Non-perturbative probability distribution function for cosmological counts in cells

#### Anton Chudaykin arXiv: 2212.09799 JCAP 08 (2023) 079





### CMB and LSS analysis



## Information beyond linear physics

**Fisher Forecast** 



Philcox, et al., 2023

## Cosmological counts in cells

$$\mathcal{P}(\delta_*)$$
 - probability that a cell of radius  $r_*$  has averaged density contrast  $\delta_*$ 

d

$$\alpha \sim g(z)^2 \sigma_{r_*}^2 \ll 1 \qquad \qquad \sigma_{r_*}^2 = \langle \delta^2 \rangle_{r_*}$$

$$(\delta_*)r_*$$

$$\mathcal{P}(\delta_{*}) = \exp \left\{ -\frac{1}{\alpha} (a_{0} + \alpha a_{1} + ...) \right\}$$
Saddle point solution
('instanton')
efined by spherical collapse
(Valageas'02)
$$\mathcal{P}$$
Prefactor
('determinant')
from perturbations around
the saddle point solution
(M.M. Ivanov'19)

### Cosmological counts in cells

$$\mathcal{P}(\delta_*) = \mathcal{N}^{-1} \int \mathcal{D}\delta_L \exp\left\{-\int_{\mathbf{k}} \frac{|\delta_L(\mathbf{k})|^2}{2g^2 P(k)}\right\} \,\delta_D^{(1)}\big(\delta_* - \bar{\delta}_W[\delta_L]\big)$$

$$\mathcal{P}(\delta_*) \propto \exp\left\{-\frac{F^2(\delta_*)}{2g^2\sigma_{R_*}^2}
ight\}$$

$$\bar{\delta}_W = \int \frac{d^3x}{r_*^3} \,\tilde{W}(r/r_*) \,\delta(\mathbf{x}) = \int_{\mathbf{k}} W(kr_*) \delta(\mathbf{k})$$

 $\mathcal{P} = \mathcal{P}_{SP} \times \mathcal{A}_{ASP}$ 

$$\delta_L \equiv F \qquad \qquad R_* = r_* (1 + \delta_*)^{1/3}$$

$$\mathcal{P}(\delta_*) = \mathcal{A}_0 \cdot \prod_{\ell > 0} \mathcal{A}_\ell(\delta_*) \cdot \exp\left\{-\frac{F^2(\delta_*)}{2g^2 \sigma_{R_*}^2}\right\}$$

Aspherical prefactor can be calculated on grid numerically

#### Semiclassical scaling



Semiclassical scaling persists down to very small  $r_{st}$ 

#### Redshift dependence



Aspherical prefactor is almost redshift-independent

#### Fluctuation determinant



Computations use <a href="https://github.com/Michalychforever/AsPy">https://github.com/Michalychforever/AsPy</a>

### Aspherical prefactor from data



#### Aspherical perturbations



### Growth factor in non-linear background

$$\left\langle \varpi^2 \right\rangle_{k_{\max}} \approx 4\pi \int^{k_{\max}} [dk] P(k) \left[ D(\eta; R) \right]^2 \qquad \qquad \varkappa \equiv \frac{k}{\ell + 1/2} \\ \tilde{\Theta}_{\ell} = \Theta_{\ell}(\ell + 1/2) \\ D(\eta; R) \approx \left( \int_{1/R_*}^{\infty} \frac{d\varkappa}{(2\pi)^2 \varkappa} \left| \int_{-\infty}^{\eta} d\eta' \tilde{\Theta}_{\ell 1}(\eta', R; \varkappa) \right|^2 \right)^{1/2}$$

Assuming power-law Universe  $P(k) \propto k^n$ 





### Shell crossing scale



#### Effective stress tensor

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{am} \cdot \nabla f - am \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$

 $\delta_{\text{tot}} = \delta + \delta^s$  $u_{\text{tot},i} = u_i + u_i^s$  $\Phi_{\text{tot}} = \Phi + \Phi^s$ 

$$\delta(\mathbf{x}) \equiv \int_{x'} W_{\Lambda}(|\mathbf{x} - \mathbf{x}'|) \delta_{\text{tot}}(\mathbf{x}')$$
...

$$\frac{\partial \delta}{\partial t} + \partial_i \left( (1+\delta)u_i \right) = 0$$
$$\frac{\partial u_i}{\partial t} + \mathcal{H}u_i + (u_j\partial_j)u_i + \partial_i \Phi = -\frac{1}{1+\delta}\partial_j \tau_{ij}$$

$$\tau_{ij} = (1+\delta)\sigma_{ij}^{l} + \frac{2}{3\mathcal{H}^{2}} \left( [\partial_{i}\Phi^{s}\partial_{j}\Phi^{s}]^{l} - \frac{1}{2}\delta_{ij}[\partial_{k}\Phi^{s}\partial_{k}\Phi^{s}]^{l} \right)$$
D. Baumann et al., 2012

