# First order phase transitions within holographic approach in application to baryon asymmetry problem

### by Andrey Shavrin

under the supervision of Prof. Oleg Novikov Saint-Petersburg State University, Th. Phys. Dep.

International Conference on Particle Physics and Cosmology dedicated to memory of Valery Rubakov A. I. Alikhanyan national science laboratory, Yerevan, Armenia

Oct. 2 – 7, 2023

# **Electroweak baryogenesis (Motivation)**

Baryon asymmetry cannot be explained within SM - "baryon asymmetry problem"

### It implies Sakharov conditions:

- Baryon number violation satisfied within non-perturbative SM (with sphalerons)
- C, CP violation (particles – anti-particles) appears in SM, but effect is too small

### CPT violation

(thermodynamic equilibrium breaking) prevent the got asymmetry from 'washing'

termodynamical first order equilibrium breaking  $\Leftarrow$  phase transition



Electroweak Baryogenesis within SM

 $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \to \mathrm{U}(1)_{\mathrm{em}}$ 

 $m_{\rm Higgs} > 70 \, {\rm GeV} \, \Rightarrow {
m NO \ first \ order \ phase \ transition}$ 

### Motivation and model

## **Composite Higgs model**

 $\begin{array}{ll} \mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{CH} + \mathcal{L}_{Int.}, & \mathcal{L}_{CH} \text{ - strongly coupled with } \mathcal{G} \text{ inner symmetry} \\ \left( \mathcal{G} \text{ invariant} \\ \text{vacuum} \right) \xrightarrow{\text{spontaneous}} \left( \mathcal{H} \text{ invariane} \\ \text{vacuum} \right) \Rightarrow \xrightarrow{\text{Goldstone bosons } \ni \text{ Higgs boson} \\ \text{phase transition} \end{array}$ 



## **Minimal Composite Higgs model**

### minimal model $\mathcal{G} = SO(5) \times U(1)_Y$ , $\mathcal{H} = SO(4) \times U(1)_Y \supset SU(2)_L \times U(1)_Y$

minimal  $\Leftarrow$  the coset must contain Higgs doublet  $\phi \in SU(2)_{\mathbb{C}} \subset S^4_{\mathbb{R}} \cong SO(5)/SO(4)$ 



$$\Sigma_{IJ} = \langle \bar{\Psi}_I \Psi_J \rangle = \xi^\top \begin{bmatrix} \begin{pmatrix} 0_{4 \times 4} & 0 \\ 0 & \varsigma \end{pmatrix} + \eta_i \tilde{T}_i \end{bmatrix} \xi \xrightarrow{\text{SO}(5) \to \text{SO}(4)}_{\text{low energy}} \begin{pmatrix} 0_{4 \times 4} & 0 \\ 0 & \varsigma \end{pmatrix} \Rightarrow \text{ breaking}$$

 $\Sigma_{IJ}$  is a condensate of the SO(5)-inn.sym. fundamental fields  $\Psi$ ;  $\xi$  is NB-bosons,  $\eta$  is "radial" fluctuations,  $\varsigma$  is background field Motivation and model

## **Effective field theory**

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S - J \cdot \phi} =: e^{W[J]}$$

$$\Gamma[\langle \phi \rangle] = W[J] - \frac{\delta W[J]}{\delta J} \cdot J = \int_{X} d^{d}x \Big(\underbrace{\kappa_{\mathsf{eff}}[\partial \langle \phi \rangle]}_{=0 \text{ if } \langle \phi \rangle = \mathsf{const}} + V_{\mathsf{eff}}[\langle \phi \rangle] \Big) \quad - \text{ effective action}$$

Effective potential: 
$$V_{\text{eff}} = \frac{1}{\text{Vol}_4}\Gamma$$

Equation of motion (EoM): 
$$\frac{\delta\Gamma}{\delta\langle\phi\rangle} = J \frac{\langle\phi\rangle = \text{const}}{\delta\langle\phi\rangle} \frac{\delta V_{\text{eff}}}{\delta\phi\rangle} = 0$$
 gives extrema condition



