# AdS/CFT, Wilson loops and M2-branes 

Arkady Tseytlin

work with S. Giombi and M. Beccaria
arXiv:2303.15207, 2307.14112, 2309.10786


# Modeling macroscopic and baby universes by fundamental strings 

V. A. Rubakov<br>Institute for Nuclear Research of the Russian Academy of Sciences,<br>60th October Anniversary prospect 7a, Moscow 117312

May 1995


#### Abstract

We develop a model of $(1+1)$-dimensional parent and baby universes as macroscopic and microscopic fundamental closed strings. We argue, on the basis of understanding of strings from the point of view of target $D$-dimensional space-time, that processes involving baby universes/wormholes not only induce $c$-number " $\alpha$-parameters" in $(1+1) d$ action, but also lead to loss of quantum coherence for a $(1+1) d$ observer in the parent universe.


hep-th/9505159

# STRINGS AS A MODEL FOR PARENT AND BABY UNIVERSES: TOTAL SPLITTING RATES 

Kh. S. Nirov ${ }^{1}$ and V. A. Rubakov ${ }^{2}$<br>Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312

## Abstract

Emission of hard microscopic string (graviton) by an excited macroscopic string may be viewed as a model of branching of a ( $1+1$ )-dimensional baby universe off large parent one. We show that, apart from a trivial factor, the total emission rate is not suppressed by the size of the macroscopic string. This implies unsuppressed loss of quantum coherence in $(1+1)$-dimensional parent universe.

[^0]QFT: major problem - beyond perturbation theory
how to compute path integral exactly?
e.g. $\operatorname{SU}(N)$ SYM : $\quad \lambda=g_{Y M}^{2} N$, large $N$

$$
F(\lambda, N)=N^{2} F_{0}(\lambda)+F_{1}(\lambda)+\frac{1}{N^{2}} F_{2}(\lambda)+\ldots, \quad F_{n}(\lambda)=?
$$

remarkable progress in superconformal theories
using combination of different methods

1. Integrability: anomalous dims in 4 d and 3d conformal theories as exact functions of $\lambda=g_{Y M}^{2} N$ at large $N$
2. Localization: some supersymmetric observables
(free energy on $S^{d}$, Wilson loop expectation value, few correlators)
computed exactly in $g_{\mathrm{YM}}$ and $N$
3. Bootstrap: constraints from symmetries and general principles
4. AdS/CFT as a guide
(un)related questions:
non-perturbative string theory?
what is 11d M-theory?
theory of quantum supermembranes?
recent developments provide novel clues ...

## AdS/CFT: 26 years

basic examples:

$$
\begin{aligned}
& \mathcal{N}=4, d=4 \mathrm{SYM} \leftrightarrow \mathrm{AdS}_{5} \times S^{5} \text { string } \\
& \mathcal{N}=6, d=3 \text { Chern-Simmons }+ \text { matter }(\mathrm{ABJM}) \\
& \\
& \leftrightarrow \mathrm{AdS}_{4} \times \mathrm{CP}^{3} \text { string or M-theory on } \mathrm{AdS}_{4} \times S^{7}
\end{aligned}
$$

- quantitative understanding of duality in planar limit based on integrability
- beyond planar limit: recent progress using localization

| $\mathrm{N}=4 \mathrm{SYM}$ | String theory in $\mathrm{AdS}^{5} \times \mathrm{S}^{5}$ |
| :---: | :---: |
| Yang-Mills coupling: $g_{Y M}$ <br> Number of colors: $N$ | String coupling: $g_{s}$ <br> String tension: $T$ |
| Level 1: Exact equivalence |  |
| $g_{s}=g_{Y M}^{2} / 4 \pi, \quad T=\sqrt{g_{Y M}^{2} N} / 2 \pi$ |  |
| Level 2: Equivalence in the 't Hooft limit |  |
| $\begin{gathered} N \rightarrow \infty, \quad \lambda=g_{Y M}^{2} N \text {-fixed } \\ \text { (planar limit) } \\ \hline \end{gathered}$ | $\begin{gathered} g_{s} \rightarrow 0, \quad T \text {-fixed } \\ \text { (non-interacting strings) } \end{gathered}$ |
| Level 3: Equivalence at strong coupling |  |
| $N \rightarrow \infty, \quad \lambda \gg 1$ | $g_{s} \rightarrow 0, \quad T \gg 1$ |

Integrability:

- spectrum of classical (genus 0) $\mathrm{AdS}_{5} \times S^{5}$ string theory
- anomalous dimensions of $N=\infty$ gauge theory:
$\mathcal{O}=\operatorname{Tr}\left(\Phi^{*} D^{S} \Phi\right): \quad \Delta(S, \lambda)=S+2+f(\lambda) \log S+\ldots$
$f(\lambda)=c_{1} \sqrt{\lambda}+c_{2}+\frac{c_{3}}{\sqrt{\lambda}}+\ldots . \quad T=\frac{L^{2}}{2 \pi \alpha^{\prime}}=\frac{\sqrt{\lambda}}{2 \pi}$
- beyond planar limit - finite $N$ or string loop corrections?


