18

QFT at large charge

Oleg Antipin

Ruđer Boškovic Institute, Zagreb
based on OA, A.Bednyakov, J.Bersini, P.Panopoulos, and A.Pikelner
Phys.Rev.Lett. 130 (2023) 2, arXiv: 2210.10685 [hep-th]

Yerevan, October 4, 2023

This talk will be mostly about new ideas to solve CFT's.

Typically there is no simplifying limit

In a presence of a global symmetry, however, there can be sub-sectors of the CFT where anomalous dimension and OPE coefficients simplify

Take home message

- There is a semiclassical technique to study the sectors of the CFT with fixed Noether charge Q. In these sectors the physics is described by a semiclassical configuration and has simple EFT description.

You can compute correlators of the charged operators. In this talk we will study 2-pt functions but one can go beyond

The example of a symmetry is a global symmetry with the simplest example of a $U(1)$ complex scalar model

Part I: global symmetry

Consider model with $\mathrm{U}(1)$ global symmetry

$$
L=\partial_{\mu} \bar{\phi} \partial^{\mu} \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2}
$$

The operators $\quad \phi^{Q}(x)$ and $\quad \bar{\phi}^{Q}(x)$ carry $\mathrm{U}(1)$ charge $\quad+Q(-Q)$
Rescale the field

$$
\begin{aligned}
\mathrm{d} & \rightarrow \frac{\phi}{\sqrt{\lambda}} \\
L_{\text {new }} & =\frac{1}{\lambda}\left(\partial_{\mu} \bar{\phi} \partial^{\mu} \phi+\frac{1}{4}(\bar{\phi} \phi)^{2}\right)
\end{aligned}
$$

$$
\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle \sim \int D \bar{\phi} D \phi \phi^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right) e^{-\frac{S}{\lambda}}
$$

For $\lambda \ll 1$ dominated by the extrema of S

Bring field insertions to the exponent

$$
\begin{gathered}
\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle \sim \int D \bar{\phi} D \phi e^{-\frac{S_{e f f}}{\lambda}} \\
S_{e f f}=\int d^{d} x\left[\partial \bar{\phi} \partial \phi+\frac{1}{4}(\bar{\phi} \phi)^{2}+\lambda Q\left(\log \phi\left(x_{f}\right)+\log \phi\left(x_{i}\right)\right]\right.
\end{gathered}
$$

For $\quad \lambda Q \ll 1 \quad$ perturbation theory works (expand around) $\phi=0$

For $\quad \lambda Q \gg 1 \quad$ expand around new saddles
$\lambda \ll 1$ so $Q \gg 1$ to have new saddles. Also, keep $\lambda Q=$ fixed

$$
S_{e f f}=\int d^{d} x\left[\partial \bar{\phi} \partial \phi+\frac{1}{4}(\bar{\phi} \phi)^{2}+\lambda Q\left(\log \phi\left(x_{f}\right)+\log \phi\left(x_{i}\right)\right]\right.
$$

E.O.M

$$
\begin{gathered}
\partial^{2} \phi(x)-\frac{1}{2} \phi^{2}(x) \bar{\phi}(x)=-\frac{\lambda Q}{\bar{\phi}\left(x_{f}\right)} \delta^{(d)}\left(x-x_{f}\right), \\
\partial^{2} \bar{\phi}(x)-\frac{1}{2} \phi(x) \bar{\phi}^{2}(x)=-\frac{\lambda Q}{\phi\left(x_{i}\right)} \delta^{(d)}\left(x-x_{i}\right) \\
\partial_{\mu} j^{\mu}=Q \delta^{(d)}\left(x-x_{i}\right)-Q \delta^{(d)}\left(x-x_{f}\right)
\end{gathered}
$$

With $\quad j_{\mu}=\bar{\phi} \partial_{\mu} \phi-\phi \partial_{\mu} \bar{\phi} \quad$ Noether current
Field insertions are sources for the Noether current

- E.O.M. can be solved perturbatively but technically challenging
- If we are at the fixed point, however, we can use the power of conformal invariance

In a CFT

$$
\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle_{C F T}=\frac{1}{\left|x_{f}-x_{i}\right|^{2 \Delta_{\phi} Q}}
$$

Physical critical exponents

$$
\Delta_{\phi^{Q}} \equiv Q\left(\frac{d-2}{2}\right)+\gamma_{\phi^{Q}}
$$

Goal : compute $\quad \Delta_{\phi^{Q}} \equiv Q\left(\frac{d-2}{2}\right)+\gamma_{\phi^{Q}}$

