true vacuumwithout a
potential barrier⇒ there is no PT.

The extrema of the effective quantum potential Veff: T is the plasma temperature,
〈ϕ〉 is the vacuum expectation.

Unscaled schematic illustration! Data in real scale are at the backup slides.



Temperature estimations

Solution 9/14

Experimental restrictions ⇔ mass of the lightest predicted particle.

ΣIJ = ξ>
[(

04×4 0
0 ς

)
+ ηiT̃i

]
ξ

AdS/CFT∼
dual to

XIJ →
(
04×4 0
0 χ

)
mη ∼ mδχ fluctuation mass∼ slope of the “hat”.

χ(z) → χ(z)+δχ(t,~x, z) ⇒ EoMz[χ] → EoMt,~x,z[χ+δχ]
∂AdS⇒ 2m2 = φ2

T =
1

π

1

zH
⇒ T =

m
π

√
2

φ2
, z2H =

φ2
2m2



Bubble free energy

Bubble nucleation ≈ 93
4 /14

Free energy of a bubble: F[Veff]
thin walls
=
approximation

4πR2µ− 3π

4
R3 (Fout −Fin)

FC
def
= F(RC): if R > RC,

bubbles grow and PT occurs.
β

H∗
∼ FC

T
+O(T)

1/β ∼ appear→ collide time
1/H∗ ∼ universe expansion

v4∼10−1�1, C∼1

103 &
β

H∗
& 105

0.28 & T(γ)
m <

T(γmin)
m

T∼ 1
γ
< 1

γmin
– suggestion, γmin�1



GravitationalWaves

Bubble nucleation (41/11) / ∼ Spermut.
4

The spectrum of the gravitational waves can be estimated as
(within the approach of relativistic velocity of the bubble walls vw ∼ 1)

ΩGWh2 = 1.67 · 10−5κ∆

(
β

H∗

)−2( α

1 + α

)2 ( g∗
100

)− 1
3

Only scalar waves! Soundwaves and turbulence are not included!
We estimate only scalar waves produced during initial collisions.

f0 = 1.65 · 10−5Hz · f∗
β

β

H∗

T
0.1TeV

( g∗
100

) 1
6 Hz

(ΩGWh2, f0)-curve is the estimation GW amplitude (peak value).
It does not contain the spectral shape S(f0) (in this case S(f0 = f peak0 ) = 1).



Observations

Bubble nucleation December/14



Observations (without legend)

Bubble nucleation (-1mod14)/14



Conclusion

Conclusion 14/14

Composite Higgs model
SCH[Σ]

Standard Model
LCM

Interaction with SM
BµJµY +Wµ,kJ

µ
k + . . .

Holographic model
Sdilaton-grav. + SCH-h[X] + Sgauge-kin + SSM-ineraction

first order
phase transition

baryogenesis

observable gravitational wavesobservable baryon asymmetry

SCH-h[X] ‘matter part’

Sdilaton-grav. ‘gravity part’

this work
arXiv:

2209.02331
next work



Holographicmodel

15/14

LCH – strongly coupled ⇒ consider N � 1 ⇒ ZCH[J] = ZAdS[J]

The dual theory: ZAdS[J] ∼ exp
(
− SAdS[J]

)
is weakly coupled ⇒ quasiclassical limit

The asymptotic behavior near the conformal border ∂AdS of the dual theory fields
defines the sources of the CH operators (i.e. the correlator functions)

XIJ
z→0∼

√
N

2π
JIJz +

2π√
N
ΣIJz3 + . . . XIJ : AdS5

dual⇐⇒ ΣIJ : R1,3

Holography is the duality between strongly coupled theory on the border
andweakly coupled (quasiclassical) bulk theory.