## Localization:

- reduction of SYM path integral to $N \times N$ matrix integral

$$
\left.\int[d a] M[a] \exp \left[-\frac{N}{g_{\mathrm{YM}}^{2}} \operatorname{Tr} a^{2}\right] \quad \text { [Pestun } 2007\right]
$$

computes special susy observables for any $N$ and $\lambda=g_{\mathrm{YM}}^{2} N$

- examples: free energy on $S^{4}$ and susy Wilson loop expectation value
- $\mathcal{N}=2$ superconformal 4d models: SYM + hypermultiplets:
$F(N, \lambda)$ from matrix model in $1 / N$ expansion e.g. for $S U(N) \times S U(N)$ quiver $\operatorname{model}\left(\mathbb{Z}_{2}\right.$ quotient of $\left.\mathcal{N}=4 S Y M\right)$

$$
\begin{gathered}
F=N^{2} F_{0}+F_{1}+\frac{1}{N^{2}} F_{2}+\ldots, \quad F_{0} \sim \log \lambda=F_{\mathcal{N}=4 S Y M} \\
F_{1}=\frac{1}{4} \lambda^{1 / 2}-\log \lambda^{1 / 2}-\frac{3}{32} \frac{\zeta(3)}{\lambda^{3 / 2}}-\frac{135}{256} \frac{\zeta(5)}{\lambda^{5 / 2}}+\ldots
\end{gathered}
$$

match string theory on $\mathrm{AdS}_{5} \times S^{5} / \mathbb{Z}_{2} \quad$ [Beccaria, Korchemsky, AT 2022]
$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}: 3 \mathrm{~d} U_{k}(N) \times U_{-k}(N) \mathrm{CS}+$ matter (ABJM)
dual to superstring theory in $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$
in planar limit $\left(N \rightarrow \infty, k \rightarrow \infty, \lambda=\frac{N}{k}=\right.$ fixed $)$
beyond planar limit - finite $k$ - dual to 11d M-theory in $\operatorname{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$

## Aims:

- use localization to check $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ for finite $k$ :
match quantum M2-brane correction and ABJM theory localization results
(1-loop M2: sum of $\infty$ set of string loop corrections)
- existence of quantum supermembrane theory?
formally non-renormalizable
but semiclassical 1-loop computations are well-defined
- novel evidence that semiclassical quantization of M2 brane is under control: matching localization results highly non-trivial check of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$
bosonic membrane action [Dirac 1962]

$$
S=-T_{2} \int d^{3} \sigma \sqrt{-\operatorname{det} g}, \quad g_{a b}=\eta_{\mu \nu} \partial_{a} X^{\mu} \partial_{b} X^{v}
$$

can gauge-fix only 3 out of 6 components of $3 d$ metric $\rightarrow$ non-linear action in any gauge (cf. string)
formally non-renormalizable; instabilities
but susy version may have improved quantum properties

UV finite despite formal power-counting nonrenormalizability? may be true for supermembrane in supersymmetric $\mathrm{AdS}_{4} \times S^{7}$ dual to superconformal 3d gauge theory

11d supergravity and M2 brane
$S_{11}=\frac{1}{2 \kappa_{11}^{2}} \int d^{11} x \sqrt{-G}\left(R-\frac{1}{2 \cdot 4!} F_{m n k \ell} F^{m n k \ell}+\cdots\right), \quad F=d C_{3}$

- M2 brane solution [Duff, Stelle 90]

$$
\begin{gathered}
d s^{2}=H^{-2 / 3}(y) d x^{m} d x_{m}+H^{1 / 3}(y) d y^{r} d y_{r}, \quad C_{m n k}=H^{-1} \epsilon_{m n k} \\
H=1+\frac{Q}{y^{6}}, \quad Q \sim N
\end{gathered}
$$

"near-horizon" limit is $\mathrm{AdS}_{4} \times S^{7}: d s_{11}^{2} \sim\left(y^{4} d x^{m} d x_{m}+\frac{d y^{2}}{y^{2}}\right)+d S^{7}$

$$
d s_{11}^{2}=\mathrm{L}^{2}\left(\frac{1}{4} d s_{\mathrm{AdS}_{4}}^{2}+d s_{S^{7}}^{2}\right), \quad F_{4}=d C_{3} \sim N \epsilon_{4}, \quad\left(\frac{\mathrm{~L}}{\ell_{P}}\right)^{6}=32 \pi^{2} N
$$

- collective coordinates $\rightarrow$ M2 action: [Bergshoeff, Sezgin,Townsend 87]

$$
S_{\mathrm{M} 2}=T_{2} \int d^{3} \sigma\left[\sqrt{-\operatorname{det} g_{m n}}+\hat{C}_{3}\right]
$$

$$
\begin{gathered}
g_{m n}=G_{M N}(x) \Pi_{m}^{M} \Pi_{n}^{N}+\ldots, \quad \hat{C}_{3}=\frac{1}{6} \epsilon^{m n k} C_{M N K}(x) \Pi_{m}^{M} \Pi_{n}^{N} \Pi_{k}^{K} \\
\Pi_{m}^{M}=\partial_{m} x^{M}-i \bar{\theta} \Gamma^{M} \partial_{m} \theta,
\end{gathered} x^{M}=x^{M}(\sigma), ~ \$
$$

- parameters

$$
2 \kappa_{11}^{2}=(2 \pi)^{8} \ell_{P}^{9}, \quad T_{2}=\left(\frac{2 \pi^{2}}{\kappa_{11}^{2}}\right)^{1 / 3}=\frac{1}{(2 \pi)^{2} \ell_{P}^{3}}
$$