## AdS/CFT

In a narrow sense: non-perturbative method for correlators calculations; In general: conformal field theory  $\mathcal{Z}_{CFT} \sim$  field theory in AdS  $\mathcal{Z}_{AdS}$ 

$$\begin{split} \mathcal{Z}[J] & \underbrace{\frac{\text{AdS/CFT}}{\text{correspondence}}}_{\text{correspondence}} \mathcal{Z}_{\text{AdS}} & \underbrace{\frac{\text{quasiclassical}}{\text{approximation}}}_{\text{approximation}} e^{-S_{\text{AdS}}} |_{\partial \text{AdS}} - \underbrace{\frac{\text{quasiclassical}}{\text{non-perturbative}}}_{\text{gives } \lambda_{\text{AdS}} \ll 1 \text{ weakly coupled field theory}} \end{split}$$

 $\mathcal{Z}_{\mathsf{CFT}}[J] = \int \mathcal{D}[\text{*fields*}] \, \exp(-S - \mathcal{O} \cdot J) \quad \frac{\mathsf{AdS}/\mathsf{CFT}}{\mathsf{correspondence}} \, \left. \mathcal{Z}_{\mathsf{AdS}} \right|_{\partial \mathsf{AdS}}$ 

Fields of CFT are unknown, action is unknown, but we know something (symmetries) about the sources J and the operators O

$$\mathcal{O} \in \mathbb{C}[\phi, \partial \phi, \partial^2 \phi, \ldots]$$

AdS/CFT

$$pprox rac{\pi^2}{2}/14$$

# Holographic correlators

$$\frac{\delta S_{AdS}}{\delta \phi} = 0 \Rightarrow \text{ solution of the equation of motion: } \psi(x, z) \xrightarrow{z \to 0}_{\partial AdS} z^{d-\Delta} \psi_0(x) + z^{\Delta} \psi_1(x)$$

$$\xrightarrow{\text{conformal boundary}}_{\partial AdS} \xrightarrow{t x}_{d \to 0} \xrightarrow{\text{BH horizon}} T \sim \frac{1}{z_0} \equiv \text{gravity at the horizon}$$

$$\mathcal{Z}[J] = \int \mathcal{D}[\dots]e^{-S-\mathcal{O}\cdot J} \xrightarrow{\text{AdS/CFT}} \exp(-S_{AdS}[\psi]|_{z=0}), \quad J \xrightarrow{\text{AdS/CFT}} \psi_0(x), \quad \langle \mathcal{O} \rangle \xrightarrow{\text{AdS/CFT}} \psi_1(x)$$

$$\xrightarrow{\text{EoM solutions}} \xrightarrow{\partial AdS} \xrightarrow{\text{asymptotic}} \text{boundary part } S_{\partial AdS} \xrightarrow{\text{quasiclassical}}_{approach} \quad \text{CFT generating function}$$

$$G_n = \langle \mathcal{O} \dots \mathcal{O} \rangle = \left(\frac{\delta}{\delta J}\right)^n \log \mathcal{Z}[J]\Big|_{J=0} = -\left(\frac{\delta}{\delta \psi_0}\right)^n S_{AdS}[\psi] = -\left(\frac{\delta^n S_{AdS}^{\text{bulk}}}{\delta \psi_0^n}\right) - \left(\frac{\delta^n S_{\partial AdS}^{\text{border}}}{\delta \psi_0^n}\right)$$

$$\xrightarrow{\text{AdS/CFT}} \xrightarrow{\text{AdS/CFT}} \psi_0(x) \xrightarrow{\text{AdS/CFT}} \psi_0(x) \xrightarrow{\text{AdS/CFT}} \psi_0(x) \xrightarrow{\text{AdS/CFT}} \psi_0(x)$$