We expect scaling dimensions to take the form:

$$
\Delta_{Q}=\sum_{k=-1} \frac{\Delta_{k}\left(\lambda_{0} Q\right)}{Q^{k}}
$$

Δ_{k} is (k+1)-loop correction to the saddle point equation

We will compute Δ_{-1} and Δ_{0}

Semiclassical computation

$$
S=S\left(\phi_{0}\right)+\frac{1}{2}\left(\phi-\phi_{0}\right)^{2} S^{\prime \prime}\left(\phi_{0}\right)+\ldots
$$

Semiclassical method

Working in the double scaling limit :

$$
\lambda \rightarrow 0, \quad Q \rightarrow \infty, \quad \lambda Q=\text { fixed }
$$

- Tune QFT to the (perturbative) fixed point (WF or BZ type)
- Map the theory to the cylinder $\quad \mathbb{R}^{d} \rightarrow \mathbb{R} \times S^{d-1}$
- Exploit operator/state correspondence for the 2-point function to relate anomalous dimension to the energy

$$
\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle_{C F T}=\frac{1}{\left|x_{f}-x_{i}\right|^{2 \Delta} Q} \quad E=\Delta_{\phi^{Q}} / R
$$

- To compute this energy, evaluate expectation value of the evolution operator in an arbitrary state with fixed charge Q
- To compute this energy, evaluate expectation value of the evolution operator in an arbitrary state with fixed charge Q

$$
\langle Q| e^{-H T}|Q\rangle \stackrel{T \rightarrow \infty}{=} \bar{N} e^{-E_{\phi} Q T}
$$

as long as there is overlap between |Q> and the ground state, the latter will dominate for $T \rightarrow \infty$

To study system at fixed charge thermodynamically we have:

$$
H \rightarrow H+\mu Q
$$

Consider model with $U(1)$ global symmetry

$$
L=\partial_{\mu} \bar{\phi} \partial^{\mu} \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2}
$$

In $d=4-\varepsilon$ there is an IR WF fixed point

$$
\lambda^{*}=\frac{3}{10} \epsilon+\cdots
$$

Weyl map the theory to the cylinder:

$$
\begin{aligned}
& S_{c y l}=\int d^{d} x \sqrt{-g}\left(g_{\mu \nu} \partial^{\mu} \bar{\phi} \partial^{\nu} \phi+m^{2} \bar{\phi} \phi+\frac{\lambda}{4}(\bar{\phi} \phi)^{2}\right) \\
& m^{2}=\left(\frac{d-2}{2 R}\right)^{2} \quad \text { stemming from the coupling to Ricci scalar }
\end{aligned}
$$

Classical solution:
 $$
S=S\left(\phi_{0}\right)+\frac{1}{2}\left(\phi-\phi_{0}\right)^{2} S^{\prime \prime}\left(\phi_{0}\right)+\ldots
$$

$$
\phi=\frac{\rho}{\sqrt{2}} e^{i \chi}
$$

$$
S_{e f f}=\int_{-T / 2}^{T / 2} d \tau \int d \Omega_{d-1}\left(\frac{1}{2}(d \rho)^{2}+\frac{1}{2} \rho^{2}(d \chi)^{2}+\frac{m^{2}}{2} \rho^{2}+\frac{1}{16} \rho^{4}+\mu^{2} f^{2}\right)
$$

Stationary solution: $\quad \rho=f \quad \chi=-i \mu \tau$

$$
\begin{gathered}
\mu^{2}-m^{2}=\frac{\lambda}{4} f^{2} \quad \mu f^{2}=\frac{Q}{R^{d-1} \Omega_{d-1}} \\
m^{2}=\left(\frac{d-2}{2 R}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& S_{e f f} R=E_{-1} R=\Delta_{-1} \\
& 4 \Delta_{-1}=\frac{3^{2 / 3}\left(x+\sqrt{-3+x^{2}}\right)^{1 / 3}}{3^{1 / 3}+\left(x+\sqrt{-3+x^{2}}\right)^{2 / 3}}+\frac{3^{1 / 3}\left(3^{1 / 3}+\left(x+\sqrt{-3+x^{2}}\right)^{2 / 3}\right)}{\left(x+\sqrt{-3+x^{2}}\right)^{1 / 3}} \\
& x \equiv 6 \lambda Q \\
& \frac{\Delta_{-1}}{\lambda_{*}} \stackrel{\lambda Q \ll 1}{=} Q\left[1+\frac{1}{2}\left(\frac{\lambda_{*} Q}{16 \pi^{2}}\right)-\frac{1}{2}\left(\frac{\lambda_{*} Q}{16 \pi^{2}}\right)^{2}+\cdots\right] \\
& \begin{array}{c}
\text { Resums infinite number of } \\
\text { Feynnan diagrams }
\end{array} \\
& \frac{\Delta_{-1}}{\lambda_{*}} \stackrel{\lambda Q \gg 1}{=} \frac{8 \pi^{2}}{\lambda^{*}}\left[\frac{3}{4}\left(\frac{\lambda_{*} Q}{8 \pi^{2}}\right)^{4 / 3}+\frac{1}{2}\left(\frac{\lambda_{*} Q}{8 \pi^{2}}\right)^{2 / 3}+\cdots\right]
\end{aligned}
$$

