Leptogenesis via absorption by primordial black holes

Pozdnyakov N. A.

Novosibirsk State University

October 3, 2023

supported by FSUS-2022-0015

Outline

Introduction

Primordial black holes & baryogenesis

Asymmetric capture

Asymmetry evolution

Baryon asymmetry of the Universe (BAU)

$$\eta_b \equiv \frac{n_b - n_{\bar{b}}}{n_{\gamma}} = (6.14 \pm 0.19) \times 10^{-10}. \text{ [PDG]}$$
 (1)

[locco, Mangano, Miele, Pisanti, Serpico, Phys. Rept. 472 (2009) 1]

A non-zero baryon asymmetry can be obtained via particle interactions if [Sakharov, JETP Lett. 5 (1967) 24]

- B-number is not conserved
- C and CP symmetries are violated (CPV)
- Processes are not in thermal equilibrium

A non-zero baryon asymmetry can be obtained via particle interactions if [Sakharov, JETP Lett. 5 (1967) 24]

- B-number is not conserved
- C and CP symmetries are violated (CPV)
- Processes are not in thermal equilibrium

A non-zero baryon asymmetry can be obtained via particle interactions if [Sakharov, JETP Lett. 5 (1967) 24]

- B-number is not conserved
- C and CP symmetries are violated (CPV)
- Processes are not in thermal equilibrium

- B-number is not conserved
- C and CP symmetries are violated (CPV)
- Processes are not in thermal equilibrium

BAU cannot be explained only within Standard Model (SM).

B (and *L*) numbers are not exactly conserved in SM. At $T > T_{EW} \simeq 160 \text{ GeV} (B + L)_L$ -violating processes proceed in thermal equilibrium.

 $B/3-L_{lpha}$ numbers are still conserved, $lpha=e,\mu, au$

Introduction

Primordial black holes & baryogenesis

Asymmetric capture

Asymmetry evolution

Black holes in the early Universe (PBH)

Region collapses into PBH with $M \simeq m_{Pl}^2 t$ if

$$\frac{\delta\rho}{\rho} \geqslant \delta_c \sim 1/3$$

Mass spectra: monochromatic, log-normal, power law

Evaporated ($M < 10^{15}$ g) PBH dilute entropy density by [Chaudhuri, Dolgov, JETP 133 5,(2021) 552]

$$S = \epsilon \, 10^5 \, M/\mathrm{grams}$$
 (2)

James Webb galaxies discovery at $z \sim 5$ reinforces PBH seeding galaxy formation models

[Carr, Gilbert, Lidsey, PRD 50 (1994) 4853]

PBH emits particles via **Hawking radiation** [Hawking, ApJ **206**, (1976) 1] as a black-body with

$$T = \frac{\hbar c^3}{8\pi GMk} \approx 10^{-7} \frac{M_{\odot}}{M} \,\mathrm{K} \tag{3}$$

Mechanism incorporating Hawking radiation [Dolgov, PRD 24 (1981) 4]

- ► Light PBH emits mesons A with different partial decay widths $A \rightarrow H\bar{L}, A \rightarrow \bar{H}L, m_H \gg m_L$
- B-number flux from PBH appears due to different gravitational barrier for H and L

Introduction

Primordial black holes & baryogenesis

Asymmetric capture

Asymmetry evolution

Asymmetric capture mechanism

was proposed in [Dolgov, NAP, arXiv:2009.04361]

Similarly to GUT decay mechanism

$$\varepsilon' \equiv \frac{\sigma(X + a \to X + c) - \sigma(\bar{X} + a \to \bar{X} + c)}{\sigma(X + a \to X + c) + \sigma(\bar{X} + a \to \bar{X} + c)}$$
(4)

comes from interference with triangular-loop diagram. Order of magnitude $\varepsilon' \sim f^2$

Asymmetric capture mechanism

was proposed in [Dolgov, NAP, arXiv:2009.04361]

► CP violation

$$\varepsilon' \equiv \frac{\sigma(X + a \to X + c) - \sigma(\bar{X} + a \to \bar{X} + c)}{\sigma(X + a \to X + c) + \sigma(\bar{X} + a \to \bar{X} + c)} \sim f^2$$
(4)

- B-number can be conserved since black hole has no baryonic charge
- Asymmetry generation can proceed in thermal equilibrium

Asymmetric capture mechanism

was proposed in [Dolgov, NAP, arXiv:2009.04361]

CP violation

$$\varepsilon' \equiv \frac{\sigma(X + a \to X + c) - \sigma(\bar{X} + a \to \bar{X} + c)}{\sigma(X + a \to X + c) + \sigma(\bar{X} + a \to \bar{X} + c)} \sim f^2$$
(4)