F = −T logZCH ∼ TSAdS ∝ Vol4 · F In homogeneous case (χ = χ(z)): F ∝ Veff[χ]



Action of the holographicmodel

16/14

Stot = Sgrav+φ + SX + SA + SSM + S, SA = − 1

g25

∫
d5x
√
|g|eφgacgbdFabFcd

Sgrav+φ =
1

l3P

∫
d5x
√
|g|e2φ

[
− R + 2|Λ| − 4gab∂aφ∂bφ− Vφ(φ)

]
, a, b = 0, . . . 4

Sint = ε4
∫
z=ε

d4x
√
|g(4)|

[
cYBµ Tr

(
TYAµ

)
+ cWWk,µ Tr

(
TkAµ

)
+ Lψ

]

SX =
1

ks

∫
d5x
√
|g|eφ

[
1

2
gab Tr

(
∇aXT∇bX

)
− VX(X)

]
, ∇aX = ∂aX + [Aa, X], Aa = 0

VX(X) = Tr
(
− 3

2L2
XTX − α

4
(XTX)2 + L2

β

6
(XTX)3 + O(X8)

)
L · XIJ ∼

√
N

2π
JIJ z̃ +

2π√
N
ΣIJ z̃3 + . . .



Geometry

17/14

Sgrav+φ =
1

l3P

∫
d5x
√
|g|e2φ

[
− R + 2|Λ| − 4gab∂aφ∂bφ− Vφ(φ)

]
, a, b = 0, . . . 4

ds2 =
L2

z̃2
A(z̃)2

(
f (z̃)dτ2 +

dz̃2

f (z̃)
+ d~x2

)
, φ = φ(z̃)

f = 1− z̃4

z4H
, φ = φ̃2z̃2, zH =

1

πT
.



“Extrema” curves

18/14

δSχ
δχ

= 0 ⇒ χ
z→0−−→ J z +

(
σ −

(3
2
J3 + φ2J

)
log z

)
z3 + o(z5) — give the sourses

for CFT operators

Knowing the extrema of the effective potential and its values at these points,
we can judge abut the phase transition

Veff = − 1

Vol4
Sχ
∣∣∣
∂AdS

⇒
from EoM
for effective

action
: Vol4

δVeff
δ〈ϕ〉

= J ⇒ extrema condition is
absence of sources ⇒ J = 0

“extreme” solutions︷ ︸︸ ︷
χ

z→0−−→ σz3 + o(z5) must give

extrema︷ ︸︸ ︷
δVeff
δ〈ϕ〉

= 0 ⇒ a new condition
for φ2 and 〈ϕ〉

T ∼ 1√
φ2
,

δVeff
δ〈ϕ〉

= 0 =
δ

δσ
Sχ
[
χSol.(z; J, σ)

]∣∣∣
J=0

⇒ {σ1, . . . , σn} – extrema

σ is (source) dual to 〈ϕ〉, vacuum average of the effective theory



Nucleation ratio
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The next step is to consider
Baryogenesis generates enough asymmetry (enough efficient) if

there is one bubble per Hubble volume

Nucleation
Ratio : AT4e−

FC
T︸ ︷︷ ︸

Bubbles produced
per time×space volume

∼ H4(T) =
(

T2

MPl

)4

– Expansion of
the Univerce︸ ︷︷ ︸

1/
(
Hubble time× volume

)
F = F[〈ϕ〉,R] – Free energy of the bubble; R is the radius of the bubble

Hubble horizon (time, volume, radius) — speed of receding object behind it is greater than the
speed of light (Don’t confuse with cosmological horizon)

Bubble appears with a certain size. It defines with “micro-physics”.
If its radius is grater, then critical one ∂F

∂R

∣∣
RC

def
=R

, the bubble grow. Otherwise, it bursts.

It gives FC
def
= F(RC) and defines nucleation ratio and “viability of the model”.



Estimations of the nucleation ratio
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Γ ∼ H4
∗,

Γ

m4
∼ H4

∗
m4

∝ m4

MPl
; FC is defined with an error, so e

FC
T has large error



Free energy density

21/14

The free energy density of the non-trivial
solution (blue line) crosses the free energy
density of the trivial solution (green field) at
the poitnt where 1-st PT becomes possible.

Fv is free energy density of the CMmodel, σ is the source for vacuum expectation value
〈ϕ〉 ∼ σ, φ2 is the temperature parameter T ∝ 1√

φ2
.