- relation to 10 d string: $\quad S=\frac{1}{2 r_{10}^{2}} \int d^{10} x \sqrt{G} e^{-2 \phi}(R+\ldots)$

$$
\begin{aligned}
d s_{11}^{2} & =e^{-\frac{2}{3} \phi} d s_{10}^{2}+e^{\frac{4}{3} \phi}\left(d x^{11}+e^{-\phi} A\right)^{2}, \quad x_{11} \sim x_{11}+2 \pi R_{11} \\
g_{s} & =e^{\phi} ; \quad 2 \kappa_{10}^{2}=(2 \pi)^{7} g_{s}^{2} \alpha^{4}
\end{aligned}
$$

- "double dimensional reduction": [Duff, Howe, Inami, Stelle 87]

M2 action in 11d background $\rightarrow$ superstring action in 10d background

- string theory - theory of quantum strings

M-theory - theory of quantum M2 branes?

- analogy: theory on $N$ D3 branes $\rightarrow \operatorname{SU}(N) \mathcal{N}=4$ SYM one M2-brane: $\mathcal{N}=83 \mathrm{~d}$ scalar multiplet $\left(x^{i}, \theta^{i}\right)$ theory on $N$ coincident M2 branes?
3d superconf theory dual to M-theory in $\mathrm{AdS}_{4} \times S^{7}$ [Maldacena 97]
- can be defined as $k=1$ case of more general 3d theory dual to M-theory on $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ to have perturbative theory requires extra parameter $k$

ABJM theory: [Aharony, Bergman, Jafferis, Maldacena 08]
$N$ M2 branes on $M^{11}=R^{1,2} \times \mathbb{R}^{8} / \mathbb{Z}_{k}$

- described by $U_{k}(N) \times U_{-k}(N)$

3d Chern-Simons + matter $\mathcal{N}=6$ superconformal theory
$\mathcal{N}=8$ susy restored for $k=1$

- fields: $A_{m}, \tilde{A}_{m}$; bi-fundamental 4 scalars $\phi^{A}$ and 4 fermions $\psi_{A}$

$$
\begin{aligned}
S & =k \int d^{3} x\left[L_{C S}(A)-L_{C S}(\tilde{A})+|D \phi|^{2}+V(\phi)+\bar{\psi} D \psi+\bar{\psi} \psi \phi^{\dagger} \phi\right] \\
L_{C S} & =\epsilon^{m n k} \operatorname{Tr}\left(A_{m} \partial_{n} A_{k}+\frac{2}{3} A_{m} A_{n} A_{k}\right), \quad V=\operatorname{Tr}\left(\phi \phi^{\dagger} \phi \phi^{\dagger} \phi \phi^{\dagger}\right)+\ldots
\end{aligned}
$$ integer parameters $N$ and $k$ (analog of $\frac{1}{g_{\mathrm{YM}}^{2}}$ in YM case)

- 3d superconformal gauge theory is dual to:
(i) in "string" regime $=$ large $N$, large $k, \lambda \equiv \frac{N}{k}=$ fixed: 10 d superstring on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$
(ii) in "M-theory" regime $=$ large $N$, fixed $k$ : M-theory on $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$

$$
d s_{11}^{2}=\mathrm{L}^{2}\left(\frac{1}{4} d s_{A d s_{4}}^{2}+d s_{S^{7} / \mathbb{Z}_{k}}^{2}\right), \quad \mathrm{L}=\left(2^{5} \pi^{2} N k\right)^{1 / 6} \ell_{P}
$$

$S^{7}$ as $S^{1}$ fibration over $\mathrm{CP}^{3}$ and $\mathbb{Z}_{k}$ quotient

$$
\begin{gathered}
d s_{S^{7} / \mathbb{Z}_{k}}^{2}=d s_{\mathrm{CP}^{3}}^{2}+(d \varphi+\mathrm{A})^{2}, \quad \varphi \equiv \varphi+2 \pi k \\
d s_{{ }_{\mathrm{CP}}{ }^{3}}^{2}=\frac{d w^{s} d \bar{w}^{s}}{1+|w|^{2}}-\frac{w_{r} \bar{w}_{s}}{\left(1+|w|^{2}\right)^{2}} d w w^{s} d \bar{w}^{r}, \quad d \mathrm{~A}=i\left[\frac{\delta_{s r}}{1+|w|^{2}}-\frac{w_{s} \bar{w}_{r}}{\left(1+|w|^{2}\right)^{2}}\right] d w^{r} \wedge d \bar{w}^{s} \\
d s_{10}^{2}=L^{2}\left(\frac{1}{4} d s_{A d S_{4}}^{2}+d s_{\mathrm{CP}^{3}}^{2}\right), \quad L=g_{\mathrm{s}}^{1 / 3} \mathrm{~L} \\
g_{\mathrm{s}}=\left(\frac{\mathrm{L}}{k \ell_{P}}\right)^{3 / 2}=\frac{\sqrt{\pi}(2 \lambda)^{5 / 4}}{N}, \quad \lambda=\frac{N}{k}, \quad T=\frac{L_{\mathrm{ads}}^{2}}{2 \pi \alpha^{\prime}}=\frac{\sqrt{\lambda}}{\sqrt{2}} \\
\frac{g_{\mathrm{s}}^{2}}{8 \pi T}=\frac{\lambda^{2}}{N^{2}}=\frac{1}{k^{2}}
\end{gathered}
$$