Leading quantum correction:

$$
\begin{gathered}
\rho=f+r(x) \quad \chi=-i \mu \tau+\frac{\pi(x)}{\sqrt{2} f} \\
S^{(2)}=\int_{-T / 2}^{T / 2} d \tau \int d \Omega_{d-1}\left(\frac{1}{2}(\partial r)^{2}+\frac{1}{2}(\partial \pi)^{2}-2 i \mu r \partial_{\tau} \pi+\left(\mu^{2}-m^{2}\right)^{2}\right)
\end{gathered}
$$

One relativistic (Type I) Goldstone boson (the conformal mode=phonon) and one massive state, with their respective excitations

$$
\begin{aligned}
& \omega_{ \pm}^{2}(\ell)=J_{l}^{2}+3 \mu^{2}-m^{2} \pm \sqrt{4 J_{l}^{2} \mu^{2}+\left(3 \mu^{2}-m^{2}\right)^{2}} \\
& J_{l}^{2}=\ell(\ell+d-2) / R^{2}
\end{aligned}
$$

Energy= sum of zero point energies

$$
\Delta_{0}=\frac{R}{2} \sum_{\ell=0}^{\infty} n_{\ell}\left[\omega_{+}(\ell)+\omega_{-}(\ell)\right]
$$

The MSbar renormalized result in the limiting cases reads:

$$
\lambda Q \ll 1 \quad: \quad \Delta_{0}=-\frac{3 \lambda_{*} Q}{(4 \pi)^{2}}+\frac{\lambda_{*}^{2} Q^{2}}{2(4 \pi)^{4}}+\cdots
$$

$\lambda Q \gg 1: \Delta_{0}=\left[\alpha+\frac{5}{24} \log \left(\frac{\lambda_{*} Q}{8 \pi^{2}}\right)^{4 / 3}\right]+\left[\beta-\frac{5}{36} \log \left(\frac{\lambda_{*} Q}{8 \pi^{2}}\right)^{2 / 3}\right]+\cdots$

Part 2: local symmetry

Can we apply these methods to local $\mathrm{U}(1)$ model?

$$
S=\int d^{D} x\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger} D_{\mu} \phi+\frac{\lambda(4 \pi)^{2}}{6}(\bar{\phi} \phi)^{2}\right)
$$

$$
D_{\mu} \phi=\left(\partial_{\mu}+i e A_{\mu}\right) \phi
$$

Semiclassical computation on the cylinder can be carried out BUT what would be the physical meaning of it in the flat space?

We compute energy $E=\Delta_{\phi^{Q}} / R$ which is gauge-independent quantity based on

$$
\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle_{C F T}^{c y l i n d e r}
$$

But, in flat space: $\quad\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle_{C F T}^{\text {flat }}$
is not gauge-invariant and vanishes due to the Elitzur's theorem (1975)
our computation should correspond to gauge-invariant correlator in flat space

But which one? The choice is not unique

$$
\begin{gathered}
G_{D}=\left\langle\bar{\phi}\left(x_{f}\right) \exp \left(-i e \int d^{D} x J^{\mu}(x) A_{\mu}(x)\right) \phi\left(x_{i}\right)\right\rangle \\
\partial^{\mu} J_{\mu}=\delta\left(x-x_{f}\right)-\delta\left(x-x_{i}\right) \quad \partial^{2} J_{\mu}=0 \\
J_{\mu}(z)=J_{\mu}^{\prime}\left(z-x^{\prime}\right)-J_{\mu}^{\prime}(z-x) \\
J_{\mu}^{\prime}(z)=-i \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k_{\mu}}{k^{2}} e^{i k \cdot z}=-\frac{\Gamma(d / 2-1)}{4 \pi^{d / 2}} \partial_{\mu} \frac{1}{z^{d-2}} \\
G_{D}=\left\langle\bar{\phi}_{n l}\left(x_{f}\right) \phi_{n l}\left(x_{i}\right)\right\rangle \quad \phi_{n l}(x) \equiv e^{-i e \int d^{D} z J_{\mu}^{\prime}(z-x) A^{\mu}(x)} \phi(x) \\
\text { In Landau gauge } \quad \partial^{\mu} A_{\mu}=0 \quad \Longrightarrow \quad \phi_{n l}(x)=\phi(x)
\end{gathered}
$$

correlators of $\phi(x)$ in Landau gauge can be interpreted as that of $\phi_{n l}(x)$

Schwinger proposal:
Wilson line on the shortest path connecting x and x '

$$
\left\langle\bar{\phi}\left(x^{\prime}\right) \exp \left[-i e \int_{x}^{x^{\prime}} d x^{\mu} A_{\mu}(x)\right] \phi(x)\right\rangle
$$

with the external current before "squeezed" into an infinitely thin line along the shortest path connecting x and x '

Schwinger and Dirac correlators lead to different physical results, in particular, different critical exponents $\Delta_{\phi^{a}}$

To which one our ground state energy will correspond to?