Effective potential isn’t “Tuned”

22/14

NO, it’s just ill-defined

Vχ = a2χ2 + a4χ4 + a6χ6, a2 < 0, a4 < 0, a6 > 0 no barrier
Veff = b2〈ϕ〉2 + b4〈ϕ〉4 + b6〈ϕ〉6, b2 > 0, b4 < 0, b6 > 0 there’s a barrier

in details:
Veff = Veff[〈ϕ〉] describes a quantum objects at the border. Vχ is a dual classical
potential in the bulk.

Veff = − 1
Vol4 SAdS

∣∣∣
∂AdS

includes the solutions of the EoM δSχ
δχ=0 in bulk. In other

words, Veff includes physics of AdS



“Symmetries” of the dual theory potential

23/14

Vχ(χ) =
m2

2
χ2 − D

4L2
λχ4 +

λ2γ

6L2
χ6 is the expantion of a more general theory

Suggestions:
The potential Vχ always has true vacuumwith Emin (Vχ

χ→±∞−−−−−→ ∞). So wemay use
any even power χn instead of the last term χ6.
The expansion of Vχ has certain sign of the second term λ > 0
(the first onem2 chosen for the theory to be conformal in AdS).
Higher orders of the expansion don’t give newminima at the considered
temperatures.

The certain parametrization has been chosen with respect to the “symmetries”

“Scale invariace”,
defining

the coefficents
:

L → L′

χ→
√
λχ

;
Conformality near
the AdS border

(“correct” conformal weights)
:
∆− = 1
∆+ = 3

⇒ m2 = − D
3L2

D is for the Large D limit. But its usage doesn’t give any results.
(to keep interaction constants finite at D → ∞)



Extrema curve on natural scale
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“Extrema” curve of the effective potential Veff in real scale
with the 1st order PT “temperature” range (left picture).

The approximation of the Veff = a0 + a2σ2 + a4σ4 + a6σ6
with the points

(
σmax, Vmax(σmax)

)
and

(
σmin, Vmin(σmin)

)
(right picture).



Analytical and numerical solution
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The “extrema” curves defines the positions σ ∼ 〈ϕ〉 of the effective potential extrema
as functions of the parameter γ and temperature φ2 (T ∼ 1√

φ2
)

The dotted lines are the numerical solutions.
The dashed lines are the perturbation solution with expantion by λ coupling constant.



SM - CHmodel interactions
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F
thin walls
=
approximation

4πR2µ− 3π

4
R3 (Fout −Fin) — physical units are required

Fix the Parameters (Interaction with Standard Model – bulk gauge fields)
Physical Units (Infrared Regularization and finite temperature – “radial”
heavy fluctuations)

Wα
µ J

αµ
L + BµJµY ⇔ Jµ ∼ AM – bulk G gauge field

The physical values can be estimated without gauge field:

ΣIJ = 〈Ψ̄IΨJ〉 = ξ>
[(

04×4 0
0 X

)
+ ηiT̃i

]
ξ ⇔ 1

T
∝
√
φ2 ∼ µIR ∼ mη & 10 TeV

mη ⇐ X → X + δX – correction of the background field ⇒ η – pNG boson



CH gauge field
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L = LSM + LCH + Bµ Tr
(
TY Ĵµ

)
+Wk,µ Tr

(
Tk Ĵµ

)
+
∑
r
ψ̄rOr + h.c.︸ ︷︷ ︸

=Linteractions

SO(5)× U(1) : AM = AKMT
K + AM,YTY

SO(5) → SO(4) : AKMT
K︸ ︷︷ ︸

∈SO(5)

→ AaMT
a︸ ︷︷ ︸

∈SO(4)

+ AiMT
i︸︷︷︸

∈SO(5)/SO(4)

SO(4) ∼= SU(2)× SU(2) : AKMT
K = Ak,LM Tk

L︸ ︷︷ ︸
∈SU(2)L

+ Ak,RM Tk
R︸ ︷︷ ︸

∈SU(2)R

conserved currents: Ĵµ
dual⇐⇒ Aµ(t, x, z)

∣∣∣∂AdS
z=0

, holographic gauge: Az = 0

O dual⇐⇒ J (A,Ψ, φ, . . .)— composite operators of the CH fields
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