- M-theory expansion: $\frac{\mathrm{L}}{\ell_{P}} \gg 1$ or large $N$ for fixed $k=1,2, \ldots$

$$
\mathrm{T}_{2} \equiv \mathrm{~L}^{3} \mathrm{~T}_{2}=\frac{1}{\pi} \sqrt{N k} \gg 1
$$

special "observable": $\frac{1}{2}$ supersymmetric Wilson loop

- find dual minimal 3-surface : probe M2 brane intersecting $\mathrm{AdS}_{4}$ boundary (multiple M2's) over line or circle
- compute M2 partition function for $\mathrm{T}_{2} \gg 1$ compare to large $N$, fixed $k$ expansion of WL from localization


## Plan:

- localization results for WL in SYM and ABJM
- matching leading order string theory results
- higher genus strong coupling terms $\sum_{n} c_{n}\left(\frac{g_{s}^{2}}{T}\right)^{n}$ :
$\exp \left(c_{1} \frac{g_{s}^{2}}{T}\right)$ in SYM and $\left(\sin \frac{2 \pi}{k}\right)^{-1}=\left(\sin \frac{g_{\mathrm{s}}}{\sqrt{T}}\right)^{-1}$ in ABJM
- $\left(\sin \frac{2 \pi}{k}\right)^{-1}$ as 1-loop M2 brane contribution
- generalizations


## $\frac{1}{2}$ BPS circular WL in SYM and ABJM

- $\mathcal{N}=4 \operatorname{SU}(N)$ SYM: $\quad \mathcal{W}=\operatorname{Tr} P e^{\int(i A+\Phi)}$

Localization $\rightarrow$ Gaussian matrix model: any $N, g_{\mathrm{YM}}^{2}$ [Erickson, Semenoff, Zarembo 00; Drukker, Gross 01; Pestun 07]

$$
\begin{aligned}
& \langle\mathcal{W}\rangle=e^{\frac{N-1}{8 N} g_{\mathrm{YM}}^{2}} L_{N-1}^{1}\left(-\frac{1}{4} g_{\mathrm{YM}}^{2}\right) \\
& L_{n}^{1}(x) \equiv \frac{1}{n!\frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)}
\end{aligned}
$$

Large $N$, fixed $\lambda=N g_{\mathrm{YM}}^{2}$ :

$$
\begin{aligned}
\langle\mathcal{W}\rangle & =N\left[\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})+\frac{\lambda}{48 N^{2}} I_{2}(\sqrt{\lambda})+\ldots\right] \\
\lambda & \gg 1: \quad\langle\mathcal{W}\rangle=\frac{N}{\lambda^{3 / 4}} \sqrt{\frac{2}{\pi}} e^{\sqrt{\lambda}}+\ldots
\end{aligned}
$$

ABJM: analogous $\frac{1}{2}$ BPS operator $\mathcal{W}=\operatorname{Tr} P e^{\int\left(i A+\phi^{*} \phi+\ldots\right)}$ Localization matrix model (two bi-fundamental scalars)
$Z(N, k)=\int d^{N} x_{i} d^{N} y_{i} M\left(x_{i}, y_{j}\right) \exp \left[i \frac{k}{4 \pi} \sum_{i=1}^{N}\left(x_{i}^{2}-y_{i}^{2}\right)\right]$
$M\left(x_{i}, y_{j}\right)=\prod_{i, j=1}^{N}\left[\sinh \frac{x_{i}-x_{j}}{2} \sinh \frac{y_{i}-y_{j}}{2}\left(\cosh \frac{x_{i}-y_{j}}{2}\right)^{-2}\right]$
for any $N, k>2:\langle\mathcal{W}\rangle=\left\langle\exp \sum_{i} x_{i}\right\rangle$
[Drukker, Marino, Putrov 10; Klemm, Marino, et al 12]

$$
\langle\mathcal{W}\rangle=\frac{1}{2 \sin \frac{2 \pi}{k}} \frac{\mathrm{Ai}\left[\left(\frac{\pi^{2}}{2} k\right)^{1 / 3}\left(N-\frac{k}{24}-\frac{7}{3 k}\right)\right]}{\mathrm{Ai}\left[\left(\frac{\pi^{2}}{2} k\right)^{1 / 3}\left(N-\frac{k}{24}-\frac{1}{3 k}\right)\right]}
$$

- "M-theory" regime: large $N$ at fixed $k$ :

$$
\begin{aligned}
& \left.\operatorname{Ai}(x)\right|_{x \gg 1} \simeq \frac{e^{-\frac{2}{3} x^{3 / 2}}}{2 \sqrt{\pi} x^{1 / 4}} \sum_{n=0}^{\infty} \frac{\left(-\frac{3}{4}\right)^{n} \Gamma\left(n+\frac{5}{6}\right) \Gamma\left(n+\frac{1}{6}\right)}{2 \pi n!x^{3 n / 2}} \\
& \langle\mathcal{W}\rangle=\frac{1}{2 \sin \frac{2 \pi}{k}} e^{\pi \sqrt{\frac{2 N}{k}}}\left[1-\frac{\pi\left(k^{2}+32\right)}{24 \sqrt{2} k^{3 / 2}} \frac{1}{\sqrt{N}}+\mathcal{O}\left(\frac{1}{N}\right)\right]
\end{aligned}
$$