## **Holographic potential**

Extrema condition:  $V_{\text{eff}}|_{\text{extrema}} = V_{\text{eff}}|_{J=0} \Leftrightarrow G_0$ ; AdS/CFT:  $G_0 \Leftarrow$  boundary term of dual theory  $S_{\partial \text{AdS}}$ 

$$\operatorname{Vol}_{X} V_{\text{eff}} \big|_{\text{extrema}} = G_0 = W[J=0] \xrightarrow{\operatorname{\mathsf{AdS/CFT}}} S_{\text{AdS}} \big|_{\partial \text{AdS}}^{\psi_0=0}$$

Extrema condition & duality:  $J = \psi_0 = 0$ ; duality:  $\langle \phi \rangle = \psi_1$  $\frac{\delta V_{\text{eff}}}{\delta \langle \phi \rangle} \xrightarrow{\text{AdS/CFT}} \frac{\delta}{\delta \psi_1} \left( S[\psi] \Big|_{\partial \text{AdS}} \right) \Big|_{\psi_0 = 0} = 0 \quad \begin{pmatrix} \text{with assumption} \\ \langle \phi \rangle = \text{const} \end{pmatrix}$ gives vacuum expectation values:  $\{ \langle \phi \rangle_{\min 1}, \langle \phi \rangle_{\min 2}, \dots \}$  — possible vacuums

Extrema positions and values  $\left\{ \left( \langle \phi \rangle_{\min i}, V_{\text{eff}}[\langle \phi \rangle_{\min i}] \right) \right\} \Rightarrow$  phase transitions

AdS/CFT

# **Phase transition**

Solution



$$\frac{\partial V_{\rm eff}}{\partial \langle \varphi \rangle}\Big|_{\langle \varphi \rangle_0} = 0 \quad \Rightarrow \quad \left( \langle \varphi \rangle_0, V_{\rm eff} \big|_{\langle \varphi \rangle_0} \right)$$

Effective potential extremal values and the positions allow one to judge about PT:

- ► trivial minimum (vacuum) only ⇒ there is no PT;
- non-trivial true vacuum with the potential barrier  $\Rightarrow$  1-st PT;
- non-trivial true vacuum without a potential barrier ⇒ there is no PT.

The extrema of the effective quantum potential  $V_{\rm eff}$ : T is the plasma temperature,  $\langle \varphi \rangle$  is the vacuum expectation.

Unscaled schematic illustration! Data in real scale are at the backup slides.

### **Temperature estimations**

Experimental restrictions  $\Leftrightarrow$  mass of the **lightest predicted** particle.

$$\Sigma_{IJ} = \xi^{\top} \begin{bmatrix} \begin{pmatrix} 0_{4 \times 4} & 0 \\ 0 & \varsigma \end{pmatrix} + \eta_i \tilde{T}_i \end{bmatrix} \xi \quad \frac{\text{AdS/CFT}}{\text{dual to}} \quad X_{IJ} \to \begin{pmatrix} 0_{4 \times 4} & 0 \\ 0 & \chi \end{pmatrix}$$

 $m_\eta \sim m_{\delta\chi}$  fluctuation mass  $\sim$  slope of the "hat".

$$\chi(z) \to \chi(z) + \delta \chi(t, \vec{x}, z) \quad \Rightarrow \quad \mathrm{EoM}_{z}[\chi] \to \mathrm{EoM}_{t, \vec{x}, z}[\chi + \delta \chi] \qquad \underbrace{\partial \mathrm{AdS}}_{2m^{2} = \phi_{2}}$$

$$T = \frac{1}{\pi} \frac{1}{z_{\mathsf{H}}} \quad \Rightarrow \quad T = \frac{m}{\pi} \sqrt{\frac{2}{\phi_2}}, \quad z_{\mathsf{H}}^2 = \frac{\phi_2}{2m^2}$$



## **Bubble free energy**



**Bubble nucleation** 

## **Gravitational Waves**

The spectrum of the gravitational waves can be estimated as (within the approach of **relativistic** velocity of the bubble walls  $v_w \sim 1$ )

$$\Omega_{\rm GW} h^2 = 1.67 \cdot 10^{-5} \kappa \Delta \left(\frac{\beta}{H_*}\right)^{-2} \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{g_*}{100}\right)^{-\frac{1}{3}}$$

