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Photon Polarization Operator

Photon polarization operator is typical example of two-point
correlation function
Lagrangian of spinor QED

LQED(x) = eQf

[
f̄ (x)γµf (x)

]
Aµ(x)

Matrix element of γ → γ transition

Mγ→γ = −i ε′∗µ (q)Pµν(q) εν

Pµν(q) is two-point correlator of two vector currents
Photon dispersion relations follow from the equations

q2 − Π(λ)(q) = 0 (λ = 1, 2, 3)

Π(λ)(q) are eigenvalues of the photon polarization operator
In an external background field, corresponding modification
of fermion propagator should be taken into account
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Basic Tensors in Presence of Magnetic Field

Minkowski space filled with external magnetic field is divided
into two subspaces:

Euclidean with the metric tensor Λµν = (φφ)µν ;
plane orthogonal to the field strength vector
Pseudo-Euclidean with the metric tensor Λ̃µν = (φ̃φ̃)µν
Metric tensor of Minkowski space gµν = Λ̃µν − Λµν

Dimensionless tensor of the external magnetic field and its dual

φαβ =
Fαβ
B

, φ̃αβ =
1
2
εαβρσφ

ρσ

Arbitrary four-vector aµ = (a0, a1, a2, a3) can be decomposed
into two orthogonal components

aµ = Λ̃µνa
ν − Λµνa

ν = a∥µ − a⊥µ

For the scalar product of two four-vectors one has

(ab) = (ab)∥ − (ab)⊥

(ab)∥ = (aΛ̃b) = aµΛ̃µνb
ν , (ab)⊥ = (aΛb) = aµΛµνb

ν
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Orthogonal Basis Motivated by Magnetic Field

Correlators having rank non-equal to zero, could be
decomposed in some orthogonal set of vectors
In magnetic field, such a basis naturally exists

b(1)µ = (qφ)µ, b(2)µ = (qφ̃)µ

b(3)µ = q2 (Λq)µ − (qΛq) qµ, b(4)µ = qµ

Arbitrary vector aµ can be presented as

aµ =
4∑

i=1

ai
b
(i)
µ

(b(i)b(i))
, ai = aµb(i)µ

Third-rank tensor Tµνρ can be decomposed similarly

Tµνρ =
4∑

i ,j ,k=1

Tijk
b
(i)
µ b

(j)
ν b

(k)
ρ

(b(i)b(i)) (b(j)b(j)) (b(k)b(k))
,

Tijk = Tµνρb(i)µ b(j)ν b(k)ρ .
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Photon Polarization Operator in Magnetic Field

Π(λ)(q) are eigenvalues of the photon polarization operator

Pµν(q) =
3∑

λ=1

b
(λ)
µ b

(λ)
ν

(b(λ))2
Π(λ)(q)

In vacuum, Pµν(q) has two physical eigenmodes
In an external constant homogeneous magnetic field,
the number of physical eigenmodes is the same
Eigenvectors are determined by the field strength tensor

ε(1)µ = b(1)µ /
√
q2
⊥, ε(2)µ = b(2)µ /

√
q2
∥

In the magnetic field, Π(λ)(q) contains both vacuum and
field-induced parts (for electron)

Π(λ)(q) = −i P(q2)− α

π
Y

(λ)
VV

Details on Y
(λ)
VV can be found in A. Kuznetsov & N. Mikheev,

Electroweak Processes in External Electromagnetic Fields
(Springer, 2013)
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Inclusion of Fermion AMM

Models beyond the SM can produce effective operators at
current energies and Pauli Lagrangian density, in particular

LAMM(x) = −µf

2
[
f̄ (x)σµν f (x)

]
Fµν(x)

For electron, the coupling can be written as µe = µBae , where
µB = e/(2me) is Bohr magneton and ae is electron AMM
Total Lagrangian of interaction

Lint(x) = LQED(x) + LAMM(x)

It gives additional contribution to the polarization operator
Contribution linear in AMM is related with correlator of vector
and tensor currents, Π(VT )

µνρ

Contribution quadratic in AMM is determined by correlator
of two tensor currents, Π(TT )

µνρσ
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Generalized Local Fermionic Current

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]

Lagrangian density of local fermion interaction

Lint(x) =
[
f̄ (x)ΓAf (x)

]
JA(x)