'kinetic' part

$$\sigma_{ij}^l = \frac{\int (v_i - u_i^l)(v_j - u_j^l)f^l d^3 p}{\int f^l d^3 p} , \qquad v_i \equiv \frac{p_i}{am}$$

'potential' part crucial for decoupling virial scales from long-wavelength dynamics

### Fluid description

 $1/R_* \ll k_1 < k < k_2 \ll k_{\rm sc}$ 

Averaging over initial conditions  $\sigma_{ij}^{l} = \langle u_i^{(1)} u_j^{(1)} \rangle = \mathcal{H}^2 \langle \partial_i \Psi^{(1)} \partial_j \Psi^{(1)} \rangle$ 

Expanding up to the quadratic order and averaging over the angles...

$$\delta_0 = \hat{\delta}_0 + \delta_0^{(2)}$$
$$\Theta_0 = \hat{\Theta}_0 + \Theta_0^{(2)}$$
$$\Phi_0 = \hat{\Phi}_0 + \Phi_0^{(2)}$$

$$\Upsilon^{a}(\eta) = \frac{1}{\mathcal{H}^{2}(1+\hat{\delta})} \partial_{j} \tau^{a}_{ij} \Big|_{i \to r}, \qquad a = \text{kin, pot}$$

 $\Upsilon^{\rm pot},\,\Upsilon^{\rm kin}\,$  receive sizable contributions from short modes and must be renormalized

## Counterterm model

Counterterm should scale as

$$\tau_{\alpha}^{a,\text{ctr}} \sim 2\mathcal{H}^2 \int_{k_{\text{sc}}}^{\infty} \frac{dk P(k)}{(2\pi)^3} \cdot \int \frac{d\varkappa}{\varkappa} \chi_{\alpha}^a$$

$$\tau_{\alpha}^{a,\mathrm{ctr}}(\eta,R) = \boldsymbol{\zeta}^{a} \cdot 2\mathcal{H}^{2} \left( D(\eta,R) \right)^{m-2} \int_{R^{-1}}^{\infty} \frac{d\varkappa}{\varkappa} \chi_{\alpha}^{a}(\eta,R;\varkappa) , \qquad a = \mathrm{kin}, \mathrm{pot}; \quad \alpha = \parallel, \perp$$

$$\Upsilon^{a}(\eta) = 2\zeta^{a}[D_{*}(\eta)]^{m-2} \left[ \int_{R_{*}^{-1}}^{\infty} \frac{d\varkappa}{\varkappa} \, \upsilon^{a}(\eta;\varkappa) + \frac{(m-2)[\ln D_{*}(\eta)]'}{1+\hat{\delta}|_{\eta,\hat{r}(\eta)}} \int_{R_{*}^{-1}}^{\infty} \frac{d\varkappa}{\varkappa} \, \chi^{a}(\eta,R_{*};\varkappa) \right]$$

$$\mathcal{A}^{ ext{ctr}} = \mathcal{A}^{ ext{kin}} \cdot \mathcal{A}^{ ext{pot}}$$

Time dependence 
$$\ln[\mathcal{A}^{ctr}] \propto [g(z)]^{m-2}$$

#### $r_*$ -dependence of counterterm prefactor

$$\zeta^{\rm kin} = \zeta^{\rm pot} = (1 \,{\rm Mpc}/h)^2, \quad m = 2.33$$



#### *m*-dependence of counterterm prefactor

$$\zeta^{\rm kin} = \zeta^{\rm pot} = (1 \,{\rm Mpc}/h)^2, \quad r_* = 10 \,{\rm Mpc}/h$$



# Theoretical model



## Aspherical prefactor

$$\mathcal{A}_{\mathrm{ASP}}^{\mathrm{data}}(\delta_i) = rac{\mathcal{P}_{\mathrm{data}}(\delta_i)}{\langle \mathcal{P}_{\mathrm{SP}} \rangle_i}$$

 $-2\ln\mathcal{L} = (\langle \mathcal{A}_{\rm ASP}^{\rm theory} \rangle_i - \mathcal{A}_{\rm ASP}^{\rm data}(\delta_i))(C_{ij}^{\rm stat})^{-1}(\langle \mathcal{A}_{\rm ASP}^{\rm theory} \rangle_j - \mathcal{A}_{\rm ASP}^{\rm data}(\delta_j)) + (\gamma_0, m)^{\rm T}C(\gamma_0, m)$ 

