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This talk will be mostly about new ideas to solve CFT’s.

Typically there is no simplitying limit

In a presence of a global symmetry, however, there can be
sub-sectors of the CFT where anomalous dimension and OPE
coefficients simplify



Take home message

- There is a semiclassical technique to study the
sectors of the CFT with fixed Noether charge Q.
In these sectors the physics is described by a
semiclassical configuration and has simple EFT
description.

You can compute correlators of the charged operators. In this
talk we will study 2-pt functions but one can go beyond

The example of a symmetry is a global symmetry with the
simplest example of a U(1) complex scalar model



Part |: global symmetry



Consider model with U(1) global symmetry Badel, Cuomo, Monin, Rattazzi 2019
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The operators ¢%(z) and ¢%(z) carry U(1) charge + Q(—Q)
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For A<<1 dominated by the extrema of S



Bring field insertions to the exponent
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Sepy = [ d'a[09506 + 1(66)* + AQlog 6(r) + log (zy)]

For AQ <« 1 perturbation theory works (expand around)
¢ =0

For AQ >1 expand around new saddles

d<<1s0Q >>11to have new saddles. Also, keep 2Q=fixed
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s - 07" = Q0D (x — x;) — Q6'V(x — x4)

With Ju = 0,0 — $0, P Noether current

Field insertions are sources for the Noether current



« £E.O.M. can be solved perturbatively but technically
challenging see however B. Farkntdinov tak

for numerical approach

* |f we are at the fixed point, however, we can use
the power of conformal invariance
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Physical critical exponents
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d— 2
Goal : compute  Age = Q( 5 > T VR

We expect scaling dimensions to take the form:

A 1S (k+1)-loop correction to the saddle point equation

We will compute A_; and Ay



Semiclassical computation

S = S5(¢o) + %(ﬁb — $0)*S" (¢0) + - ..
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Sem|C|aSS|CaI methOd Badel, Cuomo, Monin, Rattazzi 2019

Working in the double |
A—0 A = d
scaling limit : — 0, Q= 00, AQ = fize

® Tune QFT to the (perturbative) fixed point (WF or BZ type)

® Map the theory to the cylinder RY - R x $9-1

® Exploit operator/state correspondence for the 2-point
function to relate anomalous dimension to the energy
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® [0 compute this energy, evaluate expectation value of the
evolution operator in an arbitrary state with fixed charge Q



® [0 compute this energy, evaluate expectation value of the
evolution operator in an arbitrary state with fixed charge Q

(Qle™HT|Q) "= Ne~FeaT

as long as there is overlap between |Q> and the ground
state, the latter will dominate for T — o

To study system at tixed charge thermodynamically we have:

H— H+ uQ




Consider model with U(1) global symmetry

L = 0,,90" ¢

In d=4-¢ there is an IR WF fixed point

3
A= e,
T

Weyl map the theory to the cylinder:
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S = [ 1oy =g (9,050 6 + m2 30 + 5 (60)°)

_ o9\ 2
m2 — (dQ—RZ) stemming from the coupling to Ricci scalar



Classical solution: S = S(pg) + %(¢ — $0)°S" (¢0) + - . -
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SeffR —F_ {R=A_4
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xr = 6A(Q)

5= el () 3 +

Resums infinite number of é é
Feynman diagrams &>
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Leading quantum B 1 - e
correction: 5= 5(¢o) +5(¢ = d0)"5"(¢o) + . ..

p=[f+r(z) X = —iuT A V3

(2) T/ 1 o, 1 2 : 2 2\ 2
S — dr dﬂd_1(§(ar) +5(0m)? = 2iprd,m + (1 = m ))

T/2

One relativistic (Type I) Goldstone boson (the conformal mode=phonon)
and one massive state, with their respective excitations
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Energy= sum of zero point energies

Ay — g S e[ () + w_(0)]
=0

The MSbar renormalized result in the limiting cases reads:

3AQ  A2Q?

AQ <1 Ay = ()2 T 2(4m)!

AQ >1 0 Ag=|a+ %log (;\*752)4/3] + |8 — —log (*T>2/3] ...



Part 2: local symmetry



Can we apply these methods to local U(1) model?

