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The Higgs vacuum

The effective Higgs potential has a
false vacuum:

Veff (ϕ) =
1
4
λeff (ϕ)ϕ

4

The effective Higgs potential

D. Buttazzo et al (2013)
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Coleman instantons

S =

∫
d4x

(
1
2
(∂tϕ)

2 − 1
2
(∂xϕ)

2 − V (ϕ)

)
The probability of false vacuum decay
in flat space-time:

P ∼ e−SE

Periodic instantons in a thermal bath
(for the potential V (ϕ)):

TPeriod = β

For a very high temperature T :

P ∼ e−Esph/T

Sidney R. Coleman (1977)

The potential with false vacuum

The Euclidean solution
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False vacuum decay in the presence of BH

Hawking temperature:

TH =
M2

Pl

8πMBH

Conjecture: small black holes have high temperatures =⇒ significantly
increase the decay probability.

P. Burda et al (2016)

A calculation from first principles is needed.

(see also A. Shkerin, S. Sibiryakov (2021))
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Formulation from first principles
Decay probability from functional integral:

P =

∫
DϕfDϕiDϕ

′
i ⟨ϕf | Ŝ |ϕi ⟩ ⟨ϕi | ρ̂ |ϕ

′
i ⟩ ⟨ϕ

′
i | Ŝ† |ϕf ⟩

Fields ϕ and ϕ
′
can be written as a united field on the double-bent time

contour.

Saddle-point approximation:

P ∼ e iS[ϕcl ]+B[ϕcl ]

S.Yu. Khlebnikov et al (1991)

V.A. Rubakov, M.E. Shaposhnikov (1996)

The contour on the complex time plane

S.Yu. Khlebnikov, V.A. Rubakov, P.G. Tinyakov (1991)

V.A. Rubakov, M.E. Shaposhnikov (1996)
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Thermal equilibrium

Period for a thermal equilibrium case:

Tperiod = βH = βE

βH = 8πMBH/M
2
Pl is Hawking

inverse temperature.

Simplified boundary conditions:

∂τϕ(0, x) = ∂τϕ(Tperiod/2, x) = 0

∂xϕ(t,−∞) = ∂xϕ(t,∞) = 0
Euclidean part of the contour
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Scalar field in Schwarzschild metric

S =

∫ √
−gd4x

(
1
2
gµν∂

µϕ∂νϕ− V (ϕ)

)

ds2 = f (r) dt2 − dr2

f (r)
− r2dΩ2, f (r) = 1 − 2M

r
, MPl = 1

Substitution:
ϕ =

φ

r
, x = r + 2M ln (r − 2M) ,

S = 4π
∫

dtdx

(
1
2
(∂tφ)

2 − 1
2
(∂xφ)

2 − 1
2
U (x)φ2 − r2f (r)V

(φ
r

))
,
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The toy potential:

V (ϕ) =
m2

2
ϕ2 − m

√
λ

2
ϕ3 +

λ

8
(1 − ε)ϕ4

We set the parameter ϵ = 0.1, then the thin wall approximation is valid.

The potential V used in this work
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Numerical results

We use the Newton-Raphson method to solve the system of nonlinear
equations.

An instanton in flat space-time,
Nt ∗ Nx = 150 ∗ 150

An instanton in flat space-time at t = 0
(dots), the thin wall approximation
(line), Nt ∗ Nx = 150 ∗ 150
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(a) mT/2 = 100 (b) mT/2 = 85 (c) mT/2 = 80

(d) mT/2 = 79.7 (e) mT/2 = 79.6 (f) mT/2 = 78.6

Periodic instantons with different periods in the presence of BH mrh = 2Mm
M2

Pl
= 12,

(Nt ∗ Nx = 100 ∗ 300). Period and mass of BH are independent parameters here.
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(a) (b)

The dependence of the action of instantons SE on the period T for non-trivial
instantons (blue) and sphalerons (red), mrh = 2Mm

M2
Pl

= 12

(mTphys = mβH = 8πMm/M2
Pl = 75.4).
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The dependence of the action of instantons SE on the inverse temperature of the
environment β in the presence of BH (dots) (mβ = mβH = 8πMm

M2
Pl

) and in the
absence of BH (blue line).
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Conclusions

Physical solution at β = βH are always static sphalerons for the
potential used in this work.
β → 0: sphalerons with BH approach flat-space sphalerons. It means
that a small BH doesn’t significantly change a sphaleron in a very hot
environment.
β → ∞: a large massive BH changes the geometry of space =⇒
sphalerons change too.
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Further research

Nonequilibrium case β ̸= βH =⇒ a new contour and new boundary
conditions

More realistic potentials: V (ϕ) = −λϕ4/4
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