 B-number can be conserved since black hole has no baryonic charge

Asymmetry generation can proceed in thermal equilibrium Flow velocity difference $v_{-} \equiv v_{X} - v_{\bar{X}} \simeq \varepsilon' v_{av}$ leads to baryon number $N_{B} = 4\pi r^{2} v_{-} t_{H} n_{x}$ production per PBH. For evaporated PBH with monochromatic mass-spectrum

$$\eta_b \approx 5 \cdot 10^{-24} \frac{\epsilon}{f^2} \frac{m_X}{\text{GeV}} \tag{5}$$

Appropriate model

Minimal model was first suggested in

[Ambrosone, Calabrese, Fiorillo, Miele, Morisi, PRD 105 4 (2022) 045001]

$$\mathcal{L}_{int} = -g_{\bar{a}X}\bar{\phi}\bar{a}X - g_{\bar{c}X}\bar{\phi}\bar{c}X - g_{\bar{b}Y}\bar{\phi}\bar{b}Y - g_{\bar{Y}X}\psi\bar{Y}X - g_{\bar{b}a}\psi\bar{b}a - g_{\bar{b}c}\psi\bar{b}c + \text{h.c.}$$
(6)

with heavy fermions X, Y, b and scalar fields ϕ , ψ and SM particles a, c

CPV in Yukawa interactions

arises from tree diagram interference with triangular diagram

resulting in [ACFMM, PRD 105 4 (2022) 045001]

$$\varepsilon' \equiv \frac{\operatorname{Im}\{g_{c1}g_{12}^*g_{b2}^*g_{bc}\}}{|g_{a1}|^2}\operatorname{Im}\{\mathcal{I}\} \simeq \frac{f^2}{\sqrt{2\pi}x^{3/2}},\tag{7}$$

kinematic factor $\mathcal I$ includes integration over loop.

Note, another possibility is to consider $\phi \bar{a}
ightarrow \phi ar{c}$

Motion equation

In [Dolgov, NAP, PRD 104 8 (2021) 083524] equation [Nandra, Lasenby, Hobson, MNRAS 422 (2012) 2931] is considered

$$\ddot{r} + \gamma \dot{r} + qH^2r + rac{r_g}{2r^2} = 0$$
,⁽ⁱ⁾ $r_g \ll r \ll r_H \equiv 1/H$, (8)

without $\gamma \dot{r}$ is solved under $H \sim {
m Const}$ approximation

$$r = r_{max} \cos^{2/3} \left(\frac{3Ht}{2}\right), \quad r_{max}^3 = r_H^2 r_g \tag{9}$$

perturbative account for $\gamma \dot{r}$ leads to

$$r_{max}
ightarrow r'_{max} = r_{max}(1 + \gamma t)$$

Captured particles and antiparticles difference $\delta N = 4\pi r_{max}^3 \varepsilon' \gamma t_H n_X$ and generated asymmetry $\eta_b \sim 0.03 \epsilon f^6 \frac{T_{form} m_{Pl}}{m_X^2}$

 ${}^{(i)}q\equiv -\ddot{a}\dot{a}/a^2=1$ for radiation-dominated Universe

Solution is accurate if $t_{cap} \ll t_H$ i.e. for particles near PBH.

Consider $x \equiv m_1/T$ thus Hubble parameter $H = m_*/x^2$, $m_* \equiv m_1^2/m_{Pl}^*$.⁽ⁱⁱ⁾ Also $r(t) \rightarrow \rho(x) \equiv r/r_g$:

$$x^{2}\rho'' + \left(\frac{\gamma}{m_{*}}x^{3} - 2x\right)\rho' + \rho + \left(\frac{x}{x_{a}}\right)^{4}\frac{1}{2\rho^{2}} = 0.$$
(10)

with $x = \xi^{\alpha}$,⁽ⁱⁱⁱ⁾ $\rho = \xi^{(3\alpha+1)/2} w$ one obtains,

$$w'' = A \frac{\xi^{-\frac{1}{2}(1+\alpha)}}{w^2},\tag{11}$$

an Emden-Fowler equation, $A \equiv -(10\xi_a^{4lpha})^{-1}$

 ${}^{\rm (ii)}{\rm Reduced}$ Planck mass $m_{Pl}^{*}\approx 7\times 10^{17}\,{\rm GeV}$ ${}^{\rm (iii)}\alpha=1/\sqrt{5}$

Absorption rate

Number of particles captured from distances $r_0 \div r_0 + \delta r$ is

$$\delta N = 4\pi r_0^2 \delta r \, n_1 = 4\pi r_g^3 n_1(T) \rho_0^2 \frac{\delta \rho}{\delta x} \delta x$$

At x they are captured from $\rho_0 = 1/f(x)$ if $\rho = \rho_0 f(x)$. Absorption rate per PBH

$$\Gamma_{abs1}(x) \equiv \frac{N'}{n_1(x)} = 4\pi r_g^3 \rho_0^2 v(x,\rho_0) = 4\pi r_g^3 \frac{f'(x)}{f^3(x)}$$
(12)

