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Decay of metastable state
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® Consider the quantum-mechanical system with the Hamiltonian H = am + \/[?)
and the “tunneling” potential.

® Probability of survival of the metastable state is P~ e (ground) metastable state
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Decay of metastable state in field theory

@ Consider the scalar field theory with the Lagrangian o(’
and the tunneling (configuration-space) potential
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® The vacuum bounce is spherically symmetric in d+7 dimensions,
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Decay of metastable state at finite temperature
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@ Consider the scalar field theory with the Lagrangian 0(’ =-£ (QM'{’) - V(P)
and tunneling from the thermally-populated initial state
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As usual (at not too high temperatures), P ~ e— V (‘P)
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Boundary conditions for the thermal bounce? B N LF

Tunneling from an
excited state
@ Thermal partition function implies periodic boundary conditions
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Decay of metastable state via thermal activation

@ Atlarge T, one expects the decay to occur via classical thermal jumps of
the field over the barrier.

In the WKB, this is described by the static solution — sphaleron.
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Phase transition driven by classical fluctuations can be studied
in real-time lattice simulations
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Exponential suppression of vacuum decay as a
function of temperature - typical plot



Black holes and thermal vacuum decay

How is the above picture of thermal vacuum decay

modified in the presence of black holes? \ /
A
BH features: =
. 4/
@ It’s a simple gravitational impurity — curved geometry J/ -
S. Chandrasekhar: I‘adiating BH

“The black holes are the most perfect macroscopic objects
there are in the universe: the only elements in their
construction are our concepts of space and time... They
are the simplest objects as well.”

@ It’s a simple source of (almost) thermal radiation — quantum vacuum



Black holes and thermal vacuum decay

How is the above picture of thermal vacuum decay
modified in the presence of black holes?

BH features:

® It’s a simple gravitational impurity — curved geometry

S. Chandrasekhar: BH in equilibrium with

“The black holes are the most perfect macroscopic objects the environment
there are in the universe: the only elements in their

construction are our concepts of space and time... They

are the simplest objects as well.”

@ It’s a simple source of (almost) thermal radiation — quantum vacuum

@ Inthermal equilibrium, vacuum decay can be treated in the Euclidean time approach

This is not true in the (non-equilibrium) case of BH emitting radiation in vacuum

@® Previous studies reveal the puzzle:
the minimal-action O(3)-symmetric configurations were found to be time-independent,
regardless the BH temperature

It seems that no periodic bounces exist around at least certain classes of BHSs.
Physical understanding? Proof?

We’ll discuss scalar fields in 2d/4d BH backgrounds and neglect gravitational back-reaction.



Rindler Valley

® Consider uniformly accelerating observers
in flat spacetime in 2d:
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Rindler Valley

@® Consider uniformly accelerating observers @® Bounce in the Rindler Frame:

in flat spacetime in 2d:
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Rindler Valley near BH horizon

@® Generally, near the BH horizon, in the appropriate coordinates, ds? -

JE0 [ detabd) + .,

@ Rindler bounces with Ro (4 ,lh are almost the true tunneling solution around the BH.
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® The computation shows that &> () for a large class of BHs

(including dilaton BH in 2d and Schwarzschild BH in 4d)
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Valleys and Mirrors

emulates the centrifugal barrier for massive linear modes

Can we do more? / )
1 e M
Consider the 2d dilaton BH background: QZ; = = + 1
e—24x 4+ 1 (6—2/1x + 1)2

2
Qeff

A

A NF 1
< © (This is what actually happens for the Boulware bounce)
> X

“Rindler valley”

We can scan across this region with a one-parameter family of configurations.

@® Put the Neumann mirror at distance X > 0 from the horizon.

@® Attach the periodic solution to the mirror. If Xy » )\'1 , this is the half-thermal bounce.

LN

® Move the mirror towards the horizon, see what happens with the solution at X, x

— whether it decouples from the mirror and retains time-dependence, or
— whether it collapses to the BH sphaleron

® Repeat the exercise with the half-flat space sphaleron as a seed.
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Fun with the mirrors
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Action of the sphaleron (top line) and the

periodic solution (bottom line), attached

to the mirror, as a function of the position
of the mirror.

|max ¥|

Evolution of the time-dependent (bottom) and time-independent (top) configurations attached to
the moving mirror. Scalar field theory with quartic self-interaction in 2d dilaton BH background.
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position of the mirror.
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Absence of dipole negative mode

Can we do more?

@ The evidence comes from counting negative modes of the sphaleron.

(Also see the talk by G. Lavrelashvili at this conference)

We can prove that, for a general multi-scalar theory and a wide class of spherically-symmetric

BHs in d dimensions, the BH sphaleron has exactly one O(d-7)-symmetric (monopole) negative
mode at any BH temperature.

(The proof is somewhat technical)

Let st = -P-('t\ A<t 4 _;%: + Z:-z

Then, the sufficient condition for the absence of negative modes in the dipole sector and above is
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® The condition holds for Schwarzschild (anti-)de Sitter BHs.

5 a 1
Counter-example: the RN BH with the charge Q > Q, % 0.4%3 May

@® The condition says nothing about the negative modes violating the spherical symmetry.
Such modes certainly exist for large BHs in 4d.
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Applications?
Maybe?...

Creminelli, Nicolis, Rattazzi 2001

@ Holographic first-order phase transitions
Mishra, Randall 2023
® ..
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Thank you!
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More on bounce at finite temperature

The bounce-sphaleron transition point was studied in QM and field theory
Chudnovsky 92

Garriga 94; Ferrera 95

In the thin-wall approximation, periodic bounces do not merge with the sphaleron — the transition is 1st order.
(The thin-wall sphaleron may not even exist)

This is not an artefact of the approximation.

B(T)

Branch of p.b. They have extra negative mode
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Exponential suppression of vacuum decay in
the thin-wall potential in 3+1 dimension.
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