**Only scalar waves! Sound waves and turbulence are not included!** We **estimate** only scalar waves produced during initial collisions.

$$f_0 = 1.65 \cdot 10^{-5} \text{Hz} \cdot rac{f_*}{eta} rac{eta}{H_*} rac{eta}{0.1 ext{TeV}} \left(rac{m{g}_*}{100}
ight)^{rac{1}{6}} ext{ Hz}$$

 $(\Omega_{GW}h^2, f_0)$ -curve is the estimation GW amplitude (peak value). It does not contain the spectral shape  $S(f_0)$  (in this case  $S(f_0 = f_0^{\text{peak}}) = 1$ ).

 $(41/11) / \sim S_4^{\text{permut.}}$ 

**Bubble nucleation** 

### **Observations**



#### **Bubble nucleation**

December/14

## **Observations (without legend)**



**Bubble nucleation** 

(-1mod14)/14

## Conclusion



# Holographic model

 $\mathcal{L}_{CH}$  – strongly coupled  $\Rightarrow$  consider  $N \gg 1$   $\Rightarrow$   $\mathcal{Z}_{CH}[J] = \mathcal{Z}_{AdS}[J]$ The dual theory:  $\mathcal{Z}_{AdS}[J] \sim \exp\left(-S_{AdS}[J]\right)$  is weakly coupled  $\Rightarrow$  quasiclassical limit

**The asymptotic behavior** near the conformal border ∂AdS of the dual theory fields **defines the sources** of the CH operators (i.e. the **correlator functions**)

$$X_{IJ} \xrightarrow{z \to 0} \frac{\sqrt{N}}{2\pi} J_{IJ} z + \frac{2\pi}{\sqrt{N}} \Sigma_{IJ} z^3 + \dots \quad X_{IJ} : \mathsf{AdS}_5 \stackrel{\text{dual}}{\iff} \Sigma_{IJ} : \mathbb{R}^{1,3}$$

Holography is the **duality** between **strongly coupled** theory on the border and **weakly coupled** (quasiclassical) bulk theory.

 $F = -T \log \mathcal{Z}_{CH} \sim TS_{AdS} \propto Vol_4 \cdot \mathcal{F}$  In homogeneous case ( $\chi = \chi(z)$ ):  $\mathcal{F} \propto V_{eff}[\chi]$ 

## Action of the holographic model

$$S_{\text{tot}} = S_{\text{grav}+\phi} + S_{\text{X}} + S_{\text{A}} + S_{\text{SM}} + S, \quad S_{\text{A}} = -\frac{1}{g_{5}^{2}} \int d^{5}x \sqrt{|g|} e^{\phi} g^{ac} g^{bd} F_{ab} F_{cd}$$

$$S_{\text{grav}+\phi} = \frac{1}{l_{\rho}^{3}} \int d^{5}x \sqrt{|g|} e^{2\phi} \Big[ -R + 2|\Lambda| - 4g^{ab} \partial_{a}\phi \partial_{b}\phi - V_{\phi}(\phi) \Big], \quad a, b = 0, \dots 4$$

$$S_{\text{int}} = \epsilon^{4} \int_{z=\epsilon} d^{4}x \sqrt{|g^{(4)}|} \Big[ c_{Y}B_{\mu} \operatorname{Tr} \left( T_{Y}A^{\mu} \right) + c_{W}W_{k,\mu} \operatorname{Tr} \left( T_{k}A^{\mu} \right) + \mathcal{L}_{\psi} \Big]$$

$$S_{\text{X}} = \frac{1}{k_{s}} \int d^{5}x \sqrt{|g|} e^{\phi} \Big[ \frac{1}{2} g^{ab} \operatorname{Tr} \left( \nabla_{a}X^{T} \nabla_{b}X \right) - V_{X}(X) \Big], \quad \nabla_{a}X = \partial_{a}X + [A_{a}, X], \quad A_{a} = 0$$