Our strategy

- Compute $\Delta_{\phi Q}^{\text {perturbative }}$ via Feynman diagrams in arbitrary linear gauge (result will be gauge dependent)
- Compare with $\Delta_{\phi^{Q}}$ computed from $E=\Delta_{\phi^{a}} / R$ energies on the cylinder and look for the match in some gauge

Doing this we hope to learn to which gauge-invariant correlator in flat space our energies correspond to

Our work

$$
E=\Delta_{\phi^{Q}} / R
$$

$$
\Delta_{\phi^{Q}}^{\text {Dirac }}, \Delta_{\phi^{Q}}^{\text {Schwinger }}, \ldots ?
$$

$$
S=\int d^{D} x\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger} D_{\mu} \phi+\frac{\lambda(4 \pi)^{2}}{6}(\bar{\phi} \phi)^{2}\right)
$$

$D=4-\epsilon$

- Perturbative WF fixed point at 1-loop reads

$$
\lambda^{*}=\frac{3}{20}(19 \epsilon \pm i \sqrt{719} \epsilon), \quad a_{g}^{*}=\frac{3}{2} \epsilon \quad a_{g}=\frac{e^{2}}{(4 \pi)^{2}}
$$

complex!

- Map to the cylinder

$$
S=\int d^{D} x \sqrt{-g}\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi+m^{2} \bar{\phi} \phi+\frac{\lambda(4 \pi)^{2}}{6}(\bar{\phi} \phi)^{2}\right)
$$

$$
m^{2}=(D-2)^{2} / 4 \quad \text { with radius of the cylinder } \mathrm{R}=1
$$

- State-operator correspondence

$\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle_{C F T}^{\text {cylinder }}$
These operators create (annihilate) states with energy

$$
E=\Delta_{\phi^{Q}} / R
$$

$$
\phi(x)=\frac{\rho(x)}{\sqrt{2}} e^{i \chi(x)}
$$

$$
S_{\mathrm{eff}}=\int_{-T / 2}^{T / 2} d \tau \int d \Omega_{D-1}\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2}(\partial \rho)^{2}+\frac{1}{2} \rho^{2}(\partial \chi)^{2}\right.
$$

$$
\left.+\frac{1}{2} m^{2} \rho^{2}+e \rho^{2} A_{\mu} \partial^{\mu} \chi+\frac{1}{2} e^{2} \rho^{2} A_{\mu} A^{\mu}+\frac{\lambda(4 \pi)^{2}}{24} \rho^{4}+\frac{i Q}{\Omega_{D-1}} \dot{\chi}\right)
$$

- Fixing the charge of the initial and final state to Q

$$
S=\underset{\substack{\downarrow \\ \Delta_{-1}}}{\left(\phi_{0}\right)}+\frac{1}{2}\left(\phi-\phi_{0}\right)^{2} S^{\prime \prime}\left(\phi_{0}\right)+\ldots
$$

Homogeneous ground state

$$
\begin{gathered}
\rho(x)=f, \quad \chi(x)=-i \mu \tau, \quad A_{\mu}=0 \\
4 \Delta_{-1}=\frac{3^{2 / 3}\left(x+\sqrt{-3+x^{2}}\right)^{1 / 3}}{3^{1 / 3}+\left(x+\sqrt{-3+x^{2}}\right)^{2 / 3}}+\frac{3^{1 / 3}\left(3^{1 / 3}+\left(x+\sqrt{-3+x^{2}}\right)^{2 / 3}\right)}{\left(x+\sqrt{-3+x^{2}}\right)^{1 / 3}} \\
x \equiv 6 \lambda Q
\end{gathered}
$$

The same as in U(1) global case

$$
\begin{aligned}
& \quad S=S\left(\phi_{0}\right)+\frac{1}{2}\left(\phi-\phi_{0}\right)^{2} S^{\prime \prime}\left(\phi_{0}\right)+\ldots \\
& \rho(x)=f+r(x) \\
& \chi(x)=-i \mu \tau+\frac{\pi(x)}{f}
\end{aligned}
$$