JA — generalized current (photon, neutrino current, etc.)
ΓA — any of γ-matrices from the set
{1, γ5, γµ, γµγ5, σµν = i [γµ, γν ] /2}
Interaction constants are included into the current JA
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General Case of Two-Point Correlator

✬
✫

✩
✪

✛
✚

✘
✙✉✉ ◗◗

✑✑

✑✑
◗◗

JA(q)

f

f

JB(q)

x yΓA ΓB

Two-point correlation function of general form

ΠAB =

∫
d4X e−i(qX ) Sp {SF(−X ) ΓA SF(X ) ΓB}

SF(X ) — gauge and translationally invariant part of the fermion
propagator

Xµ = xµ − yµ — integration variable

Correlations of scalar, pseudoscalar, vector and axial-vector currents
were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]

Consider correlations of a tensor current with the other ones
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Propagator in the Fock-Schwinger Representation

General representation of the propagator in magnetic field
[J.S. Schwinger, Phys. Rev. 82 (1951) 664]

GF(x , y) = eiΦ(x,y) SF(x − y)

Translationally and gauge non-invariant phase factor

Φ(x , y) = −eQf

∫ x

y

dξµ
[
Aµ(ξ) +

1
2
Fµν(ξ − y)ν

]
In two-point correlation function phase factors cancel each other

Φ(x , y) + Φ(y , x) = 0

Gauge and translationally invariant part of a charged fermion
propagator (β = eB Qf )

SF(X ) = −
iβ

2(4π)2

∞∫
0

ds

s2

{
(X Λ̃γ) cot(βs)− i(X φ̃γ)γ5 −

−
βs

sin2(βs)
(XΛγ) +mf s [2 cot(βs) + (γφγ)]

}
×

× exp

(
−i

[
m2

f s +
1
4s

(X Λ̃X )−
β cot(βs)

4
(XΛX )

])
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Correlator of Vector and Tensor Currents

Vector-tensor (VT) correlator, Π(VT)
µνρ , is rank-3 tensor

Vector-current conservation and antisymmetry of the tensor
current leave 18 non-trivial coefficients in the decomposition
on basis vectors
Of them, four coefficients only are independent
Double-integral representation of coefficients is used

Π
(VT)
ijk (q2, q2

⊥, β) =
1

4π2

∞∫
0

dt

t

1∫
0

du e−iΩ(t,u) Y
(VT)
ijk (q2, q2

⊥, β; t, u)

Phase definition

Ω(t, u) = m2
f t −

q2
∥

4
t (1 − u2) + q2

⊥
cos(βtu)− cos(βt)

2β sin(βt)

Integration variables and relation between momenta squared
t = s1 + s2, u = (s1 − s2)/(s1 + s2); q2

∥ = q2 + q2
⊥
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Integrands in Vector-Tensor Correlator

Y
(VT)
114 (t, u) = −Y

(VT)
141 (t, u) = −mf q

2
⊥ q2 βt cos(βtu)

sin(βt)

Y
(VT)
223 (t, u) = −Y

(VT)
232 (t, u) = mf q

2
⊥ (q2

∥)
2 βt

sin(βt)
[cos(βt)− cos(βtu)]

Y
(VT)
224 (t, u) = −Y

(VT)
242 (t, u) = mf q

2
∥

βt

sin(βt)

[
q2
⊥ cos(βt)− q2

∥ cos(βtu)
]

Y
(VT)
334 (t, u) = −Y

(VT)
343 (t, u) = −mf q

2
⊥ q2

∥ (q
2)2

βt cos(βtu)

sin(βt)

Choice of basis vectors is optimal because of vector current
conservation qµΠ

(VT)
µνρ

Y
(VT)
4jk vanish naturally in this basis

Antisymmetry in the last two indices is due to antisymmetric
tensor current
Parameters q2, q2

⊥, and β in Y
(VT)
ijk are assumed implicitly
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VT Contribution to γ → γ Amplitude

Basis vectors are normalized, so γ → γ amplitude by itself
is required to extract the photon polarization operator
Vector and tensor currents in momentum space

jµV = −eQf ε
′µ, jνρT = igT f

∗νρ = igT
(
qνε∗ρ − qρε∗ν

)
Relation among the γ → γ amplitude and VT correlator

MVT = −ieQf gT ε
′µΠ(VT)