$$V_{X}(X) = \operatorname{Tr} \Big( -\frac{3}{2L^{2}}X^{T}X - \frac{\alpha}{4}(X^{T}X)^{2} + L^{2}\frac{\beta}{6}(X^{T}X)^{3} + O(X^{8}) \Big)$$

$$L \cdot X_{IJ} \sim \frac{\sqrt{N}}{2\pi} J_{IJ}\tilde{z} + \frac{2\pi}{\sqrt{N}} \Sigma_{IJ}\tilde{z}^{3} + \dots$$

$$S_{\text{grav}+\phi} = \frac{1}{l_{\rho}^3} \int d^5 x \sqrt{|g|} e^{2\phi} \Big[ -R + 2|\Lambda| - 4g^{ab} \partial_a \phi \partial_b \phi - V_{\phi}(\phi) \Big], \quad a, b = 0, \dots 4$$

$$ds^{2} = \frac{L^{2}}{\tilde{z}^{2}}A(\tilde{z})^{2}\left(f(\tilde{z})d\tau^{2} + \frac{d\tilde{z}^{2}}{f(\tilde{z})} + d\vec{x}^{2}\right), \quad \phi = \phi(\tilde{z})$$
$$f = 1 - \frac{\tilde{z}^{4}}{z_{H}^{4}}, \quad \phi = \tilde{\phi}_{2}\tilde{z}^{2}, \quad z_{H} = \frac{1}{\pi T}.$$

### "Extrema" curves

$$\frac{\delta S_{\chi}}{\delta \chi} = 0 \Rightarrow \chi \xrightarrow{z \to 0} Jz + \left(\sigma - \left(\frac{3}{2}J^3 + \phi_2 J\right)\log z\right)z^3 + o(z^5) - \frac{\text{give the sources}}{\text{for CFT operators}}$$

Knowing the *extrema* of the effective potential and its *values* at these points, we can judge abut the phase transition

$$V_{\text{eff}} = -\frac{1}{\text{Vol}_4} S_{\chi} \Big|_{\partial \text{AdS}} \Rightarrow \begin{array}{l} \text{from EoM} \\ \text{for effective} : \text{Vol}_4 \frac{\delta V_{\text{eff}}}{\delta \langle \varphi \rangle} = J \Rightarrow \begin{array}{l} \text{extrema condition is} \\ \text{absence of sources} \end{array} \Rightarrow J = 0 \\ \\ \overbrace{\chi \xrightarrow{z \to 0} \sigma z^3 + o(z^5)}^{\text{extreme" solutions}} \\ \overbrace{\chi \xrightarrow{z \to 0} \sigma z^3 + o(z^5)}^{\text{extreme" solutions}} \\ \text{must give} \begin{array}{l} \overbrace{\delta V_{\text{eff}}}^{\text{eff}} = 0 \end{array} \Rightarrow \begin{array}{l} \text{a new condition} \\ \text{for } \phi_2 \text{ and } \langle \varphi \rangle \end{array} \\ \\ T \sim \frac{1}{\sqrt{\phi_2}}, \quad \frac{\delta V_{\text{eff}}}{\delta \langle \varphi \rangle} = 0 = \frac{\delta}{\delta \sigma} S_{\chi} [\chi_{\text{Sol.}}(z; J, \sigma)] \Big|_{J=0} \end{aligned} \Rightarrow \begin{array}{l} \{\sigma_1, \dots, \sigma_n\} - \text{extrema} \\ \\ \sigma \text{ is (source) dual to } \langle \varphi \rangle, \text{ vacuum average of the effective theory} \end{array}$$

# **Nucleation ratio**

The next step is to consider Baryogenesis generates enough asymmetry (enough efficient) if there is one bubble per Hubble volume  $\underbrace{\text{Nucleation:}}_{\text{Ratio}} AT^4 e^{-\frac{F_c}{T}} \sim \underbrace{H^4(T) = \left(\frac{T^2}{M_{\text{Pl}}}\right)^4 - \underbrace{\text{Expansion of}}_{\text{the Univerce}}}_{1/(\text{Hubble time × volume})}$ 