- "string" regime: $N, k \gg 1, \lambda=\frac{N}{k}=$ fixed

$$
\langle\mathcal{W}\rangle=\frac{1}{2 \sin \frac{2 \pi \lambda}{N}} e^{\pi \sqrt{2 \lambda}}\left[1-\frac{\pi}{24 \sqrt{2}} \frac{1}{\sqrt{\lambda}}+\mathcal{O}\left(\frac{1}{N}\right)\right]=\frac{N}{4 \pi \lambda} e^{\pi \sqrt{2 \lambda}}[1+\ldots]
$$

- dual string in $\mathrm{AdS}_{5} \times S^{5}$ and $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$

SYM : $\quad g_{\mathrm{s}}=\frac{g_{\mathrm{YM}}^{2}}{4 \pi}=\frac{\lambda}{4 \pi N}, \quad T=\frac{\sqrt{\lambda}}{2 \pi}, \quad \lambda=g_{\mathrm{YM}}^{2} N$
ABJM: $\quad g_{\mathrm{s}}=\frac{\sqrt{\pi}(2 \lambda)^{5 / 4}}{N}, \quad T=\frac{\sqrt{\lambda}}{\sqrt{2}}, \quad \lambda=\frac{N}{k}$
$\langle\mathcal{W}\rangle=$ disk partition function near $\operatorname{AdS}_{2}$ minimal surface


$$
\begin{gathered}
\langle\mathcal{W}\rangle=Z_{\mathrm{str}}=\frac{1}{g_{\mathrm{s}}} \mathrm{Z}_{1}+\mathcal{O}\left(g_{\mathrm{s}}\right), \quad \mathrm{Z}_{1}=\int[d x] \ldots e^{-T \int d^{2} \sigma L} \\
\mathrm{SYM}:\langle\mathcal{W}\rangle=\sqrt{\frac{2}{\pi}} \frac{N}{\lambda^{3 / 4}} e^{\sqrt{\lambda}}+\ldots=\frac{1}{2 \pi} \frac{\sqrt{T}}{g_{\mathrm{s}}} e^{2 \pi T}+\ldots \\
\mathrm{ABJM}:\langle\mathcal{W}\rangle=\frac{N}{4 \pi \lambda} e^{\pi \sqrt{2 \lambda}}+\ldots=\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{T}}{g_{\mathrm{s}}} e^{2 \pi T}+\ldots
\end{gathered}
$$

universal form at strong coupling [Giombi, AT 2020]

$$
\langle\mathcal{W}\rangle=\mathrm{c}_{0} \frac{\sqrt{T}}{g_{\mathrm{s}}} e^{2 \pi T}\left[1+\mathcal{O}\left(T^{-1}\right)\right]+\mathcal{O}\left(g_{\mathrm{s}}\right), \quad \mathrm{c}_{0}=\frac{1}{(\sqrt{2 \pi})^{d-3}}
$$

dual string theories in $\mathrm{AdS}_{d} \times M^{10-d}(d=4,5)$ have similar structure $c_{0} \sqrt{T}$ from 1-loop superstring partition function in $\mathrm{AdS}_{d} \times M^{10-d}$ det's of fluctuation operators near $\mathrm{AdS}_{2}$ minimal surface

$$
\log Z_{1}=-\frac{1}{2} \log \frac{\left[\operatorname{det}\left(-\nabla^{2}+2\right)\right]^{d-2}\left[\operatorname{det}\left(-\nabla^{2}\right)\right]^{10-d}}{\left[\operatorname{det}\left(-\nabla^{2}+\frac{1}{2}\right)\right]^{2 d-2}\left[\operatorname{det}\left(-\nabla^{2}-\frac{1}{2}\right)\right]^{10-2 d}}
$$

$$
\mathrm{Z}_{1} \sim(\sqrt{T})^{\chi}, \quad\left(\mathrm{Z}_{1}\right)_{\text {disk }} \sim \sqrt{T}
$$

disk with $h$ handles $\chi=1-2 h: g_{s}^{-1} \rightarrow g_{s}^{\chi}, \sqrt{T} \rightarrow(\sqrt{T})^{\chi}$

- thus prediction on string side:

$$
\langle\mathcal{W}\rangle=e^{2 \pi T} \sum_{h=0}^{\infty} c_{h}\left(\frac{g_{\mathrm{s}}}{\sqrt{T}}\right)^{2 h-1}\left[1+\mathcal{O}\left(T^{-1}\right)\right]
$$

remarkably, consistent with form of $\frac{1}{N}$ terms on gauge theory side

- SYM: $\quad N \gg 1$, then $\lambda \gg 1$

$$
\langle\mathcal{W}\rangle=e^{\frac{(N-1) \lambda}{8 N^{2}}} L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right)=e^{\sqrt{\lambda}} \sum_{h=0}^{\infty} \frac{\sqrt{2}}{96^{h} \sqrt{\pi} h!} \frac{\lambda^{\frac{3}{4}(2 h-1)}}{N^{2 h-1}}\left[1+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right)\right]
$$