Add gauge-fixing and ghost terms

$$
\delta S=\frac{1}{2} \int d^{d} x\left(G^{2}+\mathcal{L}_{\text {ghost }}\right), \quad G=\frac{1}{\sqrt{\xi}}\left(\nabla_{\mu} A^{\mu}+e f \pi\right)
$$

and expand Seff to quadratic order

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}^{(2)}=\frac{1}{2} A_{\mu}\left(-g^{\mu \nu} \nabla^{2}+\mathcal{R}^{\mu \nu}+\left(1-\frac{1}{\xi}\right) \nabla^{\mu} \nabla^{\nu}+(e f)^{2} g^{\mu \nu}\right) A_{\nu} \\
& +\frac{1}{2}\left(\partial_{\mu} r\right)^{2}-\frac{1}{2} 2\left(m^{2}-\mu^{2}\right) r^{2}+\frac{1}{2}\left(\partial_{\mu} \pi\right)^{2}-\frac{1}{2 \xi}(e f)^{2} \pi^{2} \\
& -2 i \mu r \partial_{\tau} \pi-2 i f \mu r A^{0}+e f\left(1-\frac{1}{\xi}\right) A_{\mu} \partial^{\mu} \pi+\bar{c}\left[-\nabla^{2}+(e f)^{2}\right] c
\end{aligned}
$$

Spectrum of fluctuations

scalars : r, π, A_{0}, h
vectors : B_{i}
ghosts: c, \bar{c}

$$
\Delta_{0}=\frac{1}{2} \sum_{\ell=\ell_{0}}^{\infty} d_{\ell} \omega_{i}(\ell)
$$

Field	d_{ℓ}	$\omega_{i}(\ell)$	ℓ_{0}
B_{i}	$n_{v}(\ell)$	$\sqrt{J_{\ell(v)}^{2}+(D-2)+e^{2} f^{2}}$	1
$h\left(C_{i}\right)$	$n_{s}(\ell)$	$\sqrt{J_{\ell(s)}^{2}+e^{2} f^{2}}$	1
(c, \bar{c})	$-2 n_{s}(\ell)$	$\sqrt{J_{\ell(s)}^{2}+e^{2} f^{2}}$	0
A_{0}	$n_{s}(\ell)$	$\sqrt{J_{\ell(s)}^{2}+e^{2} f^{2}}$	0
ϕ	$n_{s}(\ell)$	$\sqrt{J_{\ell(s)}^{2}+3 \mu^{2}-m^{2}+\frac{1}{2} e^{2} f^{2} \pm \sqrt{\left(3 \mu^{2}-m^{2}-\frac{1}{2} e^{2} f^{2}\right)^{2}+4 J_{\ell(s)}^{2} \mu^{2}}}$	0

The MSbar renormalized result reads

$$
\begin{array}{rlrl}
\Delta_{0} & =\frac{1}{16}\left(-15 \mu^{4}-6 \mu^{2}+8 \sqrt{6 \mu^{2}-2}+5\right) & a_{g} \equiv \frac{e^{2}}{16 \pi^{2}} \\
& +\frac{1}{2} \sum_{\ell=1} \sigma(\ell)-\frac{3 a_{g}}{8 \lambda}\left(\mu^{2}-1\right)\left(\frac{3 a_{g}}{\lambda}\left(7 \mu^{2}+5\right)-9 \mu^{2}+5\right) & \\
\sigma(\ell)= & \frac{9 a_{g}}{2 \lambda \ell}\left(\mu^{2}-1\right)\left[\left(\frac{3 a_{g}}{\lambda}-1\right)\left(\mu^{2}-1\right)-2 \ell(\ell+1)\right] & & \text { subtraction } \\
& +\frac{5}{4 \ell}\left(\mu^{2}-1\right)^{2}-2(\ell+1)\left(2 \ell(\ell+2)+\mu^{2}\right), & \text { terms } \\
& +(\ell+1)^{2}\left[\omega_{+}^{*}(\ell)+\omega_{-}^{*}(\ell)\right]+2 \ell(\ell+2) \omega^{*}(\ell) & \\
\left(\omega_{ \pm}^{*}\right)^{2}=\frac{3 a_{g}}{\lambda}\left(\mu^{2}-1\right)+3 \mu^{2}+\ell(\ell+2)-1 & & \\
& \pm \sqrt{\left(\frac{3 a_{g}}{\lambda}\left(\mu^{2}-1\right)-3 \mu^{2}+1\right)^{2}+4 \ell(\ell+2) \mu^{2}} & \text { scalars } \\
\left(\omega^{*}\right)^{2} & =\frac{6 a_{g}}{\lambda}\left(\mu^{2}-1\right)+\ell(\ell+2)+1 & \text { vectors }
\end{array}
$$