 $F = F[\langle \varphi \rangle, R]$  – Free energy of the bubble; R is the radius of the bubble

Hubble horizon (time, volume, radius) — speed of receding object behind it is greater than the speed of light (Don't confuse with cosmological horizon)

Bubble appears with a certain size. It defines with "micro-physics". If its radius is grater, then critical one  $\frac{\partial F}{\partial R}\Big|_{R_c} \stackrel{\text{def}}{=R}$ , the bubble grow. Otherwise, it bursts.

It gives  $F_{C} \stackrel{\text{def}}{=} F(R_{C})$  and defines nucleation ratio and "viability of the model".

## **Estimations of the nucleation ratio**



## Free energy density



The free energy density of the non-trivial solution (blue line) crosses the free energy density of the trivial solution (green field) at the point where 1-st PT becomes possible.

 $\mathcal{F}_{v}$  is free energy density of the CM model,  $\sigma$  is the source for vacuum expectation value  $\langle \varphi \rangle \sim \sigma$ ,  $\phi_{2}$  is the temperature parameter  $T \propto \frac{1}{\sqrt{\phi_{2}}}$ .

### **Effective potential isn't "Tuned"**

### NO, it's just ill-defined

$$V_{\chi} = a_2 \chi^2 + a_4 \chi^4 + a_6 \chi^6, \quad a_2 < 0, \ a_4 < 0, \ a_6 > 0$$
 no barrier  
 $V_{\text{eff}} = b_2 \langle \varphi \rangle^2 + b_4 \langle \varphi \rangle^4 + b_6 \langle \varphi \rangle^6, \quad b_2 > 0, \ b_4 < 0, \ b_6 > 0$  there's a barrier

in details:

- $V_{\text{eff}} = V_{\text{eff}}[\langle \varphi \rangle]$  describes a quantum objects at the border.  $V_{\chi}$  is a dual classical potential in the bulk.
- ►  $V_{\text{eff}} = -\frac{1}{\text{Vol}_4} S_{\text{AdS}} \Big|_{\partial \text{AdS}}$  includes the solutions of the EoM  $\frac{\delta S_{\chi}}{\delta \chi = 0}$  in bulk. In other words,  $V_{\text{eff}}$  includes physics of AdS

# "Symmetries" of the dual theory potential

$$V_{\chi}(\chi) = \frac{m^2}{2}\chi^2 - \frac{D}{4L^2}\lambda\chi^4 + \frac{\lambda^2\gamma}{6L^2}\chi^6$$
 is the expantion of a more general theory

Suggestions:

- The potential  $V_{\chi}$  always has true vacuum with  $E_{\min}$  ( $V_{\chi} \xrightarrow{\chi \to \pm \infty} \infty$ ). So we may use any even power  $\chi^n$  instead of the last term  $\chi^6$ .
- The expansion of V<sub>χ</sub> has certain sign of the second term λ > 0 (the first one m<sup>2</sup> chosen for the theory to be conformal in AdS).
- Higher orders of the expansion don't give new minima at the considered temperatures.

The certain parametrization has been chosen with respect to the "symmetries"

"Scale invariace", defining the coefficents  $L \rightarrow L'$ ; Conformality near the AdS border ("correct" conformal weights):  $\Delta_{-} = 1$   $\Delta_{+} = 3 \Rightarrow m^{2} = -\frac{D}{3L^{2}}$  D is for the Large D limit. But its usage doesn't give any results. (to keep interaction constants finite at  $D \rightarrow \infty$ )

### Extrema curve on natural scale

"Extrema" curve of the effective potential  $V_{\text{eff}}$  in real scale with the 1st order PT "temperature" range (left picture).



The approximation of the  $V_{\text{eff}} = a_0 + a_2\sigma^2 + a_4\sigma^4 + a_6\sigma^6$ with the points  $(\sigma_{\text{max}}, V_{\text{max}}(\sigma_{\text{max}}))$  and  $(\sigma_{\min}, V_{\min}(\sigma_{\min}))$  (right picture).