\4m)? -
S = / APz G WM 4+ (Do) Do (46) (¢¢)2>

D,¢ = (0, +ieA,)d

Semiclassical computation on the cylinder can be carried out
BUT
what would be the physical meaning of it in the flat space”



We compute energy F = AqbQ /R
which is gauge-independent quantity based on

<§EQ(az‘f)¢Q(xi)>g/g;der

But, in flat space: <q3@(xf)¢@(xi)>él;‘ifp

IS not gauge-invariant and vanishes due to the

our computation should correspond to
gauge-invariant correlator in flat space

But which one” The choice is not unigue



Dirac proposal:
Gp = (¢(z) exp (—i €/dD€UJ”(1’)Au($)> H(4))

oHJ, =0(x—xf) —0(x — x;) 0°J, =0

Ju(z) =J(z —2") = J (2 — x)

: A% Ky I'(d/2—1) 1
Ju(2) = _7’/ (27)d 2¢ T Ad/2 Op ~d—2

e—iedezJ;(z—x)A“(x)¢(x)

Gp = (Pni(zf)Pni(xi))  di(x)

InLandau gauge 9*A, =0 = o¢n(x)= ¢(x)

correlators of ¢(x) in Landau gauge
can be interpreted as that of ¢ (x)



Schwinger proposal:

Wilson line on the shortest path connecting x and x’

X

(B(x') exp [ e / dxﬂAM(x)} 5())

X

with the external current before “squeezed” into an infinitely thin
line along the shortest path connecting x and x’

Schwinger and Dirac correlators lead to different physical
results, in particular, different critical exponents A e

To which one our ground state energy will correspond to”?



Our strategy

perturbative . . .
« Compute A via Feynman diagrams in

arbitrary linear gauge (result will be gauge dependent)

« Compare with Age computed from E = A e /R energies
on the cylinder and look for the match in some gauge

Doing this we hope to learn to which gauge-invariant
correlator in flat space our energies correspond to

Our work

B — Ang /R - ADzrac ASchwznger, 5
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S = /de (iFWFW + (DM¢)‘L D, oA (6 ) (¢¢)2>

D =4—c¢

® Perturbative WF fixed point at 1-loop reads

3
AT = 20 (196 + 7196) , a, = —€ Qg =

complex!

® Map to the cylinder

2
S = / dPx /=g ( Fl F*™ + (D,¢)" D' +m? ¢ + A(Z?) (¢¢)2)

m? = (D —2)*/4  with radius of the cylinder R=1



® State-operator correspondence
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® Fixing the charge of the
initial and final state to Q



5= S(00) + (6~ 60)S"(d0) + ...

'

Ay
Homogeneous ground state

:0(33) = f, X(ZC) = —UUT, A,u =0

32/3 ($+\/_3+$2)1/3 , 31/3 (31/3+ ($+\/_3+$2)2/3)

2/3 (:13+\/—3+:c2)1/3

1A 1 =

31/3 + (z + V-3 + a?)

xr = 6AQ)

The same as in U(1) global case
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Spectrum of fluctuations

scalars : r,m, Ag, h
vectors : B;

ghosts : c, ¢

Ay = % > dyw;(0)
¢=0,
Field 4, w: (0)

B:  nu(0) \/J§<v) + (D —2) + e2f2 1
hC))  ns(0) \/Jg(s) +e2f2 1
(c,6) —2n4(0) \/Jg(s) + €2 f2 0

Ao ns(f) \/*]52(3) + e2 f? 0




The MSbar renormalized result reads
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Explicit 3-loop gauge-dependent result for Ay = Q(%) + g0
A A
”Yg)()‘aaga@ = §Q2 — (30,9 T g) "‘agQ2§
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leading sub—leading
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In Landau gauge we find perfect agreement for the leading
and subleading terms with large-Q results!



Aperturbative Landau gauge ADZTQC
p< —

Our work

* F— A¢Q /R S ADzrac

Can we understand deeper why?

1. When gauge-fixing parameter considered as running parameter, Landau
gauge emerges as a FP of the RG since

Be = —va§

2. Schwinger correlator does not lead to long-range order and decays to
zero while Dirac correlator does

3. Correlators of ¢(x) in Landau gauge can be interpreted as that of ()



Other directions/aspects

® Ve can add Yukawa and non-Abelian gauge interactions

® [ arge order behaviour of the series (resurgence)

® Higher correlation functions, OPE coefficients,....

® Condensed matter applications (superconductors, superfluids,..)
® Inhomogeneous ground state (operators with spin/derivatives)

® Test dualities between different CFTs in their charged sectors

® Global charged corresponding to generalised global symmetry?



Thank you!