µνρ f ∗νρ

The γ → γ amplitude in explicitly gauge invariant form

MVT =
eQf gTmf β

16π2

∞∫
0

dt

sin(βt)

1∫
0

du e−iΩ(t,u)

×

{
cos(βtu) (f ′f ∗) +

q2
⊥

2q2
∥
[cos(βt)− cos(βtu)] (φ̃f ′) (φ̃f ∗)

}
Used the notation for tensor contractions(

f ′f ∗
)
= f ′µν f ∗νµ,

(
φ̃f (′)

)
= φ̃µν f (′)νµ 11 / 22



Field Induced Part of the Amplitude

The γ → γ amplitude in the fieldless limit

M(0)
VT =

eQf gTmf

16π2 (f ′f ∗)

∞∫
0

dt

t

1∫
0

du e−it[m2
f −q2 (1−u2)/4]

Field-induced part is obtained after subtraction of M(0)
VT

∆MVT = MVT −M(0)
VT

The strong field limit, i. e. lowest Landau level contribution

M(smf)
VT =

eQf gTmf βq
2
⊥

8π2(q2
∥)

2 e−q2
⊥/(2β) (φ̃f ′) (φ̃f ∗)F (z)

Introduce z = 4m2
f /q

2
∥ and used the function

F (z) =

{
1

2
√

1−z

[
ln
∣∣∣√1−z−1√

1−z+1

∣∣∣− iπΘ(z)
]
, z < 1

1√
z−1 arctan

1√
z−1 , z ≥ 1

12 / 22



Correlator of Two Tensor Currents

Tensor-tensor (TT) correlator, Π(TT)
µνρσ, is rank-4 tensor

Antisymmetry of both tensor currents leaves 36 non-trivial
coefficients in the basis decomposition
Of them, eight coefficients only are independent
Double-integral representation of coefficients is used

Π
(TT)
ijkl (q2, q2

⊥, β) =
1

4π2

∞∫
0

dt

t

1∫
0

du e−iΩ(t,u)Y
(TT)
ijkl (q2, q2

⊥, β; t, u)
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Integrands in Tensor-Tensor Correlator

Coefficients relevant for the photon polarization operator

Y
(TT)
1414 (q2

∥, q
2
⊥, β; t, u) = −q2

⊥

{
2q2

⊥ (q2
⊥ + q2

∥)
cos(βt)− cos(βtu)

sin2(βt)

+4q2
⊥q

2
∥ [cos(βtu)− u sin(βtu) cot(βt)]− q2

∥
[(

1 − u2) q2
∥ + 4m2

f

]
cos(βtu)

−q2
⊥
[(

1 − u2) q2
∥ − 4m2

f

]
cos(βt) +

4i
t
q2
∥

[
cos(βt)− βt

sin(βt)

]}

Y
(TT)
2424 (q2

∥, q
2
⊥, β; t, u) =

q2
∥

q2
⊥

Y
(TT)
1414 (q2

∥, q
2
⊥, β; t, u)

Other six coefficients and TT part of the γ → γ amplitude
will be presented in a forthcoming paper
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AMM Contribution to Photon Polarization Operator

Field-induced part of Π(λ)(q) is modified (for electrons)

Π(λ)(q) = −i P(q2)− α

π
Y

(λ)
VV +

α

π
ae Y

(λ)
VT +

α

π
a2
e Y

(λ)
TT

Last two terms can be presented in the form of double integral

Y
(λ)
VT (TT ) =

∫ ∞

0

dt

t

∫ 1

0
du

{
βt

sin(βt)
y
(λ)
VT (TT ) e

−iΩ − q2 e−iΩ0

}
Notations are from the book by A. Kuznetsov and N. Mikheev
Part independent on the field is subtracted
Integrands of vector-tensor part

y
(1)
VT = y

(3)
VT = q2 cos(βtu)

y
(2)
VT = q2

∥ cos(βtu)− q2
⊥ cos(βt)

For the electron, ae ∼ α and the AMM correction is small
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AMM Contribution to Photon Polarization Operator

Integrands of tensor-tensor part

y
(1)
TT =

Y
(TT )
1414

4m2
e q

2
⊥
, y

(2)
TT =

Y
(TT )
2424

4m2
e q

2
∥

For the electron, tensor-tensor term gives α-suppressed
correction to vector-tensor one
If neutrinos have local interaction with photon due to AMM,
they contribute to TT part of photon polarization operator
Taking into account the upper limit on neutrino AMM
µν < 6.4 × 10−12µB [PDG, 2022], this contribution,
being ∼ µ2