Total absorption rate

$$\Gamma_{abs} = \Gamma_{abs1} n_{PBH}$$
$$= 3.33 \epsilon \left(\frac{x_a}{x}\right)^3 \frac{f'(x)}{f^3(x)}$$

 $\epsilon = \rho_{\textit{PBH}} / \rho_{\textit{rel}} \ll 1$ at appearance time $x_{\textit{a}}$

Introduction

- Primordial black holes & baryogenesis
- Asymmetric capture
- Asymmetry evolution

▶ (Almost) stable particles are considered

(Almost) stable particles are considered

(Almost) stable particles are considered

(Almost) stable particles are considered

$$x \lesssim \left(\frac{\pi^4}{90\zeta(3)\epsilon}\right)^{1/3} x_a \tag{15}$$

Boltzmann equations

for particle and antiparticle number densities

$$\partial_t n_1 + 3Hn_1 = -\tilde{\Gamma}_{abs}n_1 - \tilde{\Gamma}_{ann}(n_1^2 - n_{eq}^2)$$
$$\partial_t n_{\bar{1}} + 3Hn_{\bar{1}} = -\tilde{\Gamma}_{abs}n_{\bar{1}} - \tilde{\Gamma}_{ann}(n_{\bar{1}}^2 - n_{eq}^2)$$

Consider BAU normalized by entropy density $s = \frac{2\pi^2}{45}g_*T^3$

$$\Delta_{Y_B} = (8.75 \pm 0.23) \times 10^{-11} \tag{16}$$

and number density $Y\equiv n_1/s,\;ar{Y}\equiv n_{ar{1}}/s$

$$\partial_{x} Y = -\Gamma_{abs} Y - \Gamma_{ann} (Y^{2} - Y^{2}_{eq})$$
$$\partial_{x} \bar{Y} = -\Gamma_{abs} \bar{Y} - \Gamma_{ann} (\bar{Y}^{2} - Y^{2}_{eq})$$

with $\Gamma_{ann} = \tilde{\Gamma}_{ann} s / Hx$

Asymmetry evolution

Consider
$$\Delta_{Y_N} \equiv Y - \bar{Y}$$
, $2Y_{av} \equiv Y + \bar{Y}$ then

$$\frac{dY_{av}}{dx} = -\Gamma_{abs}Y_{av} - \Gamma_{ann}(Y_{av}^2 - Y_{eq}^2),$$

$$\frac{d\Delta_{Y_N}}{dx} = \delta\Gamma_{abs}Y_{av} - \Gamma_{abs}\Delta_{Y_N} - 2\Gamma_{ann}\Delta_{Y_N}Y_{av}.$$

 $\delta\Gamma_{\textit{abs}}\sim \varepsilon'\Gamma_{\textit{abs}}$

- Motion equation can be solved only approximately
- Light fermions capture by PBHs cannot provide significant
 Δ_{Y_B} fraction
- Other possibilities to realize this scenario, parameter ranges, etc. should be investigated

Supplementary materials

Primordial nucleosynthesis

Saha equation for $p + n \leftrightarrows^2 \mathbf{H} + \gamma$

$$Y_D = \sqrt{\frac{8}{\pi}} \zeta(3) \left(\frac{m_D T}{m_p^2}\right)^{3/2} \eta_B e^{-\Delta/T}$$

 $\Delta \equiv m_D - m_p - m_n$

Recombination

Equation on temperature fluctuation (see for instance [Davidson, 2008]) $\Theta\equiv\Delta T/T$

$$\ddot{\Theta}+c_s^2k^2\Theta=F,~~c_s=[3(1+3\Omega_B/\Omega_\gamma)]^{-1/2}$$

enhances spectrum odd peaks

Primordial black holes spectra

Monochromatic spectrum (suitable if $\Delta M \sim M$)

$$\frac{dn_{PBH}}{dM} = \delta(M - M_0) \tag{17}$$

Log-normal spectrum (smooth symmetric peak from for example SR inflation)

$$\frac{dn}{dM} = \mu^2 e^{-\gamma \ln(M/M_0)} \tag{18}$$

Power spectrum (from scale-invatiant fluctuations)

$$rac{dn}{dM} \propto M^{-lpha}, \quad lpha = rac{2(1+2w)}{1+w}$$
 (19)

Optical theorem:

$$\Gamma_{p_1,\sigma_1,n_1;p_2,\sigma_2,n_2...} = \Gamma_{p_1,-\sigma_1,n_1^c;p_2,-\sigma_2,n_2^c...}$$

where Γ_{i} – is transition probability from a given initial state into complete set of final states.

To make difference in

$$\sum_{a,c} \sigma(X + a \rightarrow X + c) \neq \sum_{a,c} \sigma(\bar{X} + a \rightarrow \bar{X} + c)$$

apart from $X + a \rightarrow X + c$ should be channels without X particle in final state. Like $X + a \rightarrow Y + b$