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you with a research fund of $10,000CDN in your first year, and $7,500CDN each of 

the following years of your term, to be used for any research-related expenses 

including travel, publication fees, and any hardware or software you may require 

over and above those standardly provided. We will also reimburse relocation costs 

up to $2,000CDN. All payments or reimbursements of expenses shall be subject to 

Perimeter Institute Research Support Grants and Expense Reimbursement policies 

which may change from time to time. We will also provide you with temporary 

accommodation in a Perimeter Institute apartment for two weeks upon your arrival 

in Waterloo. 

 

As a Perimeter postdoctoral fellow, you will be able to invite up to 6 collaborators 

per year for a combined total of 42 days each academic year. For two of your 

visitors, Perimeter will reimburse round-trip air travel from their home institution.  

For all of your visitors, Perimeter will support all local expenses including 

accommodation and a per diem. Any additional visitor expenses may be drawn from 

your annual research fund. This is Perimeter's current visitor policy; however, this 

policy may be modified fro� ���e �� ���e �� �ef�ec� ��e I�������eǯ� c�a�g��g �eed�Ǥ 
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Decay of metastable state

False vacuum  
region True vacuum  

region

Barrier

(ground) metastable state

The classical particle moves 
along the bounce trajectory

Consider the quantum-mechanical system with the Hamiltonian
and the “tunneling” potential.

 

Classical equation of motion:

Euclidean action:

(False) vacuum boundary conditions:

One can write in terms of the bounce trajectory: 

Probability of survival of the metastable state is  

— decay rate

— suppression  
exponent

Classical 
ground state

WKB:

Turning point:
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Decay of metastable state in field theory

Coleman 77; Callan, Coleman 77

Consider the scalar field theory with the Lagrangian 

WKB:

and the tunneling (configuration-space) potential

Coleman, Glacer, Martin 78; 
Blum, Honda, Sato, Takimoto, Tobioka 16 

The vacuum bounce is spherically symmetric in d+1 dimensions, 

Vacuum boundary conditions: 

Classical 
ground state

Tunneling from the 
ground state

Euclidean 
domain

Real-time 
domain

— coupling constant

(in flat space)

Turning point:
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Decay of metastable state at finite temperature

Linde 82;  
Brown, Weinberg 07

Thermal partition function implies periodic boundary conditions 

Consider the scalar field theory with the Lagrangian 
and tunneling from the thermally-populated initial state

As usual (at not too high temperatures),

Boundary conditions for the thermal bounce?

Thermal averaging:

Tunneling from an 
excited state
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Decay of metastable state via thermal activation

Grigoriev, Rubakov, Shaposhnikov 88, 89

Static solution

Periodic bounce

At large T, one expects the decay to occur via classical thermal jumps of 
the field over the barrier.
 

In the WKB, this is described by the static solution — sphaleron.

Periodic bounces dominate at low T     —    tunneling 
Sphaleron dominates at large T             —    thermal jumps
 

Klinkhamer, Manton 84

Phase transition driven by classical fluctuations can be studied 
in real-time lattice simulations 

Exponential suppression of vacuum decay as a 
function of temperature - typical plot

periodic bounces

sphalerons

1 neg. mode

1 neg. mode

>1 neg. mode
unphysical solution

Grigoriev, Rubakov 87
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Black holes and thermal vacuum decay

radiating BH
“The black holes are the most perfect macroscopic objects 
there are in the universe: the only elements in their 
construction are our concepts of space and time… They 
are the simplest objects as well.”

S. Chandrasekhar:

It’s a simple gravitational impurity — curved geometry

It’s a simple source of (almost) thermal radiation — quantum vacuum

BH features:

How is the above picture of thermal vacuum decay 
modified in the presence of black holes?
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BH in equilibrium with 
the environment

In thermal equilibrium, vacuum decay can be treated in the Euclidean time approach
This is not true in the (non-equilibrium) case of BH emitting radiation in vacuum

“The black holes are the most perfect macroscopic objects 
there are in the universe: the only elements in their 
construction are our concepts of space and time… They 
are the simplest objects as well.”

S. Chandrasekhar:

It’s a simple gravitational impurity — curved geometry

It’s a simple source of (almost) thermal radiation — quantum vacuum

BH features:

How is the above picture of thermal vacuum decay 
modified in the presence of black holes?

Previous studies reveal the puzzle: 
the minimal-action O(3)-symmetric configurations were found to be time-independent, 
regardless the BH temperature

It seems that no periodic bounces exist around at least certain classes of BHs. 

Black holes and thermal vacuum decay

Physical understanding? Proof?

We’ll discuss scalar fields in 2d/4d BH backgrounds and neglect gravitational back-reaction.
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Rindler Valley

Consider uniformly accelerating observers  
in flat spacetime in 2d:

— Rindler Frame

trajectories of observers with acc.
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Rindler Valley

Consider uniformly accelerating observers  
in flat spacetime in 2d:

— Rindler Frame

Figure 9: Schematic plot of the family of periodic instantons in Rindler spacetime (left) and
their form in Euclidean time in Cartesian coordinates (right). Red line marks the surface
at which the instanton is continued to real time. From left to right: the collapsing bubble
(brown), the sphaleron (blue), the expanding bubble (green).

We draw one more lesson from the above discussion. Although the Rindler metric is not

homogeneous, there is still a freedom in choosing the center of the instanton x0 in Eq. (4.7),

corresponding to the choice of X0 > 0. This is a nontrivial observation. Shifts in X do

not preserve the position of the horizon. Hence, they are not an isometry of the Rindler

spacetime. Nevertheless, x0 represents a zero mode of the solution. By varying x0, the

branch of periodic instantons is continuously connected to the sphaleron.