ν , is negligible
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Conclusions

Two-point fermionic correlators in presence of constant
homogeneous external magnetic field are considered
This analysis extends the previous one by inclusion the tensor
current into consideration
Study of correlators of tensor fermionic current with the others
allows to investigate effects of the fermion anomalous
magnetic moment in the one-loop approximation
Field-induced contribution to the photon polarization operator
linear and quadratic in fermion anomalous magnetic moment
are calculated
Computer technique developed for two-point correlators is
planned to be applied for three-point ones
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Backup Slides
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Crossed-Field Limit

Pure field invariant vanishes: β → 0

Dynamical parameter: χ2
f = e2Q2

f (qFFq) = β2q2
⊥

The crossed-field limit is valid for an ultrarelativistic particle moving in
the direction transverse to the field strength in a relatively weak magnetic
field, χ2

f ≫ β3

Gauge and translationally invariant part of the fermion propagator
[A. Kuznetsov & N. Mikheev, Electroweak Processes in External
Electromagnetic Fields (Springer, 2013)]

SF (X ) =
−i

32π2

∫ ∞

0

ds

s3

{
(Xγ)− 2β2s2

3
(XΛγ)

+iβs (X φ̃γ) γ5 +mf s [2 + βs (γφγ)]
}

× exp

{
−i

[
m2

f s +
X 2

4s
+

β2s

12
(XΛX )

]}
φµν and Λµν have the same definitions as in the magnetic field
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Crossed-Field Limit

Pure field invariant vanishes (β → 0)
As basic vectors, accept the following orthonormalized set

b(1)µ =
eQf

χf
(qF )µ, b(2)µ =

eQf

χf
(qF̃ )µ

b(3)µ =
e2Q2

f

χ2
f

√
q2

[
q2 (qFF )µ − (qFFq) qµ

]
, b(4)µ =

qµ√
q2

Dynamical parameter: χ2
f = e2Q2

f (qFFq) = β2q2
⊥

Coefficients of the vector-tensor correlator in this basis:

Π
(VT )
ijk (q2, χf ) =

1
4π2

∞∫
0

dt

t

1∫
0

du Y
(VT )
ijk (q2, χf ; t, u)

× exp

{
−i

[(
m2

f −
q2

4
(1 − u2)

)
t +

1
48

χ2
f (1 − u2)2t3

]}
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Vector-Tensor Correlator Integrands in Crossed Fields

Results for integrands in external electromagnetic crossed fields

Y
(VT)
114 = −Y

(VT)
141 = −mf

√
q2

Y
(VT)
223 = −Y

(VT)
232 = mf

χ2
f t

2

2
√

q2

(
1 − u2)

Y
(VT)
224 = −Y

(VT)
242 = −mf

√
q2

[
1 +

χ2
f t

2

2q2

(
1 − u2)]

Y
(VT)
334 = −Y

(VT)
343 = −mf

√
q2
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Integrands of Tensor-Tensor Correlator in Crossed Fields

Double-integral representation of coefficients is used again

Π
(TT )
ijkℓ (q2, χf ) =

1
4π2

∞∫
0

dt

t

1∫
0

du Y
(TT )
ijkℓ (q2, χf ; t, u)

× exp

{
−i

[(
m2

f −
q2

4
(1 − u2)

)
t +

1
48

χ2
f (1 − u2)2t3

]}
Integrands of the tensor-tensor correlator contributing to the photon
polarization tensor

Y
(TT)
1414 = q2 (1 − u2)+ 4m2

f −
t2χ2

f

12
(
1 − u2) (3 + 5u2)

+
2m2

f t
2χ2

f

q2

(
1 − u2)+ t4χ4

f

72q2

(
1 − u2)2 (

9 − u2)+ 8it2χf

3q2

Y
(TT)
2424 = q2 (1 − u2)+ 4m2

f −
t2χ2

f

12
(
1 − u2) (3 + 5u2)

+
2m2

f t
2χ2

f

q2

(
1 − u2)+ t4χ4

f

72q2

(
1 − u2)2 (

9 − u2)+ 8it2χf

3q2

The other coefficients will be presented in a forthcoming paper
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