# Analytical and numerical solution

The "extrema" curves defines the positions  $\sigma \sim \langle \varphi \rangle$  of the effective potential extrema as functions of the parameter  $\gamma$  and temperature  $\phi_2$  ( $T \sim \frac{1}{\sqrt{\phi_2}}$ )



The dotted lines are the numerical solutions.

The dashed lines are the perturbation solution with expantion by  $\lambda$  coupling constant.

## **SM - CH model interactions**

$$F \stackrel{\text{thin walls}}{=} 4\pi R^2 \mu - \frac{3\pi}{4} R^3 \left( \mathcal{F}_{\text{out}} - \mathcal{F}_{\text{in}} \right) - \text{physical units are required}$$

- Fix the Parameters (Interaction with Standard Model bulk gauge fields)
- Physical Units (Infrared Regularization and finite temperature "radial" heavy fluctuations)

$$W^{lpha}_{\mu}J^{lpha\,\mu}_{L}+B_{\mu}J^{\mu}_{Y} \quad \Leftrightarrow \quad J^{\mu}\sim A^{M}- ext{bulk}\,\mathcal{G} ext{ gauge field}$$

The physical values can be estimated without gauge field:

$$\begin{split} \Sigma_{IJ} &= \langle \bar{\Psi}_I \Psi_J \rangle = \xi^\top \left[ \begin{pmatrix} 0_{4 \times 4} & 0 \\ 0 & X \end{pmatrix} + \eta_i \tilde{T}_i \right] \xi \quad \Leftrightarrow \quad \frac{1}{T} \propto \sqrt{\phi_2} \sim \mu_{\mathrm{IR}} \sim m_{\eta} \gtrsim 10 \ \mathrm{TeV} \\ m_\eta & \Leftarrow \quad X \to X + \delta X - \mathrm{correction} \ \mathrm{of} \ \mathrm{the} \ \mathrm{background} \ \mathrm{field} \quad \Rightarrow \quad \eta - \mathrm{pNG} \ \mathrm{boson} \end{split}$$

# CH gauge field

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{CH} + \mathcal{B}_{\mu} \operatorname{Tr} \left( T_{Y} \hat{J}^{\mu} \right) + \mathcal{W}_{k,\mu} \operatorname{Tr} \left( T_{k} \hat{J}^{\mu} \right) + \sum_{r} \bar{\psi}_{r} \mathcal{O}_{r} + \text{h.c.}$$

$$= \mathcal{L}_{\text{interactions}}$$

$$SO(5) \times U(1) : \mathcal{A}_{M} = \mathcal{A}_{M}^{K} T^{K} + \mathcal{A}_{M,Y} T_{Y}$$

$$SO(5) \rightarrow SO(4) : \qquad \mathcal{A}_{M}^{K} T^{K} \rightarrow \mathcal{A}_{M}^{a} T^{a} + \mathcal{A}_{M}^{i} T^{i}$$

$$SO(4) \cong SU(2) \times SU(2) : \qquad \mathcal{A}_{M}^{K} T^{K} = \mathcal{A}_{M}^{k,L} T_{L}^{k} + \mathcal{A}_{M}^{k,R} T_{R}^{k}$$

$$SO(4) \cong SU(2) \times SU(2) : \qquad \mathcal{A}_{M}^{K} T^{K} = \mathcal{A}_{M}^{k,L} T_{L}^{k} + \mathcal{A}_{M}^{k,R} T_{R}^{k}$$

$$SO(5) \rightarrow SO(4) = \mathcal{A}_{\mu}(t, x, z) \Big|_{z=0}^{\partial AdS}, \qquad \text{holographic gauge: } \mathcal{A}_{Z} = 0$$

$$\mathcal{O} \stackrel{\text{dual}}{\Longrightarrow} \mathcal{J}(\mathcal{A}, \Psi, \phi, \ldots) - \text{composite operators of the CH fields}$$