Finally, we compute the tunneling action. As usual, we take the general formula (2.53),

substitute the solution in the core (4.7) and integrate over one period of oscillation in Eu-

clidean time, 0 < ⌧ < 2⇡/�. We obtain, as we should, that the action does not depend on

x0 or � and coincides with the action of the flat vacuum bounce (3.21).

Two comments are in order. First, the independence of the action of the position of the

instanton and of temperature might seem counter-intuitive from the viewpoint of a Rindler

observer. However, it follows inevitably from the invariance of the tunneling probability

under changes of the reference frame. Second, note that the Rindler observer does not have

access to the portion of the Minkowski vacuum bubble hidden by the horizon. In particular,

the Rindler sphaleron is only half of the Minkowski bubble on the slice T = 0. It is this half

that we use to compute the sphaleron Rindler energy and the corresponding suppression.

However puzzling it might seem at first, the result we obtain coincides with the full flat-space

integration. This supports the conclusion that parts of spacetime outside the physical wedge

are not relevant for tunneling and one can exclude them completely from consideration.

5 Tunneling in black hole background

We are now ready to address tunneling in the BH background. The field equation has the

form (4.4) with the metric function given by Eq. (2.7). Even if we neglect the mass term,

this equation is not in general exactly solvable. One could try to maintain solvability by

32
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Bounce in the Rindler Frame:

Flat direction — doesn’t depend on     and       — 

trajectories of observers with acc.

Bounce in the 
Minkowski space

Bounce in the Rindler 
wedge

  

Since the decay rate                              ,                         , is frame-independent, then 
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Rindler Valley near BH horizon

Generally, near the BH horizon, in the appropriate coordinates,

becomes big at

tilted due to the BH

The computation shows that              for a large class of BHs 
(including dilaton BH in 2d and Schwarzschild BH in 4d)

Rindler bounces with                  are almost the true tunneling solution around the BH.

 

is then crucial is the configuration closest to 
the actual tunneling solution
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Valleys and Mirrors

Consider the 2d dilaton BH background:

(This is what actually happens for the Boulware bounce)

We can scan across this region with a one-parameter family of configurations.

``Minkowski valley’’

``Rindler valley’’

What if the bounce sits on the barrier?

Put the Neumann mirror at distance                 from the horizon.

Attach the periodic solution to the mirror. If                 , this is the half-thermal bounce.

Move the mirror towards the horizon, see what happens with the solution at 

— whether it decouples from the mirror and retains time-dependence, or 
— whether it collapses to the BH sphaleron

Repeat the exercise with the half-flat space sphaleron as a seed.

Can we do more?
Ω2

eff =
1

e−2λx + 1
+

qe−2λx

(e−2λx + 1)2

Ω2
eff

emulates the centrifugal barrier for massive linear modes
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Fun with the mirrors
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Figure 10. Moving Neumann mirror at � = 0.5. The top plots show the solutions from

the sphaleron branch (above) and the periodic instanton branch (below) at different x⇤.
The bottom-left plot shows the maximum value of the time derivative of the solutions from

the periodic instanton branch, as a function of x⇤. We see that at x⇤ ⇡ �9, the time-

dependence disappears altogether. The bottom-right plot shows the action of the solutions

from the both branches. fig:bh_hh_nm

in a few steps of the Newton-Rapson method. Failing to converge to a solution is an
indication that we are running out of the valley. At a given �, there is a maximal
value of X0 for which the pseudo-instanton can be found, in accordance with fig. 3.

The examples of the pseudo-instantons are shown in fig. 8. There, we take
� = 0.2. Then, we probe different values of X0. At X0 ⇡ 0.7, the center of the
pseudo-instanton is close to the origin. At larger X0, the pseudo-instantons cease

– 15 –

Mirror moves towards the horizon

Evolution of the time-dependent (bottom) and time-independent (top) configurations attached to 
the moving mirror. Scalar field theory with quartic self-interaction in 2d dilaton BH background.
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Maximum value of the time derivative 
of the solution as a function of the 

position of the mirror.

Action of the sphaleron (top line) and the 
periodic solution (bottom line), attached 

to the mirror, as a function of the position 
of the mirror.
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Absence of dipole negative mode
Can we do more?

The evidence comes from counting negative modes of the sphaleron.
(Also see the talk by G. Lavrelashvili at this conference)

We can prove that, for a general multi-scalar theory and a wide class of spherically-symmetric 
BHs in d dimensions, the BH sphaleron has exactly one O(d-1)-symmetric (monopole) negative 
mode at any BH temperature.

2210.08028

(The proof is somewhat technical)

Then, the sufficient condition for the absence of negative modes in the dipole sector and above is

Let

The condition holds for Schwarzschild (anti-)de Sitter BHs.

The condition says nothing about the negative modes violating the spherical symmetry. 
Such modes certainly exist for large BHs in 4d. 

Counter-example: the RN BH with the charge 
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Applications?

Holographic first-order phase transitions 

Maybe?…

… 

Creminelli, Nicolis, Rattazzi 2001

Mishra, Randall 2023

…
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Thank you!



More on bounce at finite temperature

Chudnovsky 92

Garriga 94; Ferrera 95

The bounce-sphaleron transition point was studied in QM and field theory

In the thin-wall approximation, periodic bounces do not merge with the sphaleron — the transition is 1st order.
(The thin-wall sphaleron may not even exist)

They have extra negative modeBranch of p.b.

Sph. branch

Exponential suppression of vacuum decay in 
the thin-wall potential in 3+1 dimension.

This is not an artefact of the approximation.
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