Explicit 3-loop gauge-dependent result for ¢¥

We compute 3-loop AD for ¢% for fixed Q=2,3,4in D =4 —¢
) ) () ) ) ()

2-2 3-2 4-2 3-3 4-3 4-4

and " fit'" all coefficients Cki In
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k=0



The field insertions act as sources for the current
03" = n6'D(z — x;) — nd'D(x — x)

This is precisely the constraint for the external current in Dirac’s proposal
(for n=1)

My =0x —xp)—o0(x—xi) Ju(2)=J,(2—2")—J,(2 —x)

27)% k2 © T Amd/?

7 () _i/(d k by . r(d/2—1)au 1

— Z d _ 2 q'.' ‘."". "."',.----- ---..\\_‘ ‘."'.' |.'|

In fact, original Dirac’s proposal (1955)

b Dirac(7) =i d3r' B (F’—F)-K(F’)¢(7:*)

V - Ecl = §(7) classical electric field corresponding
to a point charge at the origin



Covariant generalisation

e—iedezJ;(z—:U)A“(:U)¢(x)

¢nl (37)

Physical meaning of ¢:(x) : creation operator of a charged particle dressed with a
coherent state of photons describing its Coulomb field

These are the lowest-lying operators [/~ 1\ |
with charge Q corresponding to the el (7o
energies we have computed




|dentify the operator

We want the smallest dimension operator carrying a total charge Q

Derivatives increase the scaling dimension — we consider operator
without derivatives.

The latter belong to the fully symmetric O(N) space = m-index

traceless symmetric tensors, T((1 ),m)qbzp. They have charge m and
classical dimension m+ 2p — p = 0.

El Thus our operator is the Q-index traceless symmetric tensor

with classical dimension Q. It can be represented as a Q-boxes
Young tableau with one row.

Og =

R ———
Q

A define a set of crossover (critical) exponent which measures the

stability of the system (e.g. critical magnets) against anisotropic pertur-
bations (e.g. crystal structure).
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(AQ)?

<<1 Superfluid interacts with

light radial mode
A— 0 () — o© AQ) = fixed

>>1\A Radial mode decouples



Large charge expansion, historically

Hellerman, Orlando, Reffert, Watanabe 2015

Started with d=3 \¢*-model with global U(1) symmetry

EFT for phonon (superfluid phase) in large-Q limit :

Mg = QT [an +02QTT +03QT7 +...| +Q° [fo+AQTT +...| +0(Q777)
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® Weyl map and operator/state correspondence

Working at the WF fixed point we can map the theory to the cylinder.

R 5 R x S9-1, r = Re™/R
@ D 7

The eigenvalues of the dilation charge, i.e. the scaling dimensions,
become the energy spectrum on the cylinder.

Eso = Dgo/R

State-operator correspondence:
States and operators are in 1-to-1 correspondence.

Tr—Ti =1 (% (7)) ey T2 Ne FoeT



« Comparing to ordinary perturbation theory

1-loop 2-loop 3-loop
e Y Q3N Aot
Ag QAo Q° X Qg
A QA Q*N;

Ao QN



Scalars

(‘uﬂ + Ji g +2(p? = m?) —2tpew —2iepf ’ )
ipuw Byt fr —ef (1-Y)w e (1- 1) i
b= —2iepf ef (1 - %) w o gt gy T et (1 B %> @l )|
\ 0 ief (1 — %) o] (1 - %) Wiy —w 4 g + (ef)?)

Determinant factorizes with gauge-independent dispersion relations:

Edet B = (w” + Wi)(WQ +w? ) (w? 4+ wi)?

¢ cancels out in the final result due to contribution from ZA{-1)
p=1
<Q|€_HT\Q> — Z_I/ DpDxDA o et

p=f




Spectrum of fluctuations

scalars : r,m, Ag, h A; = B; + C} C*=V'h
vectors : B; V.B" =0
ghOStS . C, C _V? = —83 + (—V%D_l) on R X SD_lspa,ce

—1/2

B; : /Z—::va(é)det (_83+J£2(v)‘|‘(D—2)—|—(€f)2>

c,C: / g—: Zns(é) det {—83 + Jf(@ + (ef)z}

[ ~1/2
scalars : / o zg: ns(£) det | B]



Reorganizing perturbative expansion

For a well-defined limit need to introduce 't Hooft coupling A

m Large-N_ : Planar limit : A, = g?N_ = fixed
m Large-Nf : Bubble diagrams : Ar = g?Nf = fixed
m Large-charge expansion : Ag = gQ = fixed

Then we have

observable ~ Z g'Pi(N) = %Fk(A)
k

|=Iloops

N = {Nc, Nf, Q}




