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This talk will be mostly about new ideas to solve CFT’s. 

Typically there is no simplifying limit

In a presence of a global symmetry, however, there can be 
sub-sectors of the CFT where anomalous dimension and OPE 
coefficients simplify



• There is a semiclassical technique to study the 
sectors of the CFT with fixed Noether charge Q. 
In these sectors the physics is described by a 
semiclassical configuration and has simple EFT 
description.

Take home message

The example of a symmetry is a global symmetry with the 
simplest example of a U(1) complex scalar model

You can compute correlators of the charged operators. In this 
talk we will study 2-pt functions but one can go beyond



Part 1: global symmetry
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Bring field insertions to the exponent 

For perturbation theory works (expand around)
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Field insertions are sources for the Noether current 



• E.O.M. can be solved perturbatively but technically 
challenging  

• If we are at the fixed point, however, we can use 
the power of conformal invariance
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In a CFT

Physical critical exponents

 see however B. Farkhtdinov talk 
for numerical approach
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We expect scaling dimensions to take the form:

�k is (k+1)-loop correction to the saddle point equation

We will compute            and         ��1 �0
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Semiclassical computation
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• ne QFT to the perturbative fixed point

• Tune QFT to the (perturbative) fixed point (WF or BZ type) 

• Map the theory to the cylinder  

• Exploit operator/state correspondence for the 2-point 
function to relate anomalous dimension to the energy                                                                                          

• To compute this energy, evaluate expectation value of the 
evolution operator in an arbitrary state with fixed charge Q

Semiclassical method

h�̄Q(xf )�
Q(xi)iCFT =

1

|xf � xi|2��Q

Badel, Cuomo, Monin, Rattazzi 2019

E = ��Q/R

Working in the double 
scaling limit : � ! 0, Q ! 1, �Q = fixed



To study system at fixed charge thermodynamically we have:

H ! H + µQ  𝜇 is chemical potential

• To compute this energy, evaluate expectation value of the 
evolution operator in an arbitrary state with fixed charge Q

hQ|e�HT |Qi T!1
= N̄e�E�QT

as long as there is overlap between |Q>  and the ground 
state, the latter will dominate for  T ! 1
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The MSbar renormalized result in the limiting cases reads: 



Part 2: local symmetry
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Can we apply these methods to local U(1) model?

Semiclassical computation on the cylinder can be carried out 
BUT  

what would be the physical meaning of it in the flat space?

Dµ� = (@µ + ieAµ)�



is not gauge-invariant and vanishes due to the Elitzur’s theorem (1975)

But, in flat space: h�̄Q(xf )�
Q(xi)iflatCFT

We compute energy  
                     which is gauge-independent quantity based on

h�̄Q(xf )�
Q(xi)icylinderCFT

E = ��Q/R

our computation should correspond to 
gauge-invariant correlator in flat space

But which one? The choice is not unique



Dirac proposal:
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Schwinger proposal:
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Wilson line on the shortest path connecting x and x’

with the external current before “squeezed” into an infinitely thin 
line along the shortest path connecting x and x’

Schwinger and Dirac correlators lead to different physical 
results, in particular, different critical exponents��Q

To which one our ground state energy will correspond to?



• Compute                         via Feynman diagrams in 
arbitrary linear gauge (result will be gauge dependent) 

• Compare with         computed from                        energies                      
on the cylinder and look for the match in some gauge

Our strategy

E = ��Q/R��Q

E = ��Q/R �Dirac
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Doing this we hope to learn to which gauge-invariant 
correlator in flat space our energies correspond to
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State-operator correspondence
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The MSbar renormalized result reads
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E = ��Q/R �Dirac
�Q

Our work

Can we understand deeper why?

�⇠ = ��A⇠

1. When gauge-fixing parameter considered as running parameter, Landau 
gauge emerges as a FP of the RG since 

2. Schwinger correlator does not lead to long-range order and decays to 
zero while Dirac correlator does Kennedy et al‘85

 3. Correlators of    (x) in Landau gauge can be interpreted as that of � �nl(x)

Landau gauge
�Dirac

�Q�perturbative
�Q

Kleinert et al ’03, ’05.  1-loop check



Other directions/aspects

• We can add Yukawa and non-Abelian gauge interactions 

• Large order behaviour of the series (resurgence) 

• Higher correlation functions, OPE coefficients,…. 

• Condensed matter applications (superconductors, superfluids,..) 

• Inhomogeneous ground state (operators with spin/derivatives) 

• Test dualities between different CFTs in their charged sectors 

• Global charged corresponding to generalised global symmetry? 

• ….



Thank you!



Explicit 3-loop gauge-dependent result for 
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and ``fit'' all coefficients Ckl in
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The field insertions act as sources for the current 

This is precisely the constraint for the external current in Dirac’s proposal 
(for n=1)
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In fact, original Dirac’s proposal (1955)

r · ~Ecl = �(~r) classical electric field corresponding 
to a point charge at the origin



Physical meaning of             : creation operator of a charged particle dressed with a 
coherent state of photons describing its Coulomb field.
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Covariant generalisation

These are the lowest-lying  operators 
with charge Q corresponding to the 

energies we have computed





Regimes
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EFT for phonon (superfluid phase) in large-Q limit :

Hellerman, Orlando, Reffert, Watanabe 2015

Large charge expansion, historically

Started with d=3       -model with global U(1) symmetry��4



Rd : (r,⌦d�1) R⇥ Sd�1 : (⌧,⌦d�1)
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• Weyl map and operator/state correspondence
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3-loop2-loop1-loop
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• Comparing to ordinary perturbation theory



Determinant factorizes with gauge-independent dispersion relations:
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Spectrum of fluctuations
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