- $\frac{g_{\mathrm{s}}}{\sqrt{T}} \sim \frac{\lambda^{3 / 4}}{N}$ appears as expansion parameter
- from localization result: $\mathrm{c}_{h}=\frac{1}{2 \pi n!}\left(\frac{\pi}{12}\right)^{h}$
- large $T=\frac{\sqrt{\lambda}}{2 \pi}$ terms at each order in $g_{s}=\frac{\lambda}{N}$ exponentiate:

$$
\begin{gathered}
\langle\mathcal{W}\rangle=W_{1} e^{H}\left[1+\mathcal{O}\left(T^{-1}\right)\right], \quad W_{1}=\frac{1}{2 \pi} \frac{\sqrt{T}}{g_{\mathrm{s}}} e^{2 \pi T} \\
H \equiv \frac{\pi}{12} \frac{g_{\mathrm{s}}^{2}}{T}=\frac{1}{96 \pi} \frac{\lambda^{3 / 2}}{N^{2}}
\end{gathered}
$$

conjectured interpretation: $H=$ "handle operator"

- computing even 1-loop string term is challenge but will derive analog of $e^{\frac{\pi}{12} \frac{g_{s}^{2}}{T}}$ in ABJM case from 1-loop M2 brane partition function


## $1 / N$ expansion of $\frac{1}{2}$ BPS circular WL in ABJM

- string side: universal form of expansion in small $g_{s}$, large $T$

$$
\langle\mathcal{W}\rangle=e^{2 \pi T} \frac{\sqrt{T}}{g_{\mathrm{s}}}\left(\mathrm{c}_{0}+\ldots+\frac{g_{s}^{2}}{T}\left[\mathrm{c}_{1}+\ldots\right]+\left(\frac{g_{s}^{2}}{T}\right)^{2}\left[\mathrm{c}_{2}+\ldots\right]+\ldots\right)
$$

ABJM: $\frac{g_{s}^{2}}{T} \sim \frac{\lambda^{2}}{N^{2}}=\frac{1}{k^{2}}$, corrections $T^{-1} \sim \frac{\sqrt{k}}{\sqrt{N}}$

- gauge side (localization): exponentiation of leading terms?
no, summed by $\frac{1}{\sin \frac{2 \pi}{k}}: \frac{2 \pi}{k}=2 \pi \frac{\lambda}{N}=\sqrt{\frac{\pi}{2}} \frac{g_{\mathrm{s}}}{\sqrt{T}}$ [Beccaria, AT 20]

$$
\begin{gathered}
\langle\mathcal{W}\rangle=\frac{1}{2 \sin \frac{2 \pi}{k}} e^{\pi \sqrt{\frac{2 N}{k}}}\left[1+\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)\right]=\frac{1}{2 \sin \left(\sqrt{\frac{\pi}{2}} \frac{g_{s}}{\sqrt{T}}\right)} e^{2 \pi T}\left[1+O\left(T^{-1}\right)\right] \\
\frac{1}{2 \sin \left(\sqrt{\frac{\pi}{2}} \frac{g_{s}}{\sqrt{T}}\right)}=\frac{\sqrt{T}}{\sqrt{2 \pi} g_{s}}\left[1+\frac{\pi}{12} \frac{g_{s}^{2}}{T}+\frac{7 \pi^{2}}{1440}\left(\frac{g_{s}^{2}}{T}\right)^{2}+\ldots\right]
\end{gathered}
$$

Main result: $\frac{1}{\sin \frac{2 \pi}{k}}$ is 1-loop M2 brane contribution [Giombi, AT 2023]

- large $N$, fixed $k$ : WL described by M2-brane on $\mathrm{AdS}_{2} \times S^{1}$
$e^{-S_{\mathrm{M} 2}}=e^{\pi \sqrt{\frac{2 N}{k}}}$ from classical M2 action
- 1-loop M2 correction $\rightarrow Z_{1}=\frac{1}{\sin \frac{2 \pi}{k}}$
- leading quantum M 2 correction in $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ sums large $T$ terms at all orders in $g_{\text {s }}$ in string theory on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$
- highly non-trivial check of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ duality at all orders in $1 / \mathrm{N}$


## 1-loop M2 brane partition function

- $\mathrm{AdS}_{2} \times S^{1} \mathrm{M} 2$ solution dual to Wilson loop: wrapping $\mathrm{AdS}_{2}$ of $\mathrm{AdS}_{4}$ and $S_{\varphi}^{1}$ of $S^{7} / \mathbb{Z}_{k}$
$S_{\mathrm{M} 2}=\frac{1}{4} \mathrm{~T}_{2} \operatorname{vol}\left(\mathrm{AdS}_{2}\right) \frac{2 \pi}{k}=-\pi \sqrt{\frac{2 N}{k}}$
$e^{-S_{\mathrm{M} 2}}$ matches leading factor in $\langle\mathcal{W}\rangle$
- expand M2 brane action near $\operatorname{AdS}_{2} \times S^{1}$ solution static gauge: M2 coordinates $\sigma_{1}, \sigma_{2}=\operatorname{AdS}_{2} ; \sigma_{3}=11 \mathrm{~d}$ circle $\varphi$ $\kappa$-symmetry gauge: $8+83$ d fluctuations [Sakaguchi, Shin, Yoshida 2010]
- Fourier expansion of 3 d fields in $\sigma_{3}=(0,2 \pi)$ : tower ( $n=0, \pm 1, \ldots$ ) of bosonic + fermionic $2 d$ fields on $\mathrm{AdS}_{2}$
- fluctuations in $2 \perp \mathrm{AdS}_{4}$ directions: $\quad m^{2}=\frac{1}{4}(k n-2)(k n-4)$
- fluctuations of $\mathrm{CP}^{3}$ directions: $m^{2}=\frac{1}{4} k n(k n+2)$
- fermions: $6+2$ towers of 2d spinors: $m=\frac{1}{2} k n \pm 1, \quad m=\frac{1}{2} k n$
- string theory limit $k \rightarrow \infty: n \neq 0$ modes decouple $n=0$ : same as 2 d fluctuationsin superstring on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$ :
B: 2 of $m^{2}=2 ; \quad 6$ of $m^{2}=0 ; \quad$ F: $3+3$ of $m= \pm 1$ and 2 of $m=0$
- 1-loop M2 partition function on $\mathrm{AdS}_{2} \times S^{1}$