Explicit 3-loop gauge-dependent result for $\Delta_{\phi Q} \equiv Q\left(\frac{d-2}{2}\right)+\gamma_{\phi Q}$

$$
\begin{aligned}
& \gamma_{Q}^{(1)}\left(\lambda, a_{g}, \xi\right)=\underbrace{\frac{\lambda}{3} Q^{2}}_{\text {leading }}-\underbrace{Q\left(3 a_{g}+\frac{\lambda}{3}\right)}_{\text {sub-leading }}+a_{g} Q^{2} \xi \\
& \gamma_{Q}^{(2)}\left(\lambda, a_{g}\right)=\underbrace{-\frac{2 \lambda^{2}}{9} Q^{3}}_{\text {leading }}+\underbrace{\left(a_{g}^{2}-\frac{4 a_{g} \lambda}{3}+\frac{2 \lambda^{2}}{9}\right) Q^{2}}_{\text {sub-leading }}+\left(\frac{7 a_{g}^{2}}{3}+\frac{4 a_{g} \lambda}{3}+\frac{\lambda^{2}}{9}\right) Q
\end{aligned}
$$

$$
\begin{aligned}
& +Q^{2}\left[\frac{29 a_{g}^{2} \lambda}{6}+a_{g}^{3}\left(95-108 \zeta_{3}\right)+\frac{\lambda^{3}}{18}\left(57-64 \zeta_{3}\right)-\frac{4 a_{g} \lambda^{2}}{9}\left(31-30 \zeta_{3}\right)\right]+Q\left[\frac{13 a_{g}^{2} \lambda}{6}+\frac{2 a_{g} \lambda^{2}}{9}\left(49-48 \zeta_{3}\right)-\frac{2 \lambda^{3}}{27}\left(31-32 \zeta_{3}\right)-a_{g}^{3}\left(\frac{3251}{54}-72 \zeta_{3}\right)\right]
\end{aligned}
$$

In Landau gauge we find perfect agreement for the leading and subleading terms with large-Q results!

Kleinert et al '03, '05. 1-loop check

Our work

$$
E=\Delta_{\phi^{Q}} / R
$$

$$
\overline{ }
$$

Can we understand deeper why?

1. When gauge-fixing parameter considered as running parameter, Landau gauge emerges as a FP of the RG since

$$
\beta_{\xi}=-\gamma_{A} \xi
$$

2. Schwinger correlator does not lead to long-range order and decays to zero while Dirac correlator does
3. Correlators of $\phi(\mathrm{x})$ in Landau gauge can be interpreted as that of $\phi_{n l}(x)$

Other directions/aspects

- We can add Yukawa and non-Abelian gauge interactions
- Large order behaviour of the series (resurgence)
- Higher correlation functions, OPE coefficients,....
- Condensed matter applications (superconductors, superfluids,..)
- Inhomogeneous ground state (operators with spin/derivatives)
- Test dualities between different CFTs in their charged sectors
- Global charged corresponding to generalised global symmetry?

Thank you!

Explicit 3-loop gauge-dependent result for ϕ^{Q}

We compute 3-loop AD for ϕ^{Q} for fixed $\mathrm{Q}=2,3,4$ in $D=4-\epsilon$

and "fit" all coefficients $C_{k l}$ in

$$
\gamma_{Q}\left(\lambda, a_{g}, \xi\right)=\sum_{l=1}^{3} \gamma_{Q}^{(l-\mathrm{loop})}\left(\lambda, a_{g}, \xi\right), \quad \gamma_{Q}^{(l-\mathrm{loop})} \equiv \sum_{k=0}^{l} C_{k l} Q^{l+1-k}
$$

The field insertions act as sources for the current

$$
\partial_{\mu} j^{\mu}=n \delta^{(d)}\left(x-x_{i}\right)-n \delta^{(d)}\left(x-x_{f}\right)
$$

This is precisely the constraint for the external current in Dirac's proposal (for $\mathrm{n}=1$)
$\partial^{\mu} J_{\mu}=\delta\left(x-x_{f}\right)-\delta\left(x-x_{i}\right) \quad J_{\mu}(z)=J_{\mu}^{\prime}\left(z-x^{\prime}\right)-J_{\mu}^{\prime}(z-x)$
$J_{\mu}^{\prime}(z)=-i \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k_{\mu}}{k^{2}}{ }^{i k \cdot z}=-\frac{\Gamma(d / 2-1)}{4 \pi^{d / 2}} \partial_{\mu} \frac{1}{z^{d-2}}$

In fact, original Dirac's proposal (1955)
$\phi_{\text {Dirac }}(\vec{r}) \equiv e^{-i \int d^{3} r^{\prime} \vec{E}_{c l}\left(\vec{r}^{\prime}-\vec{r}\right) \cdot \vec{A}\left(\vec{r}^{\prime}\right)} \phi(\vec{r})$

$\nabla \cdot \vec{E}_{c l}=\delta(\vec{r}) \quad$ classical electric field corresponding to a point charge at the origin

Covariant generalisation

$$
\phi_{n l}(x) \equiv e^{-i e \int d^{D} z J_{\mu}^{\prime}(z-x) A^{\mu}(x)} \phi(x)
$$

Physical meaning of $\phi_{n l}(x)$: creation operator of a charged particle dressed with a coherent state of photons describing its Coulomb field.

