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¥ In this talk | consider the first problem and try to answer the question:

How one can obtain unambiguous predictions for the S-matrix in non-
renormalizable theories !

& The answer to the second problem was given in our papers earlier:

To sum up the leading asymptotics in all orders of PT (generalized RG) and to
study the high-energy behaviour afterwards



Effective action and the S-matrix

Effective action
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Effective action
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Use of equations of motion

Field transformation

()  ®(z) = &(x) + Ad(x) AP ~ )\ €—  Coupling constant
Lagrangian transformation

L[®] — L][®] + L/[®]A® + +O(N?)

& The S-matrix elements with the proper external lines renormalization
factors are not influenced by the replacement of the fields (x)

& From this it follows that for any change in AL which is proportional to L'[®]
does not influence the S-matrix. In other words one can use equations of motion

2] =0

to simplify expressions for AL



Counter terms

Equations of motion

Off shell

On shell

Local counter terms on mass shell

AN E— ZZZ (D)
1=1 \

Local operators
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Local counter terms on mass shell

4
Example: Renormalizable theories ¢4
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QED
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Counter terms
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Loop Expansion (non-renormalizable case) 4
D6
UV divergences 2 4,1
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The Amplitudes

Renormalizable case

4
3
¢4 P oo(s ) log@ i log (@ )= One loop
€
s ;
NS AZ(I) (_E —c) 4— Arbitrary constant

AT = X+ AN (—log(s/p) — log(t/u) — log(u/p) — €) + ...
< A = X+ AX*(log(so/p) — log(to/p) — log(ug/p) — c).  Normalization
A= Aj + (A3)?A(log(so/ 1) — log(to/p) — log(uo/p) — c)

AfPite — A9 4 (A9)A(—log(s/s0) — log(t/to) — log(u/ug)) + ..

¢ Summary: To fix the arbitrariness it is enough to put one condition on one
scattering amplitude. All the rest is calculated unambiguously.



The Amplitudes

¢é Non-Renormalizable case

= el s ’;* L slos(s/i) — Hog(t )= ulor (T

= A+ AN (—slog(s/u) — tlog(t/u)) + ...

1
s 3
On shell AL = 9°®*P°AN? x 0+ BA3<I>6(—1 —c) €4——  Arbitrary constant
€
AT — A+ AX2(—slog(s/u) — tlog(t/u)),
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AY = X £ AX2(—s0log(sg/uo) — to log(to/ug))

Normalization
Ag = BA’(—log Qo/p)

Y Summary: to fix the complete arbitrariness in the amplitudes on the mass shell it is
necessary to impose an infinite number of conditions on the 4-point amplitude (in the
finite order of PT, the number of conditions is finite) and one on the 6-point
amplitude.



¢4 The Amplitudes
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Now, to fix arbitrariness, we will impose two conditions on the 4-point amplitude and one condition
on the 6-point amplitude.The first fixes ) and c (= will fall out), and the second - p



¢4 The Amplitudes
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Counter-terms on the mass shell

Four point amplitude divergent subgraphs

F < T
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Resume:To get the final S-matrix it is enough to have counter terms constructed on mass shell !
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to the choice of a subtraction scheme. While switching from scheme to scheme
the renormalized coupling constants are multiplied by a constant multiplier Z

€ In non-renormalized theories, renormalization is not multiplicative, but
depends on kinematics and has an integral character. The unambiguity of the
answer, as in renormalizable theories, is achieved due to the fact that while
expressing the multi-leg amplitude through a four-point one with fixed
kKinematics, the entire dependence on the arbitrariness of subtraction is
cancelled.

€ In non-renormalized theories, the amplitudes grow with energy in each fixed
order of perturbation theory

g"'s" log s

and one has to sum up the leading asymptotics in all orders of PT (generalized
RG) and to study the high-energy behaviour afterwards