$$
\begin{gathered}
Z_{\mathrm{M} 2}=Z_{1} e^{-S_{\mathrm{M} 2}}\left[1+\mathcal{O}\left(\mathrm{T}_{2}^{-1}\right)\right], \quad S_{M 2}=-\frac{\pi}{k} \mathrm{~T}_{2} \\
Z_{1}=\prod_{n=-\infty}^{\infty} \mathcal{Z}_{n}, \quad \mathcal{Z}_{0}=\mathrm{AdS}_{4} \times \mathrm{CP}^{3} \text { string on } \mathrm{AdS}_{2} \\
\mathcal{Z}_{n}=\frac{\left[\operatorname{det}\left(-\nabla^{2}-\frac{1}{2}+\left(\frac{k n}{2}+1\right)^{2}\right)\right]^{\frac{3}{2}}\left[\operatorname{det}\left(-\nabla^{2}-\frac{1}{2}+\left(\frac{k n}{2}-1\right)^{2}\right)\right]^{\frac{3}{2}} \operatorname{det}\left(-\nabla^{2}-\frac{1}{2}+\left(\frac{k n}{2}\right)^{2}\right)}{\left.\operatorname{det}\left(-\nabla^{2}+\frac{1}{4}(k n-2)(k n-4)\right) \operatorname{det}\left(-\nabla^{2}+\frac{1}{4} k n(k n+2)\right)\right]^{3}}
\end{gathered}
$$

- dets by spectral $\zeta$-function in $\mathrm{AdS}_{2}$ [Drukker, Gross, AT 00 ]
$\Gamma_{1}=\frac{1}{2} \log \operatorname{det}\left(-\nabla^{2}+m^{2}\right)=-\frac{1}{2} \zeta\left(0 ; m^{2}\right) \log \Lambda^{2}-\frac{1}{2} \zeta^{\prime}\left(0 ; m^{2}\right)$
$\zeta_{B}^{\prime}\left(0 ; m^{2}\right)=-\frac{1}{12}(1+\log 2)-\int_{0}^{m^{2}+\frac{1}{4}} d x \psi\left(\sqrt{x}+\frac{1}{2}\right)$
- cancellation of $\log \mathrm{UV} \infty$ in $\Gamma_{1}=-\log Z_{1}$ :

$$
\zeta_{\text {tot }}(0)=\frac{1}{2} \sum_{n=-\infty}^{\infty}(-2+4)=\sum_{n=-\infty}^{\infty} 1=1+2 \zeta_{R}(0)=0
$$

$n \neq 0$ massive KK modes cancel UV div of $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$ string $(n=0)$
(as expected: no 1-loop log UV div in 3d theory)

$$
\Gamma_{1}=-\log Z_{1}=-\frac{1}{2} \zeta_{\mathrm{tot}}^{\prime}(0), \quad \zeta_{\mathrm{tot}}^{\prime}(0)=\sum_{n=-\infty}^{\infty} \zeta_{\mathrm{tot}}^{\prime}(0 ; n)
$$

- combining B and F contributions: remarkable simplifications

$$
\begin{gathered}
\zeta_{\text {tot }}^{\prime}(0 ; n)+\zeta_{\text {tot }}^{\prime}(0 ;-n)=-2 \log \left(\frac{k^{2} n^{2}}{4}-1\right), k n>2 \\
\Gamma_{1}=\sum_{n=1}^{\infty} \log \left(\frac{k^{2} n^{2}}{4}-1\right)=2 \sum_{n=1}^{\infty} \log \frac{k n}{2}+\sum_{n=1}^{\infty} \log \left(1-\frac{4}{k^{2} n^{2}}\right) \\
\zeta_{R}(0)=-\frac{1}{2}, \zeta_{R}^{\prime}(0)=-\frac{\log (2 \pi)}{2}: \quad 2 \sum_{n=1}^{\infty} \log \frac{k n}{2}=-\log \frac{k}{4 \pi}
\end{gathered}
$$

- use Euler's relation: $\sin \pi x=\pi x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right)$

$$
\sum_{n=1}^{\infty} \log \left(1-\frac{4}{k^{2} n^{2}}\right)=\log \left[\prod_{n=1}^{\infty}\left(1-\frac{4}{k^{2} n^{2}}\right)\right]=\log \left(\frac{k}{2 \pi} \sin \frac{2 \pi}{k}\right)
$$