# Aspherical prefactor

$$\mathcal{A}_{\mathrm{ASP}}^{\mathrm{data}}(\delta_i) = rac{\mathcal{P}_{\mathrm{data}}(\delta_i)}{\langle \mathcal{P}_{\mathrm{SP}} 
angle_i}$$

 $-2\ln\mathcal{L} = (\langle \mathcal{A}_{\rm ASP}^{\rm theory} \rangle_i - \mathcal{A}_{\rm ASP}^{\rm data}(\delta_i))(C_{ij}^{\rm stat})^{-1}(\langle \mathcal{A}_{\rm ASP}^{\rm theory} \rangle_j - \mathcal{A}_{\rm ASP}^{\rm data}(\delta_j)) + (\gamma_0, m)^{\rm T}C(\gamma_0, m)$ 



## Results for R=15 Mpc/h

 $\chi^2_{\rm best-fit}/N_{\rm dof} = 0.88 \,(0.3\sigma)$ 



## Results for R=10 Mpc/h

 $\chi^2_{\rm best-fit}/N_{\rm dof} = 0.99 \,(0.6\sigma)$ 



## Results for R=7.5 Mpc/h

 $\chi^2_{\rm best-fit}/N_{\rm dof} = 1.80 \, (5.3\sigma)$ 



## Results for R=5 Mpc/h

 $\chi^2_{\rm best-fit}/N_{\rm dof} = 9.74\,(25\sigma)$ 



## Results for R=5 Mpc/h

 $\chi^2_{\rm best-fit}/N_{\rm dof} = 9.74\,(25\sigma)$ 



# Sensitivity to $\sigma_8$



PDF is sensitive to the value of  $\sigma_8$  at sub-per cent level

### Filtered n-point correlators

|                           |         | norm - 1             | $\langle \delta_* \rangle$ | $\langle \delta_*^2 \rangle$ | $\sigma^2_{ m EFT}$ | $\langle \delta_*^3 \rangle / \langle \delta_*^2 \rangle^2$ |
|---------------------------|---------|----------------------|----------------------------|------------------------------|---------------------|-------------------------------------------------------------|
| $r_* = 15 \mathrm{Mpc}/h$ | z = 0   | $-6.2 \cdot 10^{-3}$ | $-7.1 \cdot 10^{-3}$       | 0.260                        | 0.262               | 3.35                                                        |
|                           | z = 0.5 | $-2.9 \cdot 10^{-3}$ | $-3.1 \cdot 10^{-3}$       | 0.153                        | 0.154               | 3.30                                                        |
|                           | z = 1   | $-1.3 \cdot 10^{-3}$ | $-1.3 \cdot 10^{-3}$       | 0.095                        | 0.095               | 3.27                                                        |
|                           | z = 2.4 | $-3.3\cdot10^{-5}$   | $-5.6 \cdot 10^{-5}$       | 0.035                        | 0.035               | 3.23                                                        |
| $r_* = 10 \mathrm{Mpc}/h$ | z = 0   | $-3.7 \cdot 10^{-4}$ | $-2.1 \cdot 10^{-3}$       | 0.533                        | 0.532               | 3.63                                                        |
|                           | z = 0.5 | $1.2\cdot 10^{-4}$   | $-6.7 \cdot 10^{-4}$       | 0.306                        | 0.304               | 3.65                                                        |
|                           | z = 1   | $2.8\cdot 10^{-4}$   | $-2.9 \cdot 10^{-4}$       | 0.185                        | 0.185               | 3.56                                                        |
|                           | z = 2.4 | $3.3\cdot10^{-4}$    | $6.4 \cdot 10^{-5}$        | 0.067                        | 0.067               | 3.45                                                        |

PDF reproduces the EFT filtered density variance with sub-per cent accuracy

# Conclusions

- ☑ Three-parametric model for couterterm prefactor is in excellent agreement with N-body data for  $r_* \ge 10$  Mpc/h
- ✓ For r<sub>\*</sub><10 Mpc/h the 2-loop order correction at the the origin comes into play - theoretical error is needed!
- ✓ The renormolized theory describe the N-body data for r<sub>\*</sub>=5 Mpc/h with 10% accuracy

Priors:

 $\gamma_0 = (1.95 \pm 0.26) (Mpc/h)^2$ ,  $m = 2.26 \pm 0.21$ ,  $corr(\gamma_0, m) = 0.85$