These are the lowest-lying operators with charge Q corresponding to the energies we have computed

Identify the operator

We want the smallest dimension operator carrying a total charge \bar{Q}
1 Derivatives increase the scaling dimension \Longrightarrow we consider operator without derivatives.

2 The latter belong to the fully symmetric $O(N)$ space $\Longrightarrow m$-index traceless symmetric tensors, $T_{\left(i_{1} \ldots i_{m}\right)}^{(m)} \phi^{2 p}$. They have charge m and classical dimension $m+2 p \Longrightarrow p=0$.
3 Thus our operator is the \bar{Q}-index traceless symmetric tensor with classical dimension \bar{Q}. It can be represented as a \bar{Q}-boxes Young tableau with one row.

$$
\mathcal{O}_{\bar{Q}}=\underbrace{\square \square \mid-\square . . \square}_{Q}
$$

$\Delta_{\bar{Q}}$ define a set of crossover (critical) exponent which measures the stability of the system (e.g. critical magnets) against anisotropic perturbations (e.g. crystal structure).

Regimes

Solve: $\quad \mu^{2}-m^{2}=\frac{\lambda}{4} f^{2} \quad \mu f^{2}=\frac{Q}{R^{d-1} \Omega_{d-1}}$

$$
\begin{array}{ll}
\lambda Q \ll 1 & \mu R=1+\frac{\lambda Q}{16 \pi^{2}}+\cdots \\
\lambda Q \gg 1 &
\end{array} \quad \mu R=\frac{(\lambda Q)^{1 / 3}}{2 \pi^{2 / 3}}+\cdots .
$$

Large charge expansion, historically

Hellerman, Orlando, Reffert, Watanabe 2015

Started with $\mathrm{d}=3 \lambda \phi^{4}$-model with global $\mathrm{U}(1)$ symmetry

EFT for phonon (superfluid phase) in large-Q limit :

$$
\Delta_{Q}=Q^{\frac{d}{d-1}}\left[\alpha_{1}+\alpha_{2} Q^{\frac{-2}{-1}}+\alpha_{3} Q^{\frac{-4}{d-1}}+\ldots\right]+Q^{0}\left[\beta_{0}+\beta_{1} Q^{\frac{-2}{d-1}}+\ldots\right]+\mathcal{O}\left(Q^{-\frac{d}{d-1}}\right)
$$

Weyl map : $\quad r=R e^{\tau / R}$

$$
\begin{gathered}
\mathbb{R}^{d}:\left(r, \Omega_{d-1}\right) \quad \mathbb{R} \times S^{d-1}:\left(\tau, \Omega_{d-1}\right) \\
d s_{c y l}^{2}=d \tau^{2}+R^{2} d \Omega_{d-1}^{2}=\frac{R^{2}}{r^{2}} d s_{\text {flat }}^{2} \\
\left\langle\mathcal{O}^{\dagger}\left(x_{f}\right) \mathcal{O}\left(x_{i}\right)\right\rangle_{\mathrm{cyl}}=\left|x_{f}\right|^{\Delta_{\mathcal{O}}}\left|x_{i}\right|^{\Delta_{\mathcal{O}}}\left\langle\mathcal{O}^{\dagger}\left(x_{f}\right) \mathcal{O}\left(x_{i}\right)\right\rangle_{\mathrm{flat}} \equiv \frac{\left|x_{f}\right|^{\Delta_{\mathcal{O}}}\left|x_{i}\right|^{\Delta_{\mathcal{O}}}}{\left|x_{f}-x_{i}\right|^{\Delta_{\mathcal{O}}}} \\
\left\langle\mathcal{O}^{\dagger}\left(x_{f}\right) \mathcal{O}\left(x_{i}\right)\right\rangle_{\mathrm{cyl}} \stackrel{\tau_{i} \rightarrow-\infty}{=} e^{-E_{\mathcal{O}}\left(\tau_{f}-\tau_{i}\right)}, \quad E_{\mathcal{O}}=\Delta_{\mathcal{O}} / R
\end{gathered}
$$

- Weyl map and operator/state correspondence

Working at the WF fixed point we can map the theory to the cylinder.

$$
\mathbb{R}^{d} \rightarrow \mathbb{R} \times S^{d-1}, \quad r=R e^{\tau / R}
$$

The eigenvalues of the dilation charge, i.e. the scaling dimensions, become the energy spectrum on the cylinder.

$$
E_{\phi^{Q}}=\Delta_{\phi^{Q}} / R
$$

State-operator correspondence:

States and operators are in 1-to-1 correspondence.