- final result for $k>2$

$$
Z_{1}=e^{-\Gamma_{1}}=\frac{1}{2 \sin \frac{2 \pi}{k}}
$$

precise agreement with localization

- cases of $k=1,2$ require a separate treatment: $Z_{1}^{k=1}=\frac{1}{4}, Z_{1}^{k=2}=1$ but localization result for $\langle\mathcal{W}\rangle$ is singular for $k=1,2$ need further consideration - may be subtle as susy $\mathcal{N}=6 \rightarrow 8$


## Generalizations:

- $\frac{1}{\sqrt{N}}$ corrections: from higher M2 loops?
expansion parameter: effective M2 brane tension $\frac{1}{T_{2}}=\frac{\pi}{\sqrt{2 k}} \frac{1}{\sqrt{N}}$

$$
\begin{array}{r}
\langle\mathcal{W}\rangle=\frac{1}{2 \sin \frac{2 \pi}{k}} e^{\pi \sqrt{\frac{2 N}{k}}}\left[1-\frac{\pi\left(k^{2}+32\right)}{24 \sqrt{2} k^{3 / 2}} \frac{1}{\sqrt{N}}+\mathcal{O}\left(\frac{1}{N}\right)\right] \\
\quad=\frac{1}{2 \sin \frac{2 \pi}{k}} e^{\frac{\pi^{2}}{k} \mathrm{~T}_{2}}\left[1-\frac{k^{2}+32}{24 k} \frac{1}{\mathrm{~T}_{2}}+\mathcal{O}\left(\mathrm{T}_{2}^{-2}\right)\right]
\end{array}
$$

- $\mathrm{T}_{2}^{-1} \sim \frac{1}{\sqrt{\mathrm{~N}}}$ 2-loop M2 contribution UV finite?
- conjecture: div's cancel also at higher M2 loops as in GS action in $\mathrm{AdS}_{5} \times S^{5}$ or $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$
hidden symmetry in M2 brane theory?
- Lesson: take quantum M2 brane seriously use it to derive strong coupling corrections to non-BPS observables not known from localization or integrability
- Example: cusp anom dim in ABJM at strong coupling beyond planar limit [Giombi, AT]

$$
\begin{aligned}
& f(\lambda, N)=\sqrt{2 \lambda}-\frac{5}{2 \pi} \log 2+q_{1}(k)+\mathcal{O}\left(\frac{1}{\sqrt{\lambda}}\right) \\
& q_{1}=\frac{2 \pi}{3 k^{2}}+\frac{2 \pi^{3}}{45 k^{4}}+\ldots=\frac{2 \pi \lambda^{2}}{3 N^{2}}+\frac{2 \pi^{3} \lambda^{4}}{45 N^{4}}+\ldots
\end{aligned}
$$

## M2 brane instanton contrubution to ABJM free energy

- semiclassical quantization of M2 brane in $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ reproduces also localization result for instanton contribution to free energy $F$ in ABJM theory on $S^{3}$ [Beccaria, Giombi, AT 23]
- non-perturbative part of $F$ [Drukker et al, Hatsuda 12]

$$
\begin{gathered}
F^{\mathrm{np}}(N, k)=F_{1}^{\text {inst }}(N, k)\left[1+\frac{\pi}{\sqrt{2 k}} \frac{k^{2}-40}{12 k} \frac{1}{\sqrt{N}}+\ldots\right]+\ldots \\
F_{1}^{\text {inst }}(N, k)=-\frac{1}{\sin ^{2} \frac{2 \pi}{k}} e^{-2 \pi \sqrt{\frac{2 N}{k}}}
\end{gathered}
$$

- in string theory regime ( large $N$ and $k$ with $\lambda=\frac{N}{k}=$ fixed) interpreted as string world-sheet instanton (wrapping $\mathrm{CP}^{1} \subset \mathrm{CP}^{3}$ )
- in M-theory regime (large $N$ with fixed $k$ ) corresponds to M 2 instanton on 11 d circle and $\mathrm{CP}^{1} \subset \mathrm{CP}^{3}$, i.e. $S^{3} / \mathbb{Z}_{k} \subset S^{7} / \mathbb{Z}_{k}$
- classical action of $S^{3} / \mathbb{Z}_{k}$ M2 brane solution matches exponential

1-loop fluctuation determinants reproduce $\frac{1}{\sin ^{2} \frac{2 \pi}{k}}$ prefactor

## Conclusions

- novel precision tests of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ in M-theory regime (non-planar corrections on gauge side)
- remarkable duality: relation between very different QFT's: 3d superconformal non-abelian CS+matter on $S^{3}$ and non-linear M2 theory for abelian 3d scalar multiplet in curved $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$ space
- evidence that quantum M2 brane theory is well defined at least in semiclassical expansion sheds light on M -theory as theory of quantum supermembranes
- similar results for $\mathrm{AdS}_{7} / \mathrm{CFT}_{6}$ generalization:
$6 \mathrm{~d}(2,0)$ superconformal theory on multiple M5 branes dual to M-theory on $\mathrm{AdS}_{7} \times S^{4}$ quantum effects in free energy on $S^{5} \times S^{1}$ captured by semiclassical M2 branes in $\mathrm{AdS}_{7} \times S^{4}$ [Beccaria, Giombi, AT 23]


[^0]:    ${ }^{1}$ E-mail: nirov@ms2.inr.ac.ru
    ${ }^{2}$ E-mail: rubakov@ms2.inr.ac.ru