$$
\tau_{f}-\tau_{i} \equiv T \quad\left\langle\bar{\phi}^{Q}\left(x_{f}\right) \phi^{Q}\left(x_{i}\right)\right\rangle_{c y l} \stackrel{T \rightarrow \infty}{=} N e^{-E_{\phi^{Q}} T}
$$

- Comparing to ordinary perturbation theory

1-loop
2-loop
3-loop
Δ_{-1}
$Q^{2} \lambda_{0}$
$Q^{3} \lambda_{0}^{2}$
$Q^{4} \lambda_{0}^{3}$
Δ_{0}
$Q \lambda_{0}$
$Q^{2} \lambda_{0}^{2}$
$Q^{3} \lambda_{0}^{3}$
Δ_{1}
$Q \lambda_{0}^{2}$
$Q^{2} \lambda_{0}^{3}$
Δ_{2}
$Q \lambda_{0}^{3}$

Scalars

$$
\mathcal{B}=\left(\begin{array}{cccc}
-\omega^{2}+J_{\ell(s)}^{2}+2\left(\mu^{2}-m^{2}\right) & -2 i \mu \omega & -2 i e \mu f & 0 \\
2 i \mu \omega & -\omega^{2}+J_{\ell(s)}^{2}+\frac{1}{\xi} e^{2} f^{2} & -e f\left(1-\frac{1}{\xi}\right) \omega & -i e f\left(1-\frac{1}{\xi}\right)\left|J_{\ell(s)}\right| \\
-2 i e \mu f & e f\left(1-\frac{1}{\xi}\right) \omega & -\frac{1}{\xi} \omega^{2}+J_{\ell(s)}^{2}+(e f)^{2} & i\left(1-\frac{1}{\xi}\right) \omega\left|J_{\ell(s)}\right| \\
0 & \operatorname{ief}\left(1-\frac{1}{\xi}\right)\left|J_{\ell(s)}\right| & i\left(1-\frac{1}{\xi}\right) \omega\left|J_{\ell(s)}\right| & -\omega^{2}+\frac{1}{\xi} J_{\ell(s)}^{2}+(e f)^{2}
\end{array}\right)
$$

Determinant factorizes with gauge-independent dispersion relations:

$$
\xi \operatorname{det} \mathcal{B}=\left(\omega^{2}+\omega_{+}^{2}\right)\left(\omega^{2}+\omega_{-}^{2}\right)\left(\omega^{2}+\omega_{1}^{2}\right)^{2}
$$

ξ cancels out in the final result due to contribution from $Z \wedge\{-1\}$

$$
\langle Q| e^{-H T}|Q\rangle=\mathcal{Z}^{-1} \int_{\rho=f}^{\rho=f} \mathcal{D} \rho \mathcal{D} \chi \mathcal{D} A e^{-S_{\text {eff }}}
$$

Spectrum of fluctuations

scalars : r, π, A_{0}, h
vectors : B_{i}
ghosts : c, \bar{c}

$$
\begin{array}{rc}
A_{i}=B_{i}+C_{i} & C^{i}=\nabla^{i} h \\
& \nabla_{i} B^{i}=0 \\
-\nabla^{2}=-\partial_{\tau}^{2}+\left(-\nabla_{S^{D-1}}^{2}\right) & \text { on } \\
\mathbb{R} \times S^{D-1} \text { space }
\end{array}
$$

$B_{i}: \quad \int \frac{d \omega}{2 \pi} \sum_{\ell} n_{v}(\ell) \operatorname{det}\left(-\partial_{\tau}^{2}+J_{\ell(v)}^{2}+(D-2)+(e f)^{2}\right)^{-1 / 2}$
$c, \bar{c}: \quad \int \frac{d \omega}{2 \pi} \sum_{\ell} n_{s}(\ell) \operatorname{det}\left[-\partial_{\tau}^{2}+J_{\ell(s)}^{2}+(e f)^{2}\right]$
scalars $: \int \frac{d \omega}{2 \pi} \sum_{\ell} n_{s}(\ell) \operatorname{det}[\mathcal{B}]^{-1 / 2}$

Reorganizing perturbative expansion

For a well-defined limit need to introduce 't Hooft coupling \mathcal{A}
■ Large- N_{c} : Planar limit : $A_{c} \equiv g^{2} N_{c}=$ fixed
■ Large- N_{f} : Bubble diagrams : $A_{f} \equiv g^{2} N_{f}=$ fixed
■ Large-charge expansion : $A_{Q} \equiv g Q=$ fixed
Then we have

$$
\text { observable } \sim \sum_{l=\text { loops }} g^{\prime} P_{l}(N)=\sum_{k} \frac{1}{N^{k}} F_{k}(\mathcal{A})
$$

$$
N=\left\{N_{c}, N_{f}, Q